❶ 北师大版小学数学三年级上册优质课《什么是周长》教案与教学反思
《什么是周长》是北师大版数学三年级上册第五单元第一课时的教学内容,这是一节概念课的新知教学,本科的教学目标是认识周长,属于几何范畴。基于知识特点,我在设计教学时,将认知过程分为概念认知和实践理解两部分。下面具体反思一下教学中的优点与不足。
先说优点:
1.使用多媒体课件进行几何直观演示,使概念直观生动,强化认知。
在开课出我以树叶为例引导学生理解“一周的长度”这以抽象的概念,并用课件给学生了一个直观明确的认知:周长就是图形边线一周的长度。增强了学生对周长概念的认知。
2.实践理解,梯度深入。
在实践体验环节,描一描平面图形,这里我在活动单上设置了“树叶、圆形、星形”的三个图形,让学生从规则、不规则,曲线、直线不同的层面体验物体的周长。
算一算,量一量中设置了三个层面的实践。第一层测量计算规则的图形周长如三角形、长方形、正方形。通过让学生说一说“怎么算的?”来明确图形的周长概念;第二层设置了不规则的测量不规则的图形,树叶的周长。使学生对周长的概念认知进一步的深化。最后是周长概念在生活中的应用,设置了实践测量腰围、头围的合作实践,通过汇报交流让学生明确这里测量的头围和腰围必须是相应位置,水平方向一周的长度,让所学知识生活化。
3.“以学定导,多元互动、 评价激励”,学生参与度高。
在课堂教学上我以 "独学、对学、群学"的形式展开教学活动,给学生自学思考交流的平台,鼓励学生大胆展示,敢于质疑补充。让学生在互动交流中实践修正,在“自评、对评、师评”的交互式评价激励中不断自我修正提升。
4.运用几何直观演示,有效的渗透相关的数学思想、引出数学方法。
在教学中契机对学生进行相关数学思想方法的渗透,使课堂教学更有深度。例如,在实践活动二中,同伴互助测量一片树叶周长时,向学生渗透了数学上的“极限思想”让孩子明白,越精确越好,让我记忆犹新的是其中一组同学在测量腰围时,竟然撩起了衣服,让同伴贴着自己的皮肤测量,力求精确,这时我又不得不向孩子们说明,生活中裁缝做衣服测量腰围不求精确,只求舒适的尺度。
数学方法的引出也有直观的演示支撑。学生汇报测量方法同时又引出了“化曲为直”、“分段计量”的测量方法;在练习提升比较“凹”、“凸”两个图形周长中,学生汇报比较方法时时形象的引出了“平移比较法”、“分段比较法”等数学方法,使学生的学习从知识到实践应用的方法思想上都有不同程度的提升。
不足:
1.学生在实践活动组织的松散,需要进一步要求。应多培养学生的自觉“收-放”意识。
2.多对学生进行有序的逻辑思维训练,尤其是在汇报交流时引导学生对自己的语言进行有序的逻辑梳理,让孩子们的表达更有条理。
❷ 小学数学哪些设计体现了几何直观
小学数学对于小学生来说,很多东西都是比较抽象的,由于小学生的抽象思维版比较弱,空间想权象力还比较差,大多数小学生都是感性认识比较强,在小学数学中,直观操作、几何经验活动就显得尤为重要,直观操作有利于小学生对知识的理解。例如,教学三角形、梯形面积;圆柱的体积等,通过对图形直观的平移,割补,剪拼等直观手段,让学生很容易理解、掌握知识。
所以说直观操作、几何经验活动对于小学生学习几何有着非常重要的作用。
❸ 谈如何培养小学生数学几何直观能力
几何直观主要是指利用图形来描述和分析问题,这样有助于探索解决问题的思路,预测结果,帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。下面谈谈如何培养小学生的几何直观能力。
首先,在教学中激发学生画图的兴趣
几何直观在本质上是一种通过图形所展开的想象能力,因此学生掌握一定的画图能力必不可少。在低年级数学中,学生年龄偏小,识字量较少,孩子们都爱把生活中复杂的人和事用简单的图表达出来。因此在教数学的运算时我注重让孩子们用画图来表示,并结合图表达出自己的理解。一方面培养学生倾听的能力,又激发了孩子画图的兴趣,并抓住教学契机让学生展示自己的作品,说出自己的想法,及时对学生进行表扬鼓励,激发学生作图的热情。
其次,在教学中养成良好的画图习惯
几何直观是具体的,它与许多重要的数学内容紧密相连,如分数的认识,负数的认识等。作为教师要从思想上认识到它的重要性,并把它当作是最基本的能力去培养学生。在日常的教学中,要帮助学生从小养成良好的画图习惯。
在教学中要通过多种途径和方式使学生真正体会画图对理解概念、寻求解决思路带来的益处。要求学生解决问题时能画图的尽量画图,将相对抽象的思考对象“图形化”,尽量把数学的过程变得直观,直观了就容易展开形象思维。如在教学生倍的概念时,6是2的几倍?让学生用自己的图形表示出6(可能画6个圆,或画6个三角形,也有可能画6根小棒),然后每2个一份圈起来,学生很直观地看出6里面有3个2,也就是6是2的3倍,这样为抽象的倍的概念建立了具体形象的表象,理解起来轻松很多,以后在学习较复杂的“和倍、差倍”问题时,学生会很容易想到画直观图帮助解决问题。
第三,数形结合,学会画图的技巧
数形结合对于学生几何直观能力的培养作用明显,影响深刻。但是在运用数形结合的实际教学中,许多学生往往由于画图不准确、讨论不全面、理解片面等原因导致出错,因此教学中应让学生掌握画图的一些技巧。例如在教学解决分数问题的应用题时,学生往往因线段图画错而导致解题方法错误。由于分数问题比整数问题显得更加复杂和抽象,在教学中如何变抽象为直观是突破难点的关键所在。
最后,运用模型和多媒体信息技术辅助教学
模型可以让学生直接接触到几何的知识,直观而有效。多媒体技术给学生展示丰富多彩的图形世界,提供直观的演示和展示,可以表现图形的直观变化,以解决学生的几何直观由直观到抽象的演进过程,扩大其空间视野。如在教学“圆柱的认识”时,教师可以直接出示薯片包装盒、水杯等实物,给学生造成强烈的视觉冲击,基本特征映入眼帘,一览无遗。
❹ 例谈小学数学教学中如何培养学生的几何直观能力
几何直观主要指利用图形描述和分析问题。《全日制义务教育数学课程标准( 2011 版) 》将“几何直观”正式列为十个核心概念之一。 借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。无论是在图形与几何领域还是在数学领域亦或是其他知识领域的教学中,都应重视几何直观的培养。本文从几何直观的概念、教学价值以及培养几何直观的教学方法这几个方面进行阐述、论证。
新课改背景下对“四基”的要求,数学课程标准提出:培养和发展学生的几何直观能力,几何直观已经成为数学教育中的一个值得关注问题,培养学生的几何直观能力,引导学生学会用画图的策略分析题意,解决简单的实际问题,逐步上升到能将直观图与数学语言、符号语言进行合情转换,我认为直观是一种感知,一种有洞察力的定势,其本质就是让学生看图想事、说理、解决问题。几何直观主要体现两点:一是一眼能看出不同事物之间的关联;二是透过现象看本质。数学是对客观现象抽象概括而逐步形成的,它是研究数量关系和空间形式的科学。
一、几何直观的教学价值
《全日制义务教育数学课程标准( 2011 版) 》首次提出在义务教育阶段应当注重培养学生的几何直观,凸显了几何直观在学生数学学习过程中的地位和作用,彰显了几何直观的教学价值。随着数学课程标准提出培养和发展学生的几何直观能力,几何直观已经成为数学教育中的一个关注问题,在内容上、意义上和方法上远远超出对几何图形本身的研究意义。
数学知识是抽象的,学习数学最需要的是抽象思维和推理能力。所以在思考的过程中用直观形象的图形、符号把问题表述出来,把思考的过程描述出来,把看不见的抽象思维显现出来、固化下来,一是有助于把复杂、抽象的问题变得简明、形象。二是有助于探索解决问题的思路并预测结果,三是有助于帮助学生直观地理解数学。可以说从小就重视培养几何直观能力,对以后数学知识的学习会有极大的帮助。
二、培养几何直观能力的教学方法
在小学数学中培养学生的几何直观能力,要先从直观教学开始,引导学生学会用画图的策略分析题意,解决简单的实际问题,逐步上升到能将直观图与数学语言、符号语言进行合情转换,并逐步在解决数学问题的过程中渗透数形结合的思想,感悟数与形、形与数之间的转化,让几何直观的培养贯穿在整个小学数学学习过程中。
(一)重视直观感知,突出画图策略的教学。
《解决问题的策略》主要教学用画直观示意图的方法解决有关面积计算的实际问题。在教学面积计算的问题时,关键要使学生想到画图、正确画图、用图分析和体验画图解决问题的好处。首先可以向学生呈现纯文字的例题,面对比较复杂的数学问题,引导学生想到用画图的方法整理条件和问题。接着鼓励学生尝试画草图,让学生的思维集中于用画图来表达题意,并通过师生交流,进一步完善画出的示意图,使学生感受到画图能清楚地理解题意。然后借助示意图分析数量关系,明确先求什么,再求什么,列式解答后,要再结合算式和图说说解题思路。最后反思整个解题的过程,突出示意图对解决这个数学问题的重要作用,感受画图策略的价值。“试一试”和“想想做做”的题目与例题相比有一定变化,解决这些问题后,要引导学生思考:“不画图能准确解决这些问题吗?画图时要注意什么?”加深学生对应用画图策略价值的直观体验。 例如:在“五一”节的三天假期里,笑笑读了一本故事书,第一天读了全书总页数的1/3页,第二天和第三天读的页数比是4∶3,第二天比第三天多读16页,请问这本故事书共有几页?
第一天 第二天 第三天
比 第三天多读16页
(二)重视直观图形与数学符号的合情转换。
《正比例的意义》,在学生认识正比例的意义后,教材安排了正比例图像的初步认识,借助直观的图像,帮助学生进一步认识成正比例量的变化规律,为以后的学习作适当孕伏。教学时,根据例1表中的数据,先引导学生用“描点法”画出一幅表示正比例关系的图像。在描点的过程中,引导学生把所描出的点与表中的数据相对照,让学生初步理解图像上各点所表示的实际意义,即每个点都表示路程和时间的一组相对应的数值。再通过观察,使学生发现所描出的这些点正好在一条直线上,清楚地认识正比例图像的特点,并借助直观的图像进一步理解两种量同时扩大或缩小的变化规律,理解正比例的意义。画出图像后,让学生根据图像来判断行驶路程和时间,进一步认识图像上任意一点所表示的实际意义,初步体会正比例图像的实际应用。通过正比例图像与正比例关系式的转换,加深对正比例意义的理解,为今后进一步学习函数知识打下初步的基础。
再如,教学《用假设的策略解决实际问题》时,可以提示学生根据自己的假设画出示意图,并根据画出的图分析假设后乘船人数的变化以及产生这种变化的原因,引导学生根据数量发生的变化及时进行调整,推算出每种船的只数,最后进行检验。这一解决问题的过程就涉及直观图与算式的转换,学生借助直观图,抽象出解题思路:假设—比较—调整—检验。在培养学生几何直观能力的教学中,可以通过直观图像与数学符号的互相转换,引导学生逐步学会利用图形描述和分析数学问题。
(三)重视数与形的结合。
1.借助线段图,理解、分析数量关系
线段图是帮助理解数量关系形象化、视觉化的工具。借助线段图题目中量与量之关系,可以达到化繁为简、化难为易的目的,变“看不见”为“看得见”,不但能很好地帮助理清数量之间的关系,还能进一步帮助学生分析数量关系,拓宽解题思路。我们在教学中可以用线段图和数学分析法解决和差问题和鸡免同笼的问题,感悟用数形结合解决问题策略的优越性,从而获得解决问题的策略,同时获得替代、假设、转化等数学思维方法,并在自主解决问题的过程中享受成功的喜悦,建立了自信,激发了学生学习的兴趣,如:有的问题文字上比较难理解,问题解决者的头脑中不易理清数量关系,将文字上的数量关系转化为线段图表示时,数量关系就一目了然。例:“天津到济南的铁路长360千米。一列快车从天津开出,同时有一列慢车从济南开出,两车相向而行,经过4小时两车相遇,快车平均每小时行68千米,慢车平均每小时行多少千米?”
2、以形助数,让问题变得直观化
从低年级开始学习认数、学习加减法、乘除法,到中年级的分数的认识、高年级负数的认识等,都是以具体事物或图形为依据的,学生根据已有的生活经验,都是在具体表象中抽象出数,算理等。实现了以形助数,让问题变得形象化,直观化。
3.运用图形分析数量关系。
“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材的一个重要特点,也是解决问题时常用的方法。为了更好的理解题目,教师要鼓励学生围绕问题运用直观图形帮助理解,把一个无从下手的题目具体化。在老师的引导下,让学生领悟“数形结合”的数学思想,充分利用图形的直观性和具体性,发现数量关系,找出解决问题的突破口。画图不仅是为了解题,更为重要的是建立图文并茂的场景图,让孩子们的思维更准确。
六年级(下册)《用转化的策略解决实际问题》一节的“试一试”:几个分数的分子都是1,分母分别是2、4、8、16、 32、64,要计算出这几个分数连加的和是多少。为了启发学生运用转化的策略,培养学生初步的几何直观能力,教材呈现了直观图,用大正方形表示1,用正方形中的相关部分分别表示每个分数,整个图形中的涂色部分表示这些加数的和。同时,教材还提示学生“看图想一想,可以把这个算式转化成怎样的算式计算”。
实际教学时,可以分三个层次进行教学,并通过解决问题的过程培养学生的几何直观能力。第一层次:指导看图,学会转化。呈现算式后,学生一般会应用通分的方法进行计算。这时,教师可以鼓励学生思考其他的方法,根据直观图,先结合各个分数理解直观图中各部分的意义,再启发学生将其转化为1-1/64进行计算。第二层次:适当拓展,突出直观。教师将算式拓展到1/2+1/4+1/8+…+ 1/256,学生一般会根据画直观图的方法,将算式转化为1- 1/256进行计算。这时,教师要引导学生体会到,数与形的完美结合可以帮助我们将复杂的算式转化成简单的算式进行计算。第三层次:深度思考,强化直观。教师可以启发学生观察分母的特点:分母分别是2、2个2相乘、3个2相乘、4个2相乘……在直观图上先把正方形平均分成2份,取其中的1份;再把剩下的图形平均分成2份,取其中的1份……最后分出的图形与剩下的图形相等,借助直观图,只要用单位“1”减去剩下图形的大小就是所要求解的结果。在应用转化策略解决问题的同时,巧妙借助几何直观,培养学生初步的几何直观能力。
(四)教学中融入几何直观教学。
教学中,教师可以根据教学内容,适当安排几何直观教学。利用直观图解决数学问题,有助于梳理解题思路,帮助学生发现问题,分析问题,解决问题;也利于证明结论的正确性。例如,三年级教学“平均数”时,可以利用条形统计图,直观理解“移多补少”的方法,理解平均数的意义。如:小明前三次数学考试的平均成绩是93分,第四次数学考试的成绩比四次数学考试的平均成绩高3分,小明第四次数学考试的成绩是多少分?组织教学时,教师可以根据平均数的意义,通过画线段图帮助学生学会用“移多补少”的方法解决一些复杂的平均问题,突出直观图在解决数学问题中的作用。
再例如:在“三角形内角和”这一课时学习中,通过量、剪、拼、折等数学活动,让学生亲自实践操作,发现规律,主动推导并得出“三角形内角和是180°”的结论。学生生起初更多能想到的方法就是用量角器分别量出三个角,在进行相加求和。测量的结果是都在180°左右。老师再引导学生注意180°的平角特征,由此进行二个活动,让学生亲自操作体验。
操作一:拼一拼
操作二:折一折
在此教学过程中,学生通过“量一量”猜测结论,再通过“剪一剪”“拼一拼”“折一折”验证出结论。通过多种感官参与比较、分析从而自主探索得出结论,得到的不仅是三角形内角和的知识,也是学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神。
(五)重视空间想象,培养学生创造思维。
在教学《长方体长、宽、高的认识》时,教师可以先引导学生观察长方体的框架后,再进行小组讨论。然后,要求学生去掉其中的一条棱,这时你能想出它的大小吗?继续对棱进行拆除工作,提问:至少必须保留哪几条棱,才能让你猜想到它的大小呢?学生一边想象,一边交流,最后,学生留下了相交于一点的三条棱。还可以去掉其中的一条棱吗?学生看看留下的三条棱,再想象并比划这个长方体的大小。最后,学生都认为不能再去掉棱。这时,教师引导学生认识这三条棱分别是长方体的长、宽、高。在这个活动中,教师让学生在经过观察、操作、想象和交流后,不仅让学生认识了长方体的长、宽、高,而且还明白了长方体的大小是由长方体的长、宽、高所决定的,让学生在空间思维的过程中培养了几何直观能力。从而提高学生的创造性思维能力。
三、结论
综上所述,教学中,教师可以根据教学内容,适当安排几何直观教学。几何直观教学离不开推理和归纳。在利用直观图解决数学问题时,推理有助于梳理解决问题的思路,发现问题,解决问题;也利于证明结论的正确性,把几何直观教学贯穿在整个小学数学学习过程中。
❺ 小学数学教学中如何培养学生的几何直观能力
我国著名的数学家华罗庚说:“形缺数时难入微,数缺形时少直观”。几何直观是揭示现代数学本质的有力工具,利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果的工具。几何直观能力可以较好地理解数学本质,使学生体验数学创造性工作历程,能够开发学生的创造激情,形成良好的思维品质。那么如何培养学生的几何直观能力、如何更好地发挥几何直观性的教学价值,在这里谈谈我的看法:1、让学生在主动参与中获取对图形的认识教学中关注学生的基本生活经验和生活经历,注重引导学生把生活中对图形的感受与有关知识建立联系,在学生积极主动的参与学习中,我通过一组图片,视觉上给同学们直观的认识,引出直线,让学生很容易发现直线的特点,尤其直线是一个理想化的概念,几何直观的感受凸显的更加重要。学习直观几何,就像书上所说采用学生喜爱的“看一看、折一折、剪一剪、拼一拼、摆一摆、量一量、画一画”等具体、实际的活动方式,引导学生通过亲自触摸、观察、测量、制作和实验,把视觉、听觉、触觉、动觉等协同起来,强有力地促进心理活动的内化,从而使学生掌握图形特征,形成空间观念。2、重视对学生识图、作图能力培养图形是几何的灵魂,识图、作图更是学习几何最基本的素养,在讲授线段射线直线表示是亲自示范,强调图形名称及细节和注意,让学生在实际问题中动手去作图,同桌之间互相纠正,比一比谁画的更好,学生们在画图时无形会更加认真、标准,在彼此纠正过程再次巩固基本的画图方法,一举两得。3、多进行文字语言、符号语言和图形语言等三种语言的互译在几何的教学中,训练学生用三种语言来表示所学的定理、公理、定义等;学生通过这样的训练后,无论是空间想像能力,还是定理的理解与记忆都得到较大的提高。在介绍射线、线段定义时,我将文字语言转化为图形语言,在三种表示的时候又将图形语言,转化成文字语言。重要的直线公理和我说你画,其实也都是简单的图形语言转化为文字语言,平时有意识地点拨学生,进一步提高学生的空间想像能力。4、利用多媒体信息技术多媒体技术除了给学生展现丰富多彩的图形世界外,也多了一条解决问题的途径。学生在动手探究过一点有多少条直线时,虽然发现有无数条直线这一结论,但多媒体为学生展示其不易想像的图形,扩大其空间视野,真正体会过一点有无数条直线。
❻ 小学数学几何直观包含哪几个方面
那就抄是:
点
线
面
体
例如袭可以表现在:
墙角
——是由三条线相交于一个点,得到的。
线:
天花板与墙壁,是两个平面相交构成的直线(段)。
面:
黑板,桌面,平平的纸,都可以当作平面来看。
体:
书,笔,座椅,电灯,都可以当作物件的形体。
上述的,属于教学内容。
第二,教学过程上。
采用直观实物。——到提升为理解与掌握。
第三,教学方法。
可以启发式,尽量少用一问齐答。
第四,可以展开课堂讨论(老外称之为 西明纳尔)。以利记忆。
❼ 小学数学教学中如何培养学生的几何直观能力
1.结合具体实物,通过多种方法和手段(如看、摸、说、画、折等等),逐步抽象出几何基本专图形,弄属懂几何图形的基本概念和特征。
2.厘清各类图形之间的关系:点、线、面、体之间的组合变化;同类图形的异同(四边形、平行四边形、正方形、长方形、梯形、棱形等)。
3.使用多种手段让学生在充分感知事物表象的基础上,抽象出图形的本质特征,发展学生的抽象思维能力、逻辑思维能力、直觉思维能力、想象联想能力、创造创新能力等。
总之,学生的几何直观能力并不是一朝一夕就可以培养的,要在方法正确的前提下,树立持之以恒的耐心,方可取得成效,不可操之过急。