① 急求 小学数学教学案例
几个数学教学案例的反思与启示
程广文1 宋乃庆2
(1. 泉州师范学院 教务处,福建 泉州 362000;2. 西南师范大学 基础教育研究中心,重庆 北碚 400715)
“案例是教学理论的故乡。”〔1〕这个观点从两个方面得来:第一,教学理论应该是一种“形而下”的理论,教学理论是为教学实践服务的,离开了这个前提的“理论”不能称之为“教学理论”;第二,教学理论来源于教学实践,实践是教学理论的唯一来源,而案例则是数学教学实践的摹写,摹写案例的目的在于把数学教学实践中的教育学问题突出出来,以便更清楚地认识问题本质。不难明白,这两个方面是一个双向建构的过程。数学课堂教学活动主要包括教学主体、教学内容、教学方式和教学结果。以下四个案例分别从上述四个方面反映了数学课堂教学实践层次上的特征,同时也从一定的角度提出了研究者关于这四个阶段的观点和思考。我们对它们进行反思,目的在于从中可以得到一些启示。舒尔曼说过,“案例并非是简单地对一个教学事件的报告,称其为案例是因为在于提出一项理论主张……”〔2〕四个案例中有三个是从数学课堂第一线收集来的,另一个则来自课堂实录。这些案例虽然是个别的,但是它们所反映出的数学教学特征在数学教学实践中仍然具有一定的代表性,可以说只要走进数学课堂就可以看到案例中的情境。
一、教学主体:以教师思维代替学生思维而忘却学生的存在
案例1:“分式”概念教学
〔开始上课之前〕
T:〔板书〕根据题目意思列出代数式:
甲2小时做x个零件,乙每小时比甲少做6个零件。
1. 乙每小时做 个零件;
2. 甲乙合作小时共做 个零件;
3. 甲用m小时可做 个零件;
4. 甲做60个零件需 小时;
5. 甲乙合作y个零件需 小时。
§ 9.1 分式
例1 x取什么值时,下列分式有意义。
(1);(2)。
〔开始上课〕
T:我们看填空题。(全班一起回答。)
(1)x-6;(2);(3)mx;
(4);(5)。
T:观察这五个答案,上述五个答案中(4)、(5)与前三个答案有什么不一样?
S1:(4)、(5)中有分数线。
T:中也有分数线。
S2:分母中含有字母。
T:对了,主要是分母含有字母。
T:像这样的式子,我们叫做分式。
(板书:分式定义)。
T:在课堂本子上,举几个分式的例子。
S:(开始做作业)
(注:T表示教师;S表示学生;Sk表示第K个学生;S表示全班学生。)
这节课主要是对分式概念进行教学。在教学进行之前,教师精心地设计了一个工程问题为分式教学进行铺垫。这个铺垫对分式的学习是有很大帮助的,具有较高的教学价值。铺垫后的教学有两个关键之处:第一是教师的提问,“T:观察这五个答案,上述五个答案中(4)、(5)与前三个答案有什么不一样”;第二是教师对S2的回答“分母中含有字母”的后继处理(教学)。而恰恰在这两个关键之处教师都“忘记了学生”。例如,教师的第一个提问,试图让学生从“(1)x-6;(2);(3)mx;(4);
(5)”这样五个代数式中区别出分式来,但是教师所提出的问题中已经“不由自主”地区别了,说(4)、(5)“与前三个答案有什么不一样”,这样提出问题使得提问的价值大为降低。首先要求学生从形式上辨别出“分式”,并且是采取比较的方式,有比较才有鉴别,教师出发点非常好,但是作为以区别分式为出发点的比较应让学生自己采用分类的方法区别开来。换句话说,如果教师让学生先观察这五个代数式然后进行分类紧接着做比较从而让学生把分式的根本特征概括出来,这样分式概念的教学前的铺垫就发挥了充分作用。把本该由学生思考的东西却由教师代为思考了,那么教师为谁而教?学生在哪里?其次,在实际教学中,当S2把教师希望提的问题的答案“分母中含有字母”说出之后,教师立即给出分式的定义并在黑板上板书。一个学生知道了教师的问题的答案并不意味着大部分学生都清楚了问题所在。更何况,还不能真正清楚S2的答案是否表明S2对问题的认识,从S1的回答足以看出这一点,更不能断定整个班级的其他60多个学生的情况了。此处,足见教师在提出问题后已经“迫不及待”等候着学生的答案了,似乎显得教师提出问题就是为了这个答案而已,而忘记了作为教学过程的目的在于使得全班学生都达到理解和认同。
二、教学内容:数学教学中以数学操作代替数学理解
案例2:“表达式”例题教学
例:已知x=,y=3-2t,用含x的表达式表示y。
教师这样开始教学:题目要求我们用含x的表达式表示y,那么,第一步,我们可以从式子x=中得到(1+t)x=1-t。整理,得t(1+x)=1-x。从中求出t,得t=。第二步,将这个t=代入y=3-2t中,得y=3-2×。整理,得y=。这样这个题目就算讲解完了。
上述数学解题教学,教师是直接“讲解”“数学理解的表达形式”,而不是“讲解”“数学理解”本身。这种形式的教学是一种“数学操作”,是一种操作性教学,不是真正意义上的教学。真正意义上的教学是具有生成意义的,没有生成意义的教学充其量算是一种“训练”。不可否认,数学教学首要的是对数学知识的掌握,但是知识的掌握并非绝对地要通过“训练”方式才能掌握,何况数学是思而至知的学问,它的学习和掌握需要理解,没有理解的“训练”不能从真正意义上获得数学知识。如果教师从问题的结论开始和学生一起分析,从什么是“用含x的表达式表示y”这一问题开始,让学生对这句话的数学语义理解了,学生就比较容易找到问题的解决思路和途径。懂了“用含x的表达式表示y”就可以理解“x=”和“y=3-2t”,进而理解“t=”,问题也就解决了。
三、教学方式:数学课堂上出现形式化教学
案例3:“三角形中位线”课录节选〔3〕
T:同学们,今天上第36节课——三角形的中位线(边讲边板书,学生记在作业本上)。1. 什么叫做三角形的中位线?(教师板书学生记。)请同学们先看书,再齐读。(全班齐读三角形的中位线定义,师在黑板上画△ABC,如图1)
图1
T:请指出△ABC的中位线。
S1:在AB上找到中点D,在AC上找到中点E,连接DE。DE就是△ABC的中位线。
T:同学们,S1说得对吗?
S(齐答):对!
T:三角形的中位线是直线,是射线,还是线段呢?请S2回答。
S2:线段。
T:是一条什么样的线段?
S2:是一条连接三角形两边的中点的线段。
T:讲得好。三角形的中位线是一条线段,它的两个端点是三角形两边的中点。除了DE,还有哪些线段是三角形的中位线呢?请S3回答。
S3:有。还有BC的中点与其他任一边上的中点的连线。
(师在图1上作EF,DF。)
T:对了,DF、EF也是三角形的中位线。请同学们看课本第155页上的第一行,这里说三角形的中位线和三角形的中线不同,请问:不同在哪里?(见S4举手。)请S4回答。
S4:中线是连接三角形一个顶点和它的对边的中点的线段。
T:对了,虽然它们都是线段,但它们连接的点不同。中位线是连接两边中点的线段,而中线是连接一个顶点和它的对边的中点的线段。(边画图2,边说明。)
图2
这是一节概念课教学。如果说概念的认知顺序是先“过程”再“对象”的话,那么在这节课中,“中位线”概念的教学顺序则只有“对象”没有“过程”。概念的认知顺序需要有过程性,原因在于“概念在过程阶段表现为一系列的固定步骤,具有操作性,相对直观,容易仿效学会”。〔4〕从教学片段看,教学仅仅停留在“对象”——中位线的定义上,而缺乏“过程”。关于中位线定义,教师教学有这样三个阶段,第一阶段是“读”,让学生“读”中位线的定义,在教学中教师提出“什么叫做三角形的中位线”并且“教师板书学生记”,然后“请同学们先看书,再齐读”,“全班齐读三角形的中位线定义”时教师“在黑板上画”;第二个阶段是“识”,让学生根据“读”来识别三角形中哪条线段是中位线,在教学中教师“请S2指出△ABC的中位线”;第三个阶段是“辨”,让学生根据“读”和“识”的结果和感受辨别中位线和中线的区别,教师的教学行为是提出“三角形的中位线是直线,是射线,还是线段呢”和“请同学们看课本第155页上的第一行,这里说三角形的中位线和三角形的中线不同,请问不同在哪里”。教学停留在中位线定义的文字上,没有从中位线的形成着手,也没有把中位线在几何中的地位和作用说明清楚。三角形中位线在几何题证明中中点的作用最大,教学中若强调中点比强调定义的文字和形式更节约时间也更能把重点突出出来,教学还更清晰。
四、教学结果:对数学理解中的自动化行为缺乏教育学反思
案例4:“有理数运算”应用题教学
例:一批面粉10包,每包标准重量为25 kg,通过称量,发现这10包与标准线位置的差如下表:
袋号
1
2
3
4
5
6
7
8
9
10
与标准线位置差
+1
-0.5
-1.5
+0.75
-0.25
+1.5
-1
+0.5
0
+0.5
求这批面粉的总重量。
教师的讲解如下。
解:求代数和
(+1)+(-0.5)+(-1.5)+(0.75)+(-0.25)+(+1.5)+(-1)+(+0.5)+0+(+0.5)=1,我们可以求得总重量就是:
25×10+1=251(kg)。
这是一节初中一年级数学课中的一部分。从数学的角度来看,整道题的求解无懈可击。但是在实际课堂上这里有两个地方教师没有向学生交代清楚:第一是例题中表格里的正负号的意义。正号表示超过标准重量的意思,(+1)就是表示超出标准重量1 kg,也就是这包面粉的重量为26 kg;负号表示低于标准重量的意思,(-1)就表示低于标准重量1 kg,也就是这包面粉重量为24 kg。这也能加深学生对正负数的概念的理解,并且是结合实际意义进行理解。所以,这个解释很重要。第二是例题讲解中对“25×10+1=251(kg)”中“25×10”的理解。“25×10”是一个抽象的算式,25 kg是一个观念中的重量,因此教师应该把这一点向初一的学生讲解清楚,而实际教学中教师没有做到。本人在课堂上就抽了三个学生询问了一下,没有学生知道这是为什么。
任何学科的教学都要求在该学科上有一定专业化程度的人进行教学工作。教师的学科专业化在教育学上的意义是十分明确的,没有一定的相对于所教学的内容而言层次较高的知识做准备的教师是无法在这个层次上进行该学科的教学的,数学教学尤为如此。但是,在课堂教学中教师的专业化程度越高,对数学的理解就越具有高度的自动化,从而使得对学生的数学学习状况不理解,甚至不理解学生。例如,我们常常听到一线的教师这样说,我讲得最清楚不过了,他就是听不懂,他就是做不来题目。同一个数学问题,对教师理解起来容易,但对学生理解起来太难;在教师看来是那样的显而易见,但对学生来说却很艰难。所以很多时候还需要我们广大教师好好反思一下。
注释:
〔1〕顾泠沅:《教学任务的变革》,《教育发展研究》2001年第10期。
〔2〕Shulman,L.S. Just in case:Reflections on learning from experiences. In J.Colbert,K.Trimble,& P.Desberg(Eds.),The case for ecation:Contemporary approaches for using case methods,(P11). Boston:Allyn & Bacon,1996.
〔3〕宋阳、王梦荣等:《初中数学优秀教案课堂实录选评》,广西人民出版社1986年版,第103~106页。
〔4〕李士锜:《PME:数学教育心理》,华东师范大学出版社2001年版,第112页。
(责任编辑:李 冰)
② 如何应对小学数学课堂生成性问题
传统的小学数学教学,教师是主角,学生是知识的接受者,基本上专所有的教学过程甚至所有的属问题及答案都是教师提出的,课堂上没有争论,也没有异样的声调,一切似乎都在教师的掌控之中。然而,由于学生存在着个体差异,课堂教学不可能完全按照预定的“轨道”运作,这必然要求教学活动突破预期目标和既定教案的限制,走向生成、开放的创造天地。
③ 小学数学教学案例有哪些
101教育PPT有很多,随便发一篇给你吧
人教一年级数学上册《1—5的认识》教案
学情分析:
学生在幼儿园接触过1-5各数,他们能够熟练地数数,有的甚至能够疏导100多,从表面上看,他们已经很熟悉这些数了,但是这一阶段的学生缺乏对数的整体意义的理解。大部分学生在生活中见到过这些数,对它们的用处有了一些了解,但是没有感受到身边处处有数,对生活中离不开数的价值缺乏体验,还没有对这些数产生较强的喜爱之情。
教学目标:
1、 在观察农家小院图提取信息的过程中,引导学生初步感知1~5各数的基数含义,知道1~5的数序,并会认、会读、会写这5个数。
2、 在教学活动中,培养学生的数感,感受数学与生活的密切联系。
教学重点:
1~5的基数含义和写法。
教学难点:
1~5的写法,初步建立数感。
课时准备:
1课时
教学过程:
一、游戏导入,激发学生兴趣
教师:小朋友们喜欢做游戏吗?今天,老师给大家带来一个小游戏,请同学们举起你们的双手,跟着老师一起做。我说一句你们跟着说一句。(师生一起做变变变的游戏)
师:刚刚我们变手指是从几根指头变到几根指头的?(随机引出一根指头到五根指头的)
师:今天我们学习《1-5的认识》板书课题(1-5的认识)
二、实践探索,合作交流。
1.师:现在是秋天,秋风送爽,硕果累累,这是一个收获的季节。看这位老奶奶,家里收获了很多东西,同学们瞧瞧,这幅图里面都有什么东西呀?
(南瓜/花朵/老奶奶……)
2.生自主观察,图中有多少个南瓜、多少朵花?并随机指导三、指导学生按从小到大的顺序数。
1.师:图中有什么数量是1?
(一个老奶奶/一只小狗/一串玉米。)
教师:(那我们数量1的东西数完了,接下来应数数量几的呢?)那就请同学们数出图中可以用数“2”表示的东西。
2、师:它们的数量都是2,可以用数“2”表示。2数完了应该数几呢?就请同学们数出图里面可以用数“3”表示的东西。
3、 3数好了接下来应该怎么数?
4、请同学们数数,图中有什么可以用数“4”表示的呢?
5、小鸡和向日葵的数量都是4,可以用数“4”表示。接下来我们应该数?
6、:请同学们说说图中有什么可以用数“5”表示?
(南瓜、玉米的数量是5,可以用数“5”表示)。
四、指导认读。
教师:现在我们一起看一下这个计数器。上面有几颗珠子?
教师:1颗珠子可以用1表示,我们再加一颗珠子,现在是几颗啊?(相机做练习)
五、指导书写
教师: 1是从上往下写,稍稍有些倾斜;2像一只小鸭子; 3像小耳朵;4要写得直直的,不能有弯曲的地方。
六、练习
生在方格本上写1~5。
七、布置作业
课本第16页的做一做两道题完成。
教学反思:
1~5学生们在幼儿园都已经学习过了,这节课的主要目的在于感知1~5各数的基数含义,知道1~5的数序,并会认、会读、会写这5个数,通过图片让学生自己去发现去探讨。但实践下来发现课堂游戏少,学生注意力不够集中。可以在接下来的课堂上多开发一些数学游戏,激起学生的兴趣。
④ 小学数学教学案例分析
课题:探索三角形全等的条件
一、教学设计:
1 学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2 学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3 学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4 教学目标:
(1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
5 教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。。
6 教学过程
教学步骤 教师活动 学生活动 教学媒体(资源)和教学方式
复习过渡
引入新知
创设情景
提出问题
建立模型
探索发现
归纳总结
得出新知
巩固运用
及其推广
反思小结
提炼规律
电脑显示,带领学生复习全等三角定义及其性质。
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
按照三角形“边、角” 元素进行分类,师生共同归纳得出:
1 一个条件:一角,一边
2 两个条件:两角; 两边;一角一边
3 三个条件:三角; 三边;两角一边;两边一角
按以上分类顺序动脑、动手操
作,验证。
教师收集学生的作品,加以比
较,得出结论:
只给出一个或两个条件时,
都不能保证所画出的三角形
一定全等。
下面将研究三个条件下三角形
全等的判定。
(1)已知三角形的三个角分别
为40°、60°、80°,画出这
个三角形,并与同伴比较是否
全等。
学生得出结论后,再举例体会
一下。
举例说明:如老师上课用的三
角尺与同学用的三角板三个角
分别对应 相等,但一个大一个
小,很显然不全等;再如同是
等边三角形,边长不等,两个
三角形也不全等。等等。
(2)已知三角形三条边分别是
4cm,5cm,7cm,画出这个三角
形,并与同伴比较是否全等。
板演:三边对应相等的两个
三角形全等,简写为“边
边边”或“SSS”。
由上面的结论可知,只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。
实物演示:
由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。
举例说明该性质在生活中的应用
类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性
图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
题组练习:
P140 2 ( 学生举反例说明)
3 ( 对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)
教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。
在教师引导下回忆前面知识,为探究新知识作好准备。
议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件…经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?
画一画:
按照下面给出的两个条件做出三角形:
(1) 三角形的两个角分别是:30°,50°
(2) 三角形的两条边分别是:4cm,6cm
(3) 三角形的一个角为 30,一条边为3cm
剪一剪:
把所画的三角形分别剪下来。
比一比:
同一条件下作出的三角形与其他同学作的比一比,是否全等。
学生重复上面的操作过程,画一画,剪一剪,比一比。
学生总结出:三个内角对应相等的两个三角形不一定全等
学生举例说明
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。
鼓励学生自己举出实例,体验数学在生活中的应用.
学生那出准备好的硬纸条,进行实验,得出结论:
四边形、五边形不具稳定性。
学生练习
学生在教师引导下回顾反思,归纳整理。
z+z平台演示
z+z平台演示,教师加以分析。
学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。
结论很显然只需学生想像即可,z+z平台辅助直观演示。
学生动手操作,通过实践、自主探索、交流,获得新知。
举例时,电脑辅助演示让学生感受反例的作用。
z+z平台播放三角形稳定性及四边形不稳定性在生活中的应用.
z+z平台显示题组练习
检测学生对知识的掌握情况及应用能力。
再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验。
7教学反思
(1) 本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
(2) 在课堂教学设计中,尽量为学生提供“做中学”的时空,不放过任何一个发展学生智力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。
(3) “乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才的以发展。
⑤ 27.) 举出一个在课堂教学实践中自己利用学生生成性资源的例子,说一说是怎样处理的,效果如何
在教学《长方形、正方形和平行四边形的认识》时,学生通过操作、合作探索得出长方形、正方形的特征。突然一个学生说:“我有个发现,正方形相对的两条边也是相等的。”我认为这是个有价值的信息,于是我改变了原先的教学设计,修改了板书,把正方形的特征“四条边都相等”改为“相对的两条边相等”。一个学生就发现了:“那正方形不就变成长方形了吗?”我把这个问题抛给学生:“是呀!那正方形到底是不是长方形?请四人小组讨论一下。”学生议论开了,最后形成两派对立,相持不下。一部分学生认为:正方形不是长方形。因为它的四条边都相等,而长方形只是相对的两条边相等。另一部分学生认为:正方形是长方形。因为正方形有四个角,每个角都是直角;有四条边,每条边都相等,就包括相对的两条边相等。 还有的学生说:“如果说正方形是长方形,那为什么还要叫正方形,干脆全部都叫长方形。”他们把等待审判的目光投向了我。我得到这个信息并没有直接了断的“判案”,而是引导学生找出:“判断一个图形是不是长方形要用什么标准呢?”把评价的权利再抛还给学生。此时我发现判断是的同学以“YE!”庆贺胜利,判断不是的同学心有不甘。我说:“老师觉得刚才判断不是的同学眼睛真亮,他们注意到长方形与正方形的不同点。正方形是一种特殊的长方形,它是一种四条边都相等的长方形。大家对这个说法满意吗?”即时保护了学生的自信心与自尊心。我想正是这种审时度势,相机调整教学预设的态度,才能使学生有更充分的时间投入到主动学习、积极探究的活动中,获得思想启迪,加深知识理解,促进思维拓展,真正感受自身的价值,感受享受知识的甜蜜,感受心灵成长的幸福
⑥ 从几个案例看小学数学课堂教学中的预设与生成
目标正确就是指制定的教学目标既要符合课程标准的要求,又要符合学生的实版际情况。教学目标权是设计教学过程的依据,是课堂教学的总的指导思想,是上课的出发点,也是进行课堂教学的终极回宿。如何制定出一个具体明确又切实可行的教学目标呢?首先要认真钻研教材,结合数学课程目标和教学内容,制定出本节课的教学计划:要使学生把握哪些知识、形成什么样的技能技巧、达到什么样的熟练程度、会用哪些方法解题等,这就是双基目标。其次是考虑通过这些知识的教学,应该培养学生哪些思维能力,这是思维能力的目标。再次是想一想通过这些知识的教学,对学生进行哪些思想教育,培养哪些良好的道德品质,这是渗透思想教育的要求。最后是考虑哪些地方可以对学生进行创新教育,怎样培养学生的创新意识和创造能力,这是创新教育的要求,这也是课堂教学最重要的目标。