A. 小学数学常用的教学方法有哪几种
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
B. 小学数学的教法和学法有哪些呢
下面这个可以做为参考:
19种小学数学教学方法总结
良好的方法能使我们更好地发挥运用天赋的才能,而拙劣的方法则可能阻碍才能的发挥。------[英]贝尔纳
“数学为其他科学提供了语言、思想和方法”,“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题”。(小学数学课程标准)
数学思维方法分为两种,形象思维方法和抽象思维方法。
小学数学要培养学生的形象思维能力,并在此基础上,为发展抽象思维能力打下坚实的基础。
一、形象思维方法
形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
1、实物演示法
利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。
绩。
2、图示法
借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。
在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。
例1 把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)
思维方法是:图示法。
思维方向是:锯几次,每次用几分钟。
思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。
例2 判断 等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。(图略)
思维方法:图示法。
思维方向:先比较面积,再比较周长。
思路:作条辅助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的。线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的。
3、列表法
运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。
用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。
4、探索法
按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国著名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。
第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。
第二、定向猜测,反复实践,在不断分析、调整中寻找规律。
例3 找规律填数。
(1)1、4、 、10、13、 、19;
(2)2、8、18、32、 、72、 。
第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。
小学数学教学活动中,教师应尽量创设让学生去探究的情景,创造让学生去探究的机会,鼓励有探究精神和习惯的学生。
5、观察法
通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”
小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。
如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。
“观察”的要求:
第一、观察要细致、准确。
例4 找出下列各题错在哪里,并改正。
(1)25×16=25×(4×4)=(25×4)×(25×4);
(2)18×36+18×64=(18+18)×(36+64)
例5 直接写出下列各题的得数:
(1)3.6+6.4 (2)3.6+6.04
(3)125×57×0.04 (4)(351-37-13)÷5
第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。
第三, 观察必定与思考结合。
例6
7
10
6
18
这是一年级下学期的一道思考题,如果只观察不思考,这道题目让干什么就不知道。
6、典型法
针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法。比如,归一、倍比和归总算法、行程、工程、消同求异、平均数等。
运用典型法必须注意:
(1)要掌握典型材料的关键及规律。
例7 已知爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍。爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍。典型题都有典型解法,要想真正学好数学,即要理解和掌握一般思路和解法,还要学会典型解法。
(2)熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法。
例8 见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站。这条线路需要设多少个车站?”这样题目,就应该联想到上面所讲到的“锯木头用多少分钟”的典型问题。
(3)典型和技巧相联系。
例9 甲乙两个工程队共有82人,如果从乙队调8人到甲队,两队人数正好相等。甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变。先算调后各队人数,再算原来各队人数。
7、放缩法
通过对被研究对象的放缩估计来解决问题的方法叫做放缩法。放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力。
例16 求12和9的最小公倍数。
求两个数的最小公倍数一般的方法是“短除式”方法,它是根据这两个数的质因数情况来求出它们的最小公倍数的。但也有两个典型方法:一是“如果两个数是互质数,那么这两个数的最小公倍数就是它们的乘积”;二是“如果大数是小数的倍数,那么这两个数的最小公倍数就是大数”。现在我们根据典型方法二,进行扩展运用,放大“大数”来求12和9的最小公倍数。
12不是9的倍数,就把它放大2倍,得24,仍然不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36。这种方法的关键点在于,如果大数不是小数的倍数,就把大数翻倍,但一定从2倍开始,如果一下子扩大6倍,得数是它们的公倍数,而不是最小的了。
例17 期末考试,小刚的语文成绩和英语成绩的和是197分;语文和数学成绩加起来是199分;数学和英语成绩加起来是196分。想一想,小刚的哪科成绩最高?你能算出小刚的各科成绩吗?
思路一:“放大”。通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩。
思路二:“缩小”。我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差。数学和英语的和是196分,再求数学的分数就不难了。
放缩法有时运用在估算和验算上。
例18 检验下列计算结果是否正确?
(1)18.7×6.9=137.3; (2)17485÷6.6=3609.
对于(1)用总体估计,放大至19×7=133,估计得数要小于133,所以本题结果错误。对于(2)用最高位估计,把17看作18,把6.6看作6,18÷6=3,显然答数的最高位不会是3,故本题结果也不正确。
例19 把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只。
这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍。所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数。
8、验证法
你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。
验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。
(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。
(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。
(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)
按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。
(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。
二、抽象思维方法
运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。
抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。
形式思维能力:分析、综合、比较、抽象、概括、判断、推理。
辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。
小学数学要培养学生初步的抽象思维能力,重点突出在:(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。(2)思维方法上,应该学会有条有理,有根有据地思考。(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。
9、对照法
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例20、三个连续自然数的和是18,则这三个自然数从小到大分别是多少?
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
例21、判断:能被2除尽的数一定是偶数。
这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。
10、公式法
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
例22、 计算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………运用乘法分配律
=59×50 …………运用加法计算法则
=(60-1) ×50 …………运用数的组成规则
=60×50-1×50 …………运用乘法分配律
=3000-50 …………运用乘法计算法则
=2950 …………运用减法计算法则
11、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:
(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
例23、填空:0.75的最高位是( ),这个数小数部分的最高位是( );十分位的数4与十位上的数4相比,它们的( )
相同,( )不同,前者比后者小了( )。
这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。
例23、六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?
这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。
找联系:每人种树棵数变化了,种树的总棵数也发生了变化。
找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。
12、分类法
俗语:物以类聚,人以群分。
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。
例24、 自然数按约数的个数来分,可分成几类?
答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。
13、分析法
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。
依据:总体都是由部分构成的。
思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。
也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。
例25、玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?
思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。
枝形图:(略)
14、综合法
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于已知条件较少,数量关系比较简单的数学题。
例26、两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。
思路:11的倍数同时小于50的偶数有22和44。
两个数都是质数,而和是偶数,显然这两个质数中没有2。
和是22的两个质数有:3和19,5和17。它们的差都是小于30的合数吗?
和是44的两个质数有:3和41,7和37,13和31。它们的差是小于30的合数吗?
这就是综合法的思路。
15、方程法
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。
例27、一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。
例28、一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克?
这两题用方程解就比较容易。
16、参数法
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。
例29、汽车爬山,上山时平均每小时行15千米,下山时平均每小时行驶10千米,问汽车的平均速度是每小时多少千米?
上下山的平均速度不能用上下山的速度和除以2。而应该用上下山的路程÷2。
例30、一项工作,甲单独做要4天完成,乙单独做要5天完成。两人合做要多少天完成?
其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算最方便。
17、排除法
排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。
例31、为什么说除2外,所有质数都是奇数?
这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。一个数的约数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。
例32、判断:(1)同一平面上两条直线不平行,就一定相交。(错)
(2)分数的分子和分母同乘以或同除以一个相同的数,分数大小不变。(错)
18、特例法
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一般性存在于特殊性之中。
例33、大圆半径是小圆半径的2倍,大圆周长是小圆周长的( )倍,大圆面积是小圆面积的( )倍。
可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。
例33、 正方形的面积和边长成正比例吗?
如果正方形的边长为a,面积为s 。 那么,s:a=a (比值不定)
所以,正方形的面积和边长不成正比例。
19、化归法
通过某种转化过程,把问题归结到一类典型问题来解题的方法叫做化归法。化归是知识迁移的重要途径,也是扩展、深化认知的首要步骤。化归法的逻辑原理是,事物之间是普遍联系的。化归法是一种常用的辩证思维方法。
例34、某制药厂生产一批防“非典”药,原计划25人14天完成,由于急需,要提前4天完成,需要增加多少人?
这就需要在考虑问题时,把“总工作日”化归为“总工作量”。
例35、超市运来马铃薯、西红柿、豇豆三种蔬菜,马铃薯占25%,西红柿和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来西红柿多少千克?
需要把“西红柿和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归为分数应用题。
C. 小学数学教学方法有哪些
目前,我们常用的教学方法主要有:以语言形式获得间接经验的教学方法,以直观形式获得接经验的教学方法,以实际训练形式形成技能、技巧的教学方法等。这些教学方法之所以经常被采用,主要是因为它们都有极其重要的使用价值,对提高教学质量具有特定的功效。但任何教学方法都不是万能的,它需要教者必须切实把握各种常用教学方法的特点、作用,适用范围和条件,以及应注意的问题等,使其在教学实践中有效的发挥作用。
(一)以语言形式获得间接经验的方法。
这类教学方法是指通过都师和学生口头语言活动的教学方法。它主要包括:讲授法、谈话法、讨论法、
1 讲授法
讲授法是教师运用口头语言向学生描绘情境、叙述事实、解释概念、论证原理和阐明规律的一中教学方法。
2 谈话法
谈话法,它是通过师生的交谈来传播和学习知识的一种方法。其特点是教师引导学生运用已有的经验和知识回答教师提出的问题,借以获得新知识或巩固、检查已学的知识。
3 讨论法
讨论法是在教师指导下,由全班或小组围绕某一种中心问题通过发表各自意见和看法,共同研讨,相互启发,集思广益地进行学习的一种方法。
(二)以直观形式获得直接经验的方法
这类教学方法是指教师组织学生直接接触实际事物并通过感知觉获得感性认识,领会所学的知识的方法。它主要包括演示法和参观法。在教学图形时较常用。
演示法
演示法是教师把实物或实物的模象展示给学生观察,或通过示范性的实验,通过现代教学手段,使学生获得知识更新的一种教学方法。它是辅助的教学方法,经常与讲授、谈话、讨论等方法配合一起使用。
(三)以实际训练形式形成技能、技巧的教学方法
这类教学方法是以形成学生的技能、行为习惯、、培养学生解决问题能力为主要任务的一种教学方法。它主要包括练习、实验和实习作业等方法。我们平时常用。
1 练习法
练习法是在教师指导下学生巩固知识和培养各种学习技能后的基本方法,也是学生学习过程中的一种主要的实践活动。
2 实验法
实验法是学生在教师 指导下,使用一定的设备和材料,通过控制条伯的操作,引起实验对象的某些变化,并从观察这些变化中获得新知识或验证知识的一种教学方法,它也是自然科学学科常用的一种方法。
3 实习法(或称实习作业法)
实习法是学生 在教师纽上,利用一定 实习场所,参加一定实习工作,以掌握一定的技能和有关的直接知识,或验证间接知识,综合运用所学知识的一种教学方法
D. 小学数学教学的教法和学法主要有哪些
19种小学数学教学方法总结
良好的方法能使我们更好地发挥运用天赋的才能,而拙劣的方法则可能阻碍才能的发挥.------[英]贝尔纳
“数学为其他科学提供了语言、思想和方法”,“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题”.(小学数学课程标准)
数学思维方法分为两种,形象思维方法和抽象思维方法.
小学数学要培养学生的形象思维能力,并在此基础上,为发展抽象思维能力打下坚实的基础.
一、形象思维方法
形象思维方法是指人们用形象思维来认识、解决问题的方法.它的思维基础是具体形象,并从具体形象展开来的思维过程.
形象思维的主要手段是实物、图形、表格和典型等形象材料.它的认识特点是以个别表现一般,始终保留着对事物的直观性.它的思维过程表现为表象、类比、联想、想象.它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象.它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力.
1、实物演示法
利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法.
这种方法可以使数学内容形象化,数量关系具体化.比如:数学中的相遇问题.通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向.再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多.
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”.像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的.
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握.长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础.
所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用.这样可以有效地提高课堂教学效率,提升学生的学习成绩.
绩.
2、图示法
借助直观图形来确定思考方向,寻找思路,求得解决问题的方法.
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果.比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解.
在课堂教学当中,要多用图示的方法来解决问题.有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段.
例1 把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)
思维方法是:图示法.
思维方向是:锯几次,每次用几分钟.
思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟.
例2 判断 等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长.(图略)
思维方法:图示法.
思维方向:先比较面积,再比较周长.
思路:作条辅助线.图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的.线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的.
3、列表法
运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法.列表法清晰明了,便于分析比较、提示规律,也有利于记忆.它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关.比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”.
用列表法解决传统数学问题:鸡兔同笼问题.制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向.
4、探索法
按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法.我国著名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来.”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈.“学习要以探究为核心”,是新课程的基本理念之一.人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试.
第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究.例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣.教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离.学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”.
第二、定向猜测,反复实践,在不断分析、调整中寻找规律.
例3 找规律填数.
(1)1、4、 、10、13、 、19;
(2)2、8、18、32、 、72、 .
第三,独立探究与合作探究结合.独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花.
小学数学教学活动中,教师应尽量创设让学生去探究的情景,创造让学生去探究的机会,鼓励有探究精神和习惯的学生.
5、观察法
通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法.巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”
小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系.
如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变.
“观察”的要求:
第一、观察要细致、准确.
例4 找出下列各题错在哪里,并改正.
(1)25×16=25×(4×4)=(25×4)×(25×4);
(2)18×36+18×64=(18+18)×(36+64)
例5 直接写出下列各题的得数:
(1)3.6+6.4 (2)3.6+6.04
(3)125×57×0.04 (4)(351-37-13)÷5
第二、科学观察.科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象.比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念.
第三, 观察必定与思考结合.
例6
7
10
6
18
这是一年级下学期的一道思考题,如果只观察不思考,这道题目让干什么就不知道.
6、典型法
针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法.典型是相对于普遍而言的.解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法.比如,归一、倍比和归总算法、行程、工程、消同求异、平均数等.
运用典型法必须注意:
(1)要掌握典型材料的关键及规律.
例7 已知爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍.爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍.典型题都有典型解法,要想真正学好数学,即要理解和掌握一般思路和解法,还要学会典型解法.
(2)熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法.
例8 见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站.这条线路需要设多少个车站?”这样题目,就应该联想到上面所讲到的“锯木头用多少分钟”的典型问题.
(3)典型和技巧相联系.
例9 甲乙两个工程队共有82人,如果从乙队调8人到甲队,两队人数正好相等.甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变.先算调后各队人数,再算原来各队人数.
7、放缩法
通过对被研究对象的放缩估计来解决问题的方法叫做放缩法.放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力.
例16 求12和9的最小公倍数.
求两个数的最小公倍数一般的方法是“短除式”方法,它是根据这两个数的质因数情况来求出它们的最小公倍数的.但也有两个典型方法:一是“如果两个数是互质数,那么这两个数的最小公倍数就是它们的乘积”;二是“如果大数是小数的倍数,那么这两个数的最小公倍数就是大数”.现在我们根据典型方法二,进行扩展运用,放大“大数”来求12和9的最小公倍数.
12不是9的倍数,就把它放大2倍,得24,仍然不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36.这种方法的关键点在于,如果大数不是小数的倍数,就把大数翻倍,但一定从2倍开始,如果一下子扩大6倍,得数是它们的公倍数,而不是最小的了.
例17 期末考试,小刚的语文成绩和英语成绩的和是197分;语文和数学成绩加起来是199分;数学和英语成绩加起来是196分.想一想,小刚的哪科成绩最高?你能算出小刚的各科成绩吗?
思路一:“放大”.通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩.
思路二:“缩小”.我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差.数学和英语的和是196分,再求数学的分数就不难了.
放缩法有时运用在估算和验算上.
例18 检验下列计算结果是否正确?
(1)18.7×6.9=137.3; (2)17485÷6.6=3609.
对于(1)用总体估计,放大至19×7=133,估计得数要小于133,所以本题结果错误.对于(2)用最高位估计,把17看作18,把6.6看作6,18÷6=3,显然答数的最高位不会是3,故本题结果也不正确.
例19 把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只.
这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍.所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数.
8、验证法
你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质.
验证法应用范围比较广泛,是需要熟练掌握的一项基本功.应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯.
(1)用不同的方法验证.教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算.
(2)代入检验.解方程的结果正确吗?用代入法,看等号两边是否相等.还可以把结果当条件进行逆向推算.
(3)是否符合实际.“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中.比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)
按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去.教学中,常识性的东西予以重视.做衣服套数的近似计算要用“去尾法”.
(4)验证的动力在猜想和质疑.牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现.”“猜”也是解决问题的一种重要策略.可以开拓学生的思维、激发“我要学”的愿望.为了避免瞎猜,一定学会验证.验证猜测结果是否正确,是否符合要求.如不符合要求,及时调整猜想,直到解决问题.
二、抽象思维方法
运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维.
抽象思维又分为:形式思维和辩证思维.客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式.形式思维是辩证思维的基础.
形式思维能力:分析、综合、比较、抽象、概括、判断、推理.
辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律.
小学数学要培养学生初步的抽象思维能力,重点突出在:(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性.(2)思维方法上,应该学会有条有理,有根有据地思考.(3)思维要求上,思路清晰,因果分明,言必有据,推理严密.(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理.
9、对照法
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法.根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法.
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识.
例20、三个连续自然数的和是18,则这三个自然数从小到大分别是多少?
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数.
例21、判断:能被2除尽的数一定是偶数.
这里要对照“除尽”和“偶数”这两个数学概念.只有这两个概念全理解了,才能做出正确判断.
10、公式法
运用定律、公式、规则、法则来解决问题的方法.它体现的是由一般到特殊的演绎思维.公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法.但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用.
例22、 计算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………运用乘法分配律
=59×50 …………运用加法计算法则
=(60-1) ×50 …………运用数的组成规则
=60×50-1×50 …………运用乘法分配律
=3000-50 …………运用乘法计算法则
=2950 …………运用减法计算法则
11、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法.
比较法要注意:
(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整.
(2)找联系与区别,这是比较的实质.
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件.
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出.
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错.
例23、填空:0.75的最高位是( ),这个数小数部分的最高位是( );十分位的数4与十位上的数4相比,它们的( )
相同,( )不同,前者比后者小了( ).
这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等.
例23、六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗.六年级有多少学生?
这是两种方案的比较.相同点是:六年级人数不变;相异点是:两种方案中的条件不一样.
找联系:每人种树棵数变化了,种树的总棵数也发生了变化.
找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人).
12、分类法
俗语:物以类聚,人以群分.
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法.分类是以比较为基础的.依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类.
分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉.
例24、 自然数按约数的个数来分,可分成几类?
答:可分为三类.(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个.
13、分析法
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法.
依据:总体都是由部分构成的.
思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路.
也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”.分析法也叫逆推法.常用“枝形图”进行图解思路.
例25、玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件.问平均每天超过计划多少件?
思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件.计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来.要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知.
枝形图:(略)
14、综合法
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法.
用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法.这种方法适用于已知条件较少,数量关系比较简单的数学题.
例26、两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数.写出适合上面条件的各组数.
思路:11的倍数同时小于50的偶数有22和44.
两个数都是质数,而和是偶数,显然这两个质数中没有2.
和是22的两个质数有:3和19,5和17.它们的差都是小于30的合数吗?
和是44的两个质数有:3和41,7和37,13和31.它们的差是小于30的合数吗?
这就是综合法的思路.
15、方程法
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式).列方程是一个抽象概括的过程,解方程是一个演绎推导的过程.方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足.有利于由已知向未知的转化,从而提高了解题的效率和正确率.
例27、一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50.求这个数.
例28、一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克.这桶油重多少千克?
这两题用方程解就比较容易.
16、参数法
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法.参数又叫辅助未知数,也称中间变量.参数法是方程法延伸、拓展的产物.
例29、汽车爬山,上山时平均每小时行15千米,下山时平均每小时行驶10千米,问汽车的平均速度是每小时多少千米?
上下山的平均速度不能用上下山的速度和除以2.而应该用上下山的路程÷2.
例30、一项工作,甲单独做要4天完成,乙单独做要5天完成.两人合做要多少天完成?
其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算最方便.
17、排除法
排除对立的结果叫做排除法.
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果.这种方法也叫淘汰法、筛选法或反证法.这是一种不可缺少的形式思维方法.
例31、为什么说除2外,所有质数都是奇数?
这就要用反证法:比2大的所有自然数不是质数就是合数.假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2.一个数的约数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数.这和原来假定是质数对立(矛盾).所以,原来假设错误.
例32、判断:(1)同一平面上两条直线不平行,就一定相交.(错)
(2)分数的分子和分母同乘以或同除以一个相同的数,分数大小不变.(错)
18、特例法
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法.特例法的逻辑原理是:事物的一般性存在于特殊性之中.
例33、大圆半径是小圆半径的2倍,大圆周长是小圆周长的( )倍,大圆面积是小圆面积的( )倍.
可以取小圆半径为1,那么大圆半径就是2.计算一下,就能得出正确结果.
例33、 正方形的面积和边长成正比例吗?
如果正方形的边长为a,面积为s . 那么,s:a=a (比值不定)
所以,正方形的面积和边长不成正比例.
19、化归法
通过某种转化过程,把问题归结到一类典型问题来解题的方法叫做化归法.化归是知识迁移的重要途径,也是扩展、深化认知的首要步骤.化归法的逻辑原理是,事物之间是普遍联系的.化归法是一种常用的辩证思维方法.
例34、某制药厂生产一批防“非典”药,原计划25人14天完成,由于急需,要提前4天完成,需要增加多少人?
这就需要在考虑问题时,把“总工作日”化归为“总工作量”.
例35、超市运来马铃薯、西红柿、豇豆三种蔬菜,马铃薯占25%,西红柿和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来西红柿多少千克?
需要把“西红柿和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归为分数应用题.
E. 教学法的学习的认知说
这种理论认为,儿童在操作和游戏中所表现的察觉和动作先于使用符号的能力,而这种能力又为综合理解做准备。关于儿童知识增长的这种次序,皮亚杰曾作过深入的阐述。他的观点给教育家以很大影响。这种理论还认为,完整的思想活动须遵循如下一个相当普通的次序︰ 求知兴趣的唤起; 问题的初步探索; 概念,假定的提出; 恰当概念的选择; 概念的证实。
F. 小学数学教学的教法和学法主要有哪些
选择和运用教学方法应该考虑以下几个主要原则:
1、坚持启发式教学,反对注入式教学
启发式教学就是指教师从学生的实际情况出发,把学生当成学习的主体,应用各种方式方法调动学生学习的积极性、主动性和能动性,引导学生通过自己积极的学习活动掌握知识、形成技能、发展能力和促进个性健康发展。
启发式教学的精神是尊重学生的主体人格,强调指导学生的学习方法,重视学生的技能形成、能力发展和个性展示。它把学生看成既是教育的对象,又是学习的主体,充分调动学生学习的主动性,激发他们的学习兴趣和求知欲,从而积极地开展思维活动,在理解的基础上掌握知识。这种教学有利于促进学生的智力,特别是思考力的发展和培养学生分析问题、解决问题的能力,是一种科学民主的教学方法。
注入式教学也称“填鸭式”或“灌输式”教学,是指教师从主观出发,把学生置于被动地位,忽视学生的主体能动性,把学生看成是单纯接受知识的“容器”,只注重教学过程的知识传授。可以看出,注入式教学是把学生看成被动的教育对象,不注意调动学生的主动性和积极性,教师只是把知识灌输给学生,使学生生吞活剥,不加咀嚼地呆读死记,抑制了学生的思考力和创新精神。注入式教学方式既不利于学生真正领会掌握知识,又不利于其智慧的发展,是一种不科学不民主的教学方法
2、体现教育价值的原则
小学数学教育的基本价值追求是什么?不同的理解将影响对具体数学教学方法的抉择与组合。如果将小学数学教育的价值简单地理解为就是掌握已经被发现的、最基础的数学知识,那么,可能更多地会考虑“采用什么样的方式讲解,学生更能听懂?”“通过哪些操练能使学生牢固掌握那些基础性的知识!”“如何考量学生是否已经掌握了那些规定性的基础知识?”等这样一些问题,则相应地,在抉择或组合教学方法的时候,可能会更多地集中在“叙述式讲解”、“重复性练习”、“结论性演示”等方法之上;如果将小学数学教育的价值理解为发展学生的数学素养的话,可能更多地会考虑“采用什么样的组织方式能更有利于学生经历一个探索与发现的过程?”“通过哪些获得能促进学生的知识和经验运用于现实情境?”“如何考量学生数学问题解决的能力”等这样一些问题,则相应地,在抉择或组合数学方法的时候,可能会更多地集中在“启发式对话”、“探索性实验”、“引发性问题解决”等方法之上。
3、目标导向原则
在任何一个数学教学活动开始前,教师都会(也必须)依据课程目标、学习任务以及学生特点等,设计出具体的教学目标。随着新课程的实施,教学目标的多元和整合已经深入人心,新课标把教学目标划分成“知识与技能,过程与方法,情感、态度和价值观”三个维度。这个目标就是将数学学习的任务具体化,它是整个课堂学习活动的基本导向,在课堂教学中主导着教与学的方法与过程,是教学的出发点和归宿。因此,教师对数学方法的抉择与组合,首先需要考虑的是,如何能最大限度地达成这个已经被确定的目标。
4、与教学内容相适应的原则
教学任务是通过教学内容的传授实现的。这里的教学内容是指学科性质和一节课的教材内容。教学内容是制约教学方法的重要条件,学科性质不同,教学方法也有不同。同一学科,由于各节课教材内容不同,其方法的选择也有区别。同是传授新知识,如是概念性内容,就要选用讲授法;如是阐明事物的特性、揭示事物发生发展变化的规律,则可选用演示法。所以要依据教学内容来选择与之相适应的教学方法。
5、促进儿童学习的原则
良好的教学方法应该是充分激发学生的学习动机,充分激励学生主动参与学习的一种程序结构。它应充分考虑学生是怎样学习的,怎样才能学得更好,要能充分地引起学生的注意,同时又尽可能地保持学生的这种注意,使学生始终能积极主动地参与学习过程;它不仅要关注教师行为的合理性和有效性,更要充分地关切学生的情绪状态,关切学生参与学习的程度,关切学生参与学习的过程中所遇到的问题或困难,关切学生可能会提出的各种各样的问题等;它要有助于形成和强化学生学习数学的自信心;它要能使学生在学习过程中获得最大可能的体验,并在这种体验下获得某种“成功”的满足。
教师应当通过各种各样的方式让学生明确自己的学习任务和学习目标;帮助学生依据学习内容确定自己的学习方式;注重儿童的个性、经验基础、兴趣导向和学习方式,宁可改变自己预设的教育教学计划;鼓励学生采用不同策略和方式参与学习;让学生运用各种各样方式去观察对象,预见结果,检验假设;将学生在学习过程中所呈现的不同反应整合进自己的教学方法之中。
6、兼顾差异性原则
首先,教师要认识到,不同年龄段的学生,其认知的心理水平和心理特点是不同的,例如,低年龄段的学生,更容易被一些新奇的对象所吸引,但对于一些复杂的情境,要能辨识出数学特征还是比较困难的,他们在学习过程中更多地依赖直观,因而对一些逻辑运算能力还比较弱。因此,在这个年龄段,可以多采用一些材料演示。操作实验等方法。而对稍高年段的学生来说,他们已经开始能从一个较为复杂的情境中辩识出某些数学特征,虽然数学思考仍主要依赖于直观,但已经建立了初步的语言和符号的逻辑运算能力,因此,就可以更多地采用一些启发式谈话、探究式发现、探索性实验等方法。
其次,教师要认识到,不同的学生,其认知结构以及学习风格也是不同的。一个专业成熟的教师,懂得如何依据不同的学生的认知结构特点和学习风格特点,选择有灵活性、开放性和多样性的适应性教学方法,特定的教学方法与特定的学生特征相联系,从而满足学生的学习需要。
最后,教师要认识到,不同年龄段的学生,其生活经历是不同的。即使是同一个年龄段的学生,其生活经验也是不同的。而学生已有的生活经历与相应累积的日常经验以及建立的那些日常概念,是学生实现现实问题数学化的一个基础。因此,在抉择和组合教学方法时,应兼顾这些差异。
G. 小学数学如何认识和解决学生学习困难问题案例
学好数学的方法
学好每一样门路都要持有一个态度,态度决定好与否,决定了学好这门功课的成功与失败。同样,学数学需要的也是一个好态度,当然,仅仅如此是不够的,学好数学的关键,在于方法。
学数学,永远都不可以死记硬背,有些同学把老师发的练习卷都背熟了,连答案都能倒背如流,可这又有什么用呢?下一次老师把试卷的数字改一改,就和原来的不同了。因此,我们必须掌握方法,灵活变通。不要一成不变,那只会越学越糟。我介绍给大家的方法如下:
(一)多写多做。多做一些习题,做的时候加以分析,确定类型,关键要掌握方法。久而久之,分析的能力就会变,多复杂的题目也能看透,同时,在分析的时候,常常会发现另一种解题方法,着同样也要熟记心中,因为学数学需要多方面巩固。
(二)多读多想。学数学需要自问自答的精神。有时,老师在课堂讲的方法,自己未必能懂,那就需要自己慢慢去理解消化。与此同时,要懂得产生疑问:“为什么要用这种方法?”“这种方法是怎么得来的?”“只可以用这种方法解题吗?”等你明白了这些问题的时候,解题方法也自然就牢记心中。
最后我要提到的是,灵活变通。往往同一种类型就有不同的解题方法,你就必须理清思路,灵活运用这些方法。
做到这些,就是会学数学的人。
H. 请写一个发现式教学模式案例,并分析。
一、发现式教学法的历史探源
发现式教学法就其思想渊源而言,可以追溯到很久.早在 19世纪中叶,德国著名教育家第斯多惠就曾提出:“科学知识是不应该传授给学生的,而应当引导学生去发现它们,独立地掌握它们”,“一个差的教师奉送真理,一个好的教师则教人发现真理”.其后,英国的著名教育家斯宾塞也指出:“在教育中应该尽量鼓励个人发展的过程,应该引导学生进行探讨,自己去推论,给他们讲的应该尽量少些,而引导他们去发现的应该尽量多些”.这些观点,无疑为发现式教学法奠定了思想基础.
作为一种严格意义上的教学方法,发现式教学法是由美国著名心理学家布鲁纳于 20世纪50年代首先倡导的.他认为:“提出一个学科的基本结构时,可以保留一些令人兴奋的部分,引导学生自己去发现它┅┅”;“学生通过发现来掌握学科基本结构,易理解、记忆,便于知识的迁移,能力的发展┅┅”;“发现不限于寻求人类尚未知晓的事物,确切地说,它包括用自己的头脑亲自获得知识的一切方法”.由于他的倡导,使得发现式教学法引起了从事教育工作的人们的高度关注和重视.
二、发现式教学法的理论依据
发现式教学法主要的理论依据是认知建构主义学派的建构原理与顿悟学说.
发现法作为一种教学方式,无论是教学过程,还是教学目标,更多关注的是学生的学,这种意义下的“发现学习”,以学生的自主探索、合作学习为主要特征,学习过程中,学生在原有的认知基础上,其元认知、动机、行为都能得到积极有效的参与.
以弗拉维尔为代表的认知建构主义学派认为,主动建构学习实际上就是元认知监控的学习,是学生根据自己的学习能力、学习任务的要求,积极主动地调整学习策略和努力程度的过程.所以,发现法作为一种学习方式,其本质正是学生在原有认知基础上的主动建构.
认知建构主义学派还认为,学习是一个认知过程,这个过程不是盲目地尝试与试误,而是突然的“顿悟”.人们从实践中认识到:试误与顿悟是学习中互补的两个过程,常常是穿插进行的.一般说来,在数学学习中掌握数学技巧、试解习题等常以试悟的形式出现,而对数学概念的理解及创造性地探索问题则多表现为顿悟.因此,发现式教学法否定通过大量练习与强化形式形成反应习惯,提倡主动地在人脑内部构造认知结构.
三、发现式教学法的现代诠释
步入 21世纪,我们面对的是一个飞速发展的信息化时代,要适应这种急剧发展变化的形势,人们必须具备自我学习的能力,必须终身学习.因此,基础教育的一个重要任务,就是帮助学生学会学习,培养学生的探究发现和开拓创新的能力.
高中《数学课程标准》指出:“教学中,应鼓励学生积极参与教学活动,包括思维的参与和行为的参与.既要有教师的讲授和指导,也有学生的自主探索与合作交流.教师要创设适当的问题情境,鼓励学生发现数学的规律和问题解决的途径,使他们经历知识形成的过程.”这就要求我们广大数学教师必须转变教学观念,更新教学手段,精心设计好每一节课的教学方案,给学生创造一种能主动探究问题、主动获取知识的宽松、和谐的学习氛围和学习环境.发现式教学法的思想正好体现了这种需求.
在传统的“接受式教学法”的基础上,融入“发现式教学法”,接受的过程中多启发,发现的过程中多参与,两种教学形式互补共存,达到和谐统一,将成为新一轮课程改革中的热门课题.
四、发现式教学法的教学环节
运用发现式教学法实施数学教学,通常可以按照以下几个步骤进行操作:
现以推导等比数列前 n项和公式的教学案例说明如下:
1.创设问题情景
根据教学内容和学生的学习要求 ,通过举出与新知识有关的实际事例、从旧知识中寻找出与新知识相似的数学对象、准备好与新知识相关的教具和材料等方法,精心创设问题情景,将学生的注意力和兴趣引导到数学知识的探究活动中来.
本节课问题情景我是这样设计的: SARS病毒曾给我们带来了无限的恐慌,现假设第一天有一位SARS病人,他在第二天感染两人就不再感染别人了,而另两人又在第三天各感染两人,以后他们也不再感染别人了,如此下去33天共有多少人感染了SARS病毒(不考虑死亡人数).
(这样引入课题出于以下三点考虑: (1)利用学生求知好奇心理,以一个真实事件为切入点,便于调动学生学习本节课的趣味性和积极性.(2)事件内容紧扣本节课教学内容的主题与重点.(3)有利于知识的迁移,使学生明确知识的现实应用性.)
2.组织学生活动
学生活动包括观察、操作、归纳、猜想、验证、推理、建立模型、提出方法等个体活动,也包括讨论、合作、交流、互动等小组活动,或者是在教师引导下的师生互动,目的是让学生亲身体验数学知识的发生、发展的过程.
求解上述问题时,可引导学生把这个问提跟教材讲等比数列通项时的细胞分裂问题进行比较,找出不同之处:不同在于细胞分裂成两个后本身就消失了,而在这个问题中 SARS病人传染给另两人后本身并没有消失,所以最后算多少人时要把这一部分人加上去,那么第1天是1人,第2天是2人,第3天是 人,第33天是 人,所以33天总共应有( )人.
3.引导探究发现
在学生通过独立思考、自主探究的基础上,引导学生发现数学概念、数学定理、数学公式等数学知识,发现论证数学定理、推导数学公式、解决数学问题的思想方法,争取给学生更多的参与机会,使他们象数学家那样经历数学的过程,感受成功的体验.在求 和时,笔者是这样做的:
师:同学们,要知道我们猜测的数据正确与否或者说谁的误差更小些,我们就必须给出这个式子的正确解答过程.我们先来仔细看一下这个式子,很显然 1,2, ,…, 是一个等比数列,共有33项,那么也就是说我们现在要做的就是求一个等比数列前33项的和.一般地,设有等比数列 他的前n项和是 .请同学们自己看课本上的证明,看完请大家思考这样两个问题:1、你认为公式中应该注意哪些问题?2、除了课本上的证明方法你还有其它方法证明吗?
给足够的时间鼓励学生对问题自由思考,积极解决)
生 2:我觉得公式应该对q=1与 分类进行讨论.
生 3:我觉得等比数列的项数还应该值得重视.
师:很好,的确以往同学们容易出错的地方也是这两个方面,所以以后我们在运用公式时要注意对 q的讨论以及数列的项数.课本上的证明方法叫做错位相减法.(教师板演)(这种求和的思路在解决某些求和问题时经常用到,应使学生掌握)那除了课本上的证法还有没其它证法了呢?
生 4:由等比数列通项得:
将上面n个等式的等号两边分别相加,得 , , .
当 时, ;当 时, .
生 5:(板演)由等比数列的定义得: ,运用等比定理, ,于是 ,得出 或 ,或 (q=1).
生 6:(板演) ,则
所以有 ,即 ,或 (q=1).
4.建构数学理论
数学理论包括概念定义、定理叙述、模型描述、算法程序以及解决数学问题过程中的思想方法等.在学生经过探究活动、体验过程、感受意义、形成表象以后,教师要及时地帮助整理、补充和完善,使之规范化,纳入学生的认知系统,形成完整的数学理论体系,为掌握应用奠定基础.
在构建数学理论时课堂实录如下:
师:同学们能够想出三种不同的方法相当不容易,我们再来仔细学习以上三种方法:生 4根据等比数列的定义,用迭加的方法推导出了等比数列{a n }的前n项和公式;生5围绕等比数列的基本概念,从等比数列的定义出发,运用等比定理,导出了公式.生6当然还有我们课本上的错为相减法也是相当重要的一种方法,这种方法在我们以后的习题中还会大量出现.
由此,我们得出了求等比数列的前 项和的公式 .
请同学们思考,有了这个公式,要求一个等比数列的前 项之和,我们应该怎样做?
众生:直接用公式.
师:运用公式要注意什么.启发学生得出:需按公比 是否为1分类讨论.
师:这个公式除了可以用来求等比数列的前 项和之外,还有其它用途吗?
(仔细观察公式,引导学生发现知三求二)
5.尝试数学运用
数学运用主要是指运用通过探究发现得来的数学理论实现问题解决 ,包括辨别、解释、解决简单问题、解决复杂问题等.教师要精心组织系列化的问题题组,指导学生尝试数学运用,培养学生的应用意识,检测和反馈学生学习活动的效果.
课堂实录如下:
师:我们已经掌握了等比数列的求和公式,让我们再回到开始的问题上去,请同学们精确计算 33天后的SARS病人.
众生: .
师:计算出最后结果.
众生: 8589934591.
师:也就是将近有 85亿人被感染SARS病毒,而我们知道全世界人口才60几亿.从这个数据也能说明SARS的可怕,值得庆幸的是,在党和政府的领导下我们战胜了SARS,这也说明我党,我们社会主义国家的优越性.
6.总结回顾反思
总结回顾反思可以先由学生叙述 ,教师进行补充和提炼,目的是:一方面让学生再次回顾本节课的活动过程、重点和难点所在以及在学习活动中取得的成绩和存在的问题;另一方面,更是对探索过程的再认识,对研究数学问题的思想方法的升华,对数学思维的反思,为学生以后的进一步学习研究和解决问题提供经验和教训.
笔者让同学们对本节课的教学内容作一个回顾和反思:
(1)等比数列的前n项和公式;
(2)公式的推导方法;
(3)公式的应用.
追问:从这节课的学习中,你有哪些体会和收获?这个问题留给大家课后思考.
通过师生的共同回顾反思,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力,进一步完成认知目标和素质目标.
在实际教学中,上述六个环节不一定要面面俱到,可以根据教学内容和教学环境灵活选择,关键在于关注学生学习方式的转变,将学生的探究发现活动摆在应有的位置上.
总之, 发现式课堂教学是否能取得实效,归根到底是以学生是否参与、怎样参与、参与多少来决定的,同时只有学生主动参与教学,才能改变课堂教学机械、沉闷的现状,让课堂充满生机.所谓学生主动参与就是给学生自主探究的权利,不要教师设框框,先把学生手脚捆绑起来,要求学生按照教师预先设计好的一套去运行.而每步探究先让学生尝试,就是把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,这样,就可以使发现式课堂教学进人理想的境界.
I. 小学教学常用教学方法主要有哪些结合自己的教学实例把这几种方法的一般步骤一一
小学常用的教学方法
(一)讲授法
讲授法是教师运用口头语言系统地向学生传授知识的方法。讲授法是一种最古老的教学方法,也是迄今为止在世界范围内应用最广泛、最普遍的一种教学方法。讲授法的基本形式是教师讲、学生听,具体地说,又可以分为讲述、讲读、讲解三种方式。
讲述:教师向学生叙述、描绘事物和现象。
讲解:教师向学生解释、说明、论证概念、原理、公式等。
讲读:教师利用教科书边读边讲。
以上三种方式之间没有严格的界限,在教学活动中经常穿插结合地使用。
讲授法的优点在于,可以使学生在比较短的时间内获得大量的、系统的知识,有利于发挥教师的主导作用,有利于教学活动有目的有计划地进行。讲授法的缺点在于,容易束缚学生,不利于学生主动、自觉地学习,而且对教师个人的语言素养依赖较大。
教师运用讲授法,应当注意以下几点。
1.保证讲授内容的科学性和思想性。教师讲授的概念、原理、事实、观点必须是正确的,这就要求教师认真备课和教学。
2.讲授要做到条理清楚、重点分明。讲授逻辑清楚,学生才能够理解清楚。
3.讲究语言艺术。教师的语言水平直接决定着讲授法的效果,因此必须不断注重和提高自己的语言修养。首先要做到语言清晰、准确、精练,既逻辑严密又清楚明白;其次,要努力做到生动形象、富于感染力,这对于小学生尤其重要;再次,还应当注意语音的高低、语速的快慢,讲究抑扬顿挫。
4.注意与其他教学方法配合使用。小学生的注意时间有限,在整节课中完全采用讲授法很难取得良好效果,教师应当善于将讲授法与其他教学方法和手段交叉替换使用,避免学生因长时间听讲出现疲劳和注意涣散现象。
(二)谈话法
谈话法是教师根据学生已有的知识经验,借助启发性问题,通过口头问答的方式,引导学生通过比较、分析、判断等思维活动获取知识的教学方法。谈话法的基本形式是学生在教师引导下通过独立思考进行学习。
谈话法的优点在于,能够比较充分地激发学生的主动思维,促进学生的独立思考,对于学生智力的发展有积极作用,同时也有助于学生语言表达能力的锻炼和提高。谈话法的缺点在于,与讲授法相比,完成同样的教学任务,它需要较多的时间。此外,当学生人数较多时,很难照顾到每一个学生。因此,谈话法经常与讲授法等其他方法配合使用。
教师运用谈话法,应当注意以下几点。
1.做好充分的准备。围绕什么内容进行谈话?提出哪些问题?提问哪些学生?以及学生可能做出什么样的回答?怎样通过进一步的提问引导学生?等等,教师都应当在事前周密考虑和安排。
2.谈话要面向全体学生。尽管谈话只能在教师与个别学生之间进行,教师还是可以通过努力吸引所有的学生。首先,谈话的内容应当是能够引起全体学生注意的、在教学中具有普遍性和重要性的问题。其次,教师应当尽可能使得谈话对象有代表性,比如选择不同层次的学生。再次,在谈话时适时加以适当的解释、说明作为补充。
3.在谈话结束时进行总结。在谈话中学生的理解和掌握往往表达得不够准确、精练,因此在谈话的最后阶段,教师应当用规范和科学的表述对学生通过谈话所获得的知识加以概括总结,从而强化他们的收获。
(三)讨论法
讨论法是在教师指导下,学生围绕某个问题发表和交换意见,通过相互之间的启发、讨论、商量获取知识的教学方法。讨论法的基本形式是学生在教师的引导下借助独立思考和交流学习。
讨论法的优点在于,年龄和发展水平相近的学生共同讨论,容易激发兴趣、活跃思维,有助于他们听取、比较、思考不同意见,在此基础上进行独立思考,促进思维能力的发展。此外,讨论法能够普遍而充分地给予每一个学生表达自己观点和意见的机会,调动所有学生的学习积极性,并且有效地促进学生口头语言能力的发展。讨论法的缺点在于,受到学生知识经验水平和能力发展的限制,容易出现讨论流于形式或者脱离主题的情况,对小学生而言更是如此,这需要教师加以注意。
J. 认知法的认知法评价
1.主要优点:
强调以学生为中心,强调有意义的学习和有意义的训练,注重理解。
2.缺点:
认知法作为一个独立的外语教学法体系还不够完善,在理论和实践方面都需要进一步充实。
从理论说,认知法理论基础的一些理论还处在形成和发展阶段,如转换生成语法体系怎样运用到教学实践中去等问题还需要进一步探索。
从实践上讲,缺乏与该理论原则相适应的配套教材。该法在美国多用于教本国人学外语,而在国内外教他族人学英语基本上不用此法。