Ⅰ 如何解决小学数学《常见数量关系与问题解决》这一难点
解决问题来是发展学生的创源新意识和实践能力的重要途径
数学问题的解决往往都不能直接依赖于已有的知识和方法,只有通过对已掌握的知识和方法的重新组合并生成新的策略和方法才能实现。因此解决数学问题的过程又是一个创新的过程。这一过程促使学生寻求新的途径和方法,它不仅可以使学生获得初步的创新能力,而且可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
Ⅱ 小学数学应用题中常见的数量关系分类归纳
在小学教学基本类型应用题的数量关系中,可分为十一种:加法2种;减法3种;乘法2种;除法4种。现分述如下:
一、加法的种类:(2种)
1.已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。一共养兔多少只?
想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。
列式:8+4=12(只)答:(略)
2.已知小数和相差数,求大数。
例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少 只?
想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。(灰兔的只数。)
列式:4+3=7(只) 答:(略)
二、减法有3种:
1.已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?
想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)
列式:12—8=4(只)
2.已知大数和相差数,求小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。养灰兔多少只?
想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)
列式:8-3=5(只)
3.已知大数和小数,求相差数。
例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只?
想:已知大数(白兔8只)和小数(灰兔5只),求相差数。(白兔比灰兔多多少只?)
列式:8-5=3(只)
三、乘法有2种:
1.已知每份数和份数。求总数。
例:小利家养了6笼兔子,每笼4只。一共养兔多少只?
想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少 。用乘法计算。
列式:4×6=24(只)
本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。不得改变两者关系。
即:每份数×份数=总数。
决不可以列式:份数×每份数=总数。
2.求一个数的几倍是多少?
例:白兔有8只,灰兔的只数是白兔的2倍。灰兔有多少只?
想:白兔有8只,灰兔的只数是白兔的2倍,也就是说:灰兔有白兔只数两个那么多,就是求2个8只是多少?
列式:8×2=16(只)
四、除法有4种:
1.已知总数和份数,求每份数。
例:小强有15个苹果,平均放在3个盘子里,平均每盘放几个苹果?
想:已知总数(15个),份数(放3盘)。求每份数(每盘放几个?)也就是把15平均分成3份,求每份是多少。
列式:15÷3=5(个)
2.已知总数和每份数,求份数。
例:小强有15个苹果,每5个放一盘,可以放几盘?
想:因为已知总数(15个苹果)和每份数(5个放一盘)求可以放几盘?也就是看25里面有几个5,就可以放几盘?
列式:15÷5=3(盘)
3.求一个数是另一个数的几倍。
例:小勇有15个苹果,有5个梨,苹果的个数是梨的几倍?
想:看苹果的个数里面有几个梨的个数,就是梨的几倍。即求一个数是另一个数的几倍。
列式:15÷5=3
4.已知一个数的几倍是多少,求这个数。(用除法来计算。)
Ⅲ 小学常见的数量关系有哪些
1、 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、 加数+加数=和
和-一个加数=另一个加数
7、 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 、因数×因数=积
积÷一个因数=另一个因数
9、 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
10、总数÷总份数=平均数
11、和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
12、和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
13、差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
14、植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
15、盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
16、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
17、追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
18、流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
19、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
20、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
Ⅳ 10以内的数量关系的教案
设计背景
在平时的数学教学活动过程中,我发现我班的幼儿在手、口一致的的数数时,还不能完全正确掌握,我想让他们具体的感知把具体的量抽象成数的过程,特别选择了这个教学内容。
活动目标
1.培养幼儿手、口一致的数数,并复习数字1—10。
2.通过让幼儿数出皮球的个数,在下图涂出出相对应的数量并圈出正确的数字
个过程,使幼儿学习数量的对应,感知把具体的量抽象成数的过程。
3.帮助幼儿理解数的实际意义,培养其抽象概括能力
重点难点
重点:让幼儿手、口一致的数数。难点:感知把具体的量抽象成数的过程。
活动准备
数字卡 各类物品、食物卡。
活动过程
一、从《拍手歌》导入
复习数字宝宝1—10,并随机抽取数字卡,让幼儿念出来。
二、按顺序排列
让幼儿到黑板上把数字卡从1排列到10。
三、数一数
让幼儿数一数物品(铅笔、蝴蝶、小鸭子等)的数量,并能用数字几来表示它。
四、 点数
给相应数量的圆涂上颜色,并把数字圈出来。
1.请小朋友到嘟嘟牛家做客,嘟嘟牛拿出了很多好吃的东西,如玉米、西瓜、糖果等。
2.点数:请幼儿到黑板手、口一致的点数。
3.嘟嘟牛忘记了这些好吃东西的数量,请幼儿用涂圆圈的方法标识起来,并把数字圈出来。请个别幼儿到黑板上点数、涂色、圈数字。
4. 请幼儿把课本翻到P11页,教师详细讲解,幼儿作业。
5. 教师巡回指导。
教学反思
本节课教学结构合理,幼儿兴趣,培养了幼儿手、口一致的数数,并复习数字1—10。通过让幼儿数出皮球的个数,在下图涂出出相对应的数量并圈出正确的数字这个过程,使幼儿学习数量的对应,感知把具体的量抽象成数的过程。幼儿非常积极的上前做题。但有一点,就是有个别幼儿还不会点数的,要加强数数的能力了。