1. 小学数学方程的意义教学摸式
一、 创设情景引入
师:你们玩过跷跷板吗?下面老师给你们讲一个跷跷板的故事。两只小青蛙在玩翘翘板很开心,一只小熊也要玩,同学们,你们说会怎么样?(没法玩)为什么?有什么办法也让小熊也能玩的开心呢?(让学生思考讨论)学生回答后师总结出要让跷跷板两边平衡。
同学们,你们知道吗在数学里也有这样的跷跷板,今天我们就来研究我们数学里的跷跷板。引出课题并板书。
二、 探究新知
出示主题图(1)
请学生说说在这副图里你获得了那些信息?(天平两边平衡,一个空杯重100克。)
出示主题图(2)
请学生说说在这副图里你获得了那些信息?(在空杯里加一杯水后天平不平衡了。)
问:你们知道一杯水有多重吗?(不知道)
如果要你现在表示这杯水有多重,你有办法吗?
(学生思考,可以讨论)
用未知数x来表示水的重量,那么杯子和水一共有多重又该怎样表示呢?(指名回答)
100+x
出示主题图(3)
请学生观察这副图里的两架天平,发现了什么?(不平衡)
哪边重一些呢?你们能用数学算式来表示这两架天平的状况吗?
(学生分组讨论,教师巡视指导)
学生汇报:用>、<符号来表示哪一边重。(学生回答后,师板书)
100+x>200 100+x<300
出示主题图(4)
请学生观察这副图里的天平,发现了什么?(平衡了)
你们能用数学算式来表示这天平的状况吗?(学生思考后教师指名回答)
100+x=250 (师板书)
观察比较:
100+x>200
100+x<300
100+x=250
同学们,我们刚才写的这三个数学算式有什么不同?
前面两个算式两边不相等,后面一个算式两边是相等的。
教师总结:像这样两边相等的算式我们把它叫做等式。(板书)
师:你们能写出等式吗?(学生自由的写)
把学生写的等式有选择的用实物展示器展示出来。
如:3+8=11100-90=10
3+x=2560-x=7
10×x=800 70÷x=7等等
请学生把这里的等式分类
(学生小组合作分类)
学生汇报后让学生说出分类的理由。(有的含有未知数x,有的没有未知数x)
教师总结:像100+x=250这样的含有未知数的等式,称为方程。(板书)
(学生写一些方程)教师把学生写的在实物展示器展示出来。
三、 实践应用
1、 观察分类
①30+20=50 ② 2x+50>100
③80<2x ④3x=180⑤x÷11=5 ⑥100+2x=50×3
⑦x-18=24 ⑧ 60÷20=3
⑨100+20<100+50
2、下面式子哪些是方程,哪些不是方程?
? 6+x=14
? 3+x
? 50÷2=25
? 6+x>23
? 51÷a=17
? x+y=18
3、 判断
1)等式都是方程。( )
2)方程都是等式。( )
3)3x=0也是方程。()
4)含有未知数的式子叫方程。( )
5)方程是等式,所以等式也叫方程。( )
四、小结
同学们,今天你们有知道了什么知识呢?
五、 板书设计
方程的意义
不平衡 平衡
100+x>200
100+x<300 100+x=250
像100+x=250这样的含有未知数的等式,称为方程。
教学目标
1.知识目标:在自主探索的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系,使学生初步理解等式的基本性质。
2.能力目标:培养学生认真观察、思考分析问题的能力。发展学生思维的灵活性。
3.情感态度与价值观:加强数学知识与现实世界的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。
教学重点
使学生初步理解等式的基本性质,理解与掌握方程的意义。
教学难点
帮助学生建立“方程”的概念,并会应用。
2. 小学四年级解方程教案
教案一:
方程 教学目标: 1、认识方程。
2、会用方程表示简单情景中的等量关系。
教学重点:怎样建立等量关系。
教学难点:理解等号两边分别表示什么含义。
教 法:自主探究法、发现法。
学 法:讨论法,小组合作 教具准备:天平(8个)、小黑板 。
教学课时:1课时
教学过程: 一、情景导入 同学们玩过跷跷板吗,如果两个小朋友的重量一样,会出现什么情况?对,这就是平衡,今天我们就用到一种称量的工 具——天平,天平由天平秤和砝码组成,当放在两端托盘的物体重量相等时,托盘就会平衡,请同学们观察自己组的天 平。产生质疑,引入新课。
二、探究新知,交流自学情况 (一)读课本66页,相信你可以完成下面各题。 1、天平左边的托盘里是( ),右边的托盘是( ),天平的指针在中间,说明天平平衡了,那么两边( )我可 以用这样说( )+( )=( ),用x表示樱桃的质量,那么是( ) 2、4块月饼的质量一共是380 克,我可以这样说( )×( )=( ),用y表示每块月饼的质量,那么( ) 3、一个装有2000毫升水的铝壶可以倒满2个热水瓶和1个水杯,我可以这样说( )+( )=( )用z表示热水瓶 的盛水量,那么( )
(二)、小组展示成果, 探究目标一:方程的意义 上面的等式的共同点( ),什么叫做方程? 组内交流、解疑、个别汇报、老师点拨。 三、点拨升华 含有未知数的等式叫做方程,方程是等式,但等式不一定是方程。独立思索小组交流总结方法教师点拨。
四、达标检测
1、用方程表示下面的数量关系 (1)x的1.5倍除以1.2,商是0.25. (2)从30里减x的2倍,差是14. (3)50减去5的差,再加上4个x,结果是61. (4 )x个2与x的5倍的和等于x的一半.
2、完成89页练一练第1、2题。 先独立做,最后组内交流。
五、课堂总结 通过本节课学习你有什么收获或有什么不明白的地方? 先小组内说一说,最后班上交流。
六、拓展提高 一列火车从甲地开往乙地,每小时行50千米,开了3小时到达乙地,甲乙两地相距x千米,甲乙两地的路程是( ) 先独立做,最后组内交流。
七、作业设计:完成相关配套练习 板书设计
教案二:
教学目标:
1、使学生理解并掌握等式、方程、解方程和方程的解的意义。
2、学会检验方程的解。
3、培养学生的逻辑思维能力。
教学重点:掌握概念。
教学难点:掌握检验书写格式。
教学准备:投影、小黑板。
教学过程:
一、情境兴趣
1、(小黑板)在下面的括号中填入“>”“<”或“=”。
24×5()25×454+6()6078÷3()78×3
50×18()5×18031-3×5()1623×9+1()23×10
程序:
A、先口答什么号。
B、(板书如下)把这6个算式分成两类,应该怎么分?
24×5>25×454+6=60
78÷3<78×350×18=5×180
23×9+1<23×1031-3×5=16
得出概念:(板书)用“=”连接,表示左右两边相等的式子,叫做等式。那么这些左右两边不相等的式子,当然就叫不等式了。
2、(投影制成复合片)下列式子中有几个等式?
45×2<1009999-9991=87=6+1
X+18=2034+5×7240÷X=10
程序:
A、说出哪些是等式后,揭去不是等式的式子。
B、(板书)把这四个等式分成两类,你认为应该怎么分?
X+18=2040÷X=10
得出概念:(板书)含有未知数的等式叫做方程。(突出两个条件:含有未知数、等式。)
3、(投影)下面哪些是方程?哪些不是方程?(手势表示)
35-X=1284÷12=74-X>3269+X=24×564=X+60X÷5
4、(板书)方程中的不知数X等于多少我们能把它求出来吗?比如上面的例子:X+18=2040÷X=10中X等于多少?(板书解出来)得出:(板书)使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
5、(书面练习)判断哪个是方程的解?P22练一练3。
6、我们以前学习的求未知数X的值其实就是解方程。怎么解方程大家会不会呀?我们再学一点大家不会的,哪就是写出解方程的检验过程,写检验过程有它特殊的格式,我们应认真学好。(板书上面其中一题的检验过程)
“检验:用X=4代入原方程,
左边=40÷4=10,右边=10。
左边=右边,
所以4是原方程的解。”(注意讲清各个步骤的含义)
三、反馈矫正
1、(板演)P22试一试。
2、(课堂作业)P22练一练2。(注意:写出检验过程)
3、(小黑板)看图列出方程并求解。(内容同《作业本》P19D3)。
四、评价激励
1、小结:本节课我们学习了“等式、方程、方程的解、解方程”四个概念,(复述概念)并掌握了检验的书写格式。
3. 小学解方程复习教案
教学内容:
人教版小学数学教材五年级上册第410页第3题及相关练习。
教学目标:
(一)知识与技能
让学生进一步认识用字母表示数的意义,体会代数的思想;会解方程,进一步明确方程、解方程和方程的解等概念;会用列方程的方法解决问题。
(二)过程与方法
能用等式的基本性质解简易方程,体会化归思想。
(三)情感态度与价值观
进一步培养学生根据具体情况,灵活选择算法的意识和能力以及缜密的思维方法。
目标解析:简易方程的复习分为三部分:用字母表示数、解简易方程、列方程解决问题。本学期是学生首次正式学习代数知识,这些代数知识对于学生将来进一步的学习有着重要的作用。复习时要结合等式的性质使学生进一步巩固解方程的方法。列方程解决问题的复习重点是让学生理解题中的数量关系,并根据等量关系确定未知量、列出方程、解方程从而解决问题。同时还要鼓励学生根据自己的理解列方程,以培养学生灵活解题的能力和缜密的思维方法。
教学重点:
解简易方程,根据等量关系列方程解决问题。
教学难点:
根据等量关系列方程解决问题。
教学准备:
课件。
教学过程:
一、复习用字母表示数
1.课件出示练习:
你能用含有字母的式子表示下面的数量关系吗?独立完成。
(1)的7倍; (2)的5倍加6; (3)5减的差除以3;
(4)200减5个; (5)比7个多2的数;
(6)边长为的正方形的面积与周长。
2.指名汇报:说说你为什么这么写?
让学生进一步巩固用字母表示数的知识,同时注意到:数字与字母之间的乘号可以不写,数字要写在字母前面,一个数平方的意义与写法等。
3.学生订正自己的答案。
【设计意图】通过习题的练习唤醒学生对用字母表示数的知识的回忆,再通过说一说理由来进一步回顾这一知识需要注意的地方,理解用字母表示数的意义。
二、复习简易方程
1.谁能说一说什么叫方程?(含有未知数的等式叫方程。)
2.一个方程必须满足几个条件?(两个条件:既要有未知数,还要是等式,缺一不可。)
3.判断下面哪些式子是方程?是方程的请解出方程。
(1); (2); (3);
(4); (5)3+5=8。
解析:
(1)有未知数,但不是等式;(2)是方程;(3)是不等式;
(4)有未知数,但不是等式;(5)是等式,但没有未知数。
学生独立解方程:。
指名上黑板解方程,其他同学在练习本上完成。
教师评价,帮助学生结合解题进一步认识方程、解方程和方程的解的概念。
【设计意图】复习简易方程,首先要了解什么是方程,通过对概念的理解找到一个方程需要满足的条件:①含有未知数;②是等式。再通过对具体式子的判断达到巩固和灵活运用的目的。学生独立解方程后教师再进行评价,目的是可以检验出学生对所学知识的掌握情况,可以做到有的放矢、有针对性地进行复习,并结合解题的过程来理解“解方程”和“方程的解”的概念。
三、复习列方程解决问题
教师:认识了方程,学会了解方程,接下来我们就可以用方程来解决问题了。
1.根据图示解决问题:
(1)根据图意列等量关系:;
(2)让学生说说是怎么想的。
(3)解方程。
(4)评价总结。
2.根据题意解决问题:
(1)课件出示教材第113页第3题第(3)小题,了解题意。
(2)列出等量关系:地球赤道的长度×7+2=光每秒传播的距离。
(3)列方程解决问题:
解:设地球赤道大约长万千米。
答:地球赤道大约长4万千米。
【设计意图】列方程解决问题,通过两种方法来进行理解:一种方法是看线段图列出等量关系,另一种方法是根据文字信息列出等量关系,将方程运用到生活中,让学生感受用方程解决问题的简便性。
四、练习巩固
1.请用字母表示下面的数量关系(课件出示教材第113页第3题第(1)小题)。
2.解下列方程(课件出示教材第113页第3题第(2)小题)。
(1)请四名同学板书,每人一题,其他学生在练习本上完成。
(2)学生评价总结。
3.用方程解决问题。
(1)课件出示教材第118页练习二十五第18题。
解:设现在可以做个毛绒兔。
列出等量关系:后来做毛绒兔的材料=原来准备做毛绒兔的材料,即后来做一个毛绒兔的材料×可做的数量=原来做一个毛绒兔的材料×可做的数量,可得
答:现在可以做190个毛绒兔。
(2)课件出示教材第118页练习二十五第20题。
这个鱼塘的图形是一个梯形,鱼塘的两条平行的边分别是这个梯形的上底和下底,求平行线两岸的宽度即是求这个梯形的高。根据求梯形面积的公式可以列出等量关系:
(上底+下底)×高÷2=梯形面积。
解:设两岸的宽度为米。
答:两岸的宽度为47米。
【设计意图】第1题既练习了用字母表示数的知识,又结合了等量关系来列式;第2题解方程,涵盖了加、减、乘、除四种情况,可以分别板书将学生常犯的错误呈现出来,给学生巩固和再次反思的机会;第3题用方程解决两个问题,第(1)题根据不变的量找到等量关系,第(2)题根据面积公式找等量关系,让学生从不同的角度学会列出含有未知数的等式。
五、全课总结
说说这节课你有什么收获?需要注意的问题有哪些?
4. 小学方程式
列方程解应用题,应进行如下一些训练:(1)列代数式的训练。正确、迅速地列出代数式是列方程的基础,可以用以下几种形式进行训练: ①用数学语言叙述代数式。例如: 3x+5(一个数的3倍与5的和); 7×8-4x(7的8倍减去一个数的4倍)。 ②用代数式表示数量关系。例如: a的6倍(6a); 90减去x的5倍(90-5x)。 ③根据题意叙述代数式的意义。例如:“学校买来6个小足球,每个a元,又买来8个排球,每个b元。”要求学生叙述以下各式的意义。 6a(表示6个足球的价钱), 8b(表示8个排球的价钱), 6a+8b(表示两种球的总价),等等。反过来,老师提出问题,要求学生列出代数式。(2)找等量关系的训练。找出题目中的等量关系是列方程的关键。教学时,可以让学生找出日常生活事例中的一些等量关系,使学生逐步熟悉。例如:小侠到商店去买笔记本,总价钱是1.6元,小侠付出2元,找回0.4元。把这件事情列出等式。付出的2元-笔记本总价1.6元=找回的0.4元,笔记本总价1.6元+找回的0.4元=付出的2元,付出的2元-找回的0.4元=笔记本总价1.6元。(3)列方程的训练。把列代数式的训练和找等量关系的训练结合起来进行(只要求列出方程,不必解方程)。例1:计划修一条水渠260米,已经修了7天,每天能修x 米,还剩50米没有修。等量关系是:计划米数-已经修的米数=剩下的米数;方程是:260-7x=50 例2:农具厂两个车间计划生产720把镰刀。第一车间每天生产镰刀38把,第二车间每天生产镰刀42把,x天完成了任务。等量关系是:第一车间生产数+第二车间生产数=全部任务;或(第一车间工作效率+第二车间工作效率)×x=全部任务。方程是:38x+42x=720,或 (38+42)×x=720。
5. 怎样教 小学生解方程
把未知当一只,列算式
实物演示,多媒体课件展示,画图等多种手段让学生理解隐含的数量关系
别完全摆脱算术解法,不能急于求成,要让学生慢慢转变到方程的思想
6. 小学数学怎样进行方程教学
求什么,设什么,不能直接转换的时候,要抓住题目中的等价关系设未知数,不要让孩子对未知数产生害怕。
7. 方程各种详细解法小学的
一元一次方程
人教版5年级数学上册第四章会学到,冀教版7年级数学下册第七章会学到,苏教版5年级下第一章
定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。通常形式是kx+b=0(k,b为常数,且k≠0)。
一般解法:
⒈去分母
方程两边同时乘各分母的最小公倍数。
⒉去括号
一般先去小括号,再去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。
⒊移项
把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
⒋合并同类项
将原方程化为ax=b(a≠0)的形式。
⒌系数化一
方程两边同时除以未知数的系数。
⒍得出方程的解。
8. 小学方程怎么做啊!
含字母系数的一元一次方程 (可能有点多,不过很详细,关键看前半部分)
教学目标
1.使学生理解和掌握含有字母系数的一元一次方程及其解法;
2.理解公式变形的意义并掌握公式变形的方法;
3.提高学生的运算和推理能力.
教育重点和难点
重点:含有字母系数的一元一次方程和解法.
难点:字母系数的条件的运用和公式变形.
教学过程设计
一、导入新课
问:什么叫方程?什么叫一元一次方程?
答:含有未知数的等式叫做方程,含有一个未知数,并且未知数的次数是1的方程叫做一元一次方程.
例 解方程2x-1 3-10x+1 6=2x+1 4-1
解 去分母,方程两边都乘以12,得
4(2x-1)-2(10x+1)=3(2x+1)-12,
去括号,得
8x-4-20x-2=6x+3-12
移项,得
8x-20x-6x=3-12+4+2,
合并同类项,得
-18x=-3,
方程两边都除以-18,得
x=3 18 ,即 x=1 6.
二、新课
1.含字母系数的一元一次方程的解法.
我们把一元一次方程用一般的形式表示为
ax=b (a≠0),
其中x表示未知数,a和b是用字母表示的已知数,对未知数x来说,字母a是x的系数,叫做字母系数,字母b是常数项.
如果一元一次方程中的系数用字母来表示,那么这个方程就叫做含有字母系数的一元一
次方程.
以后如果没有特别说明,在含有字母系数的方程中,一般用a,b,c等表示已知数,用x,y,z等表示未知数.
含字母系数的一元一次方程的解法与只含有数字系数的一元一次方程的解法相同.按照解
一元一次方程的步骤,最后转化为ax=b(a≠0)的形式.这里应注意的是,用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零.如(m-2)x=3,必须当m-2≠0时,即m≠2时,才有x=3 m-2 .这是含有字母系数的方程和只含有数字系数的方程的重要区别.
例1 解方程ax+b2=bx+a2(a≠b).
分析:这个方程中的字母a,b都是已知数,x是未知数,是一个含有字母系数的一元一次方程.这里给出的条件a≠b,是使方程有解的关键,在解方程的过程中要运用这个条件.
解 移项,得
ax-bx=a2-b2,
合并同类项,得
(a-b)x=a2-b2.
因为a≠b,所以a-b≠0.方程两边都除以a-b,得
x=a2-b2 a-b=(a+b)(a-b) a-b,
所以 x=a+b.
指出:
(1)题中给出a≠b,在解方程过程中,保证了用不等于零的式子a-b去除方程的两边后所得的方程的解是原方程的解;
(2)如果方程的解是分式形式时,一般要化成最简分式或整式.
例2 x-b a=2-x-a b(a+b≠0).
观察方程结构的特点,请说出解方程的思路.
答:这个方程中含有分式,可先去分母,把方程转化成含有字母系数的一元一次方程
的一般形式.在方程变形中,要应用已知条件a+b≠0.
解 去分母,方程两边都乘以ab得
b(x-b)=2ab-a(x-a),
去括号,得
bx-b2=2ab-ax+a2,
移项,得
ax+bx=a2+2ab+b2
合并同类项,得
(a+b)x=(a+b)2.
因为a+b≠0,所以x=a+b.
指出:ab≠0是一个隐含条件,这是因为字母a,b分别是方程中的两个分式的分母,因此a≠0,b≠0,所以ab≠0.
例3 解关于x的方程
a2+(x-1)ax+3a=6x+2(a≠2,a≠-3).
解 把方程变形为,得
a2x-a2+ax+3a=6x+2,
移项,合并同类项,得
a2x+ax-6x=a2-3a+2,
(a2+a-6)x=a2-3a+2,
(a+3)(a-2)x=(a-1)(a-2).
因为a≠2,a=-3,所以a+3≠0,a-2≠0.方程两边都除以(a+3)(a-2),得
x=a-1 a+3.
2.公式变形.
在物理课中我们学习了很多物理公式,如果q表示燃烧值,m表示燃料的质量,那么完全燃烧这些燃料产生的热量W,三者之间的关系为W=qm,又如,用Q表示通过异体横截面的电量,用t表示时间,用I表示通过导体电流的大小,三者之间的关系为I=Qt.在这个公式中,如果用I和t来表示Q,也就是已知I和t,求Q,就得到Q=It;如果用I和Q来表示t,也就是已知I和Q,,求t,就得到t=QI.
像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形.
把公式中的某一个字母作为未知量,其它的字母作为已知量,求未知量,就是解含字母
系数数的方程.也就是说,公式变形实际就是解含有字母系数的方程.公式变形不但在数学,而且在物理和化学等学科中非常重要,我们要熟练掌握公式变形的技能.
例4 在公式υ=υo+at中,已知υ,υo,a,且a≠0,求t.
分析:已知υ,υo和a,求t,也就是把υ,υo和a作为已知量,解关于未知量t的字母系数的方程.
解 移项,得
υ-υ0=at.
因为a≠0,方程两边都除以a,得
t=υ-υo a.
例5 在梯形面积公式s=12(a+b)h中,已知a,b,h为正数.
(1)用s,a,b表示h;(2)用S,b,h表示a.
问:(1)和(2)中哪些是已知量?哪些是未知量;
答:(1)中S,a,b是已知量,h是未知量;(2)中s,b,h都是知已量,a是未知量.
解 (1)方程两边都乘以2,得
2s=(a+b)h.
因为a与b都是正数,所以a≠0,b≠0,即a+b≠0,方程两边都除以a+b,得
h=2sa+b.
(2)方程两边都乘以2,得
2s=(a+b)h,
整理,得
ah=2s-bh.
因为h为正数,所以h≠0,方程两边都除以h,得
a=2s-bh h.
指出:题是解关于h的方程,(a+b)可看作是未知量h的系数,在运算中(a+b)h不要展开.
三、课堂练习
1.解下列关于x的方程:
(1)3a+4x=7x-5b; (2)xa-b=xb-a(a≠b);
(3)m2(x-n)=n2(x-m)(m2≠n2);
(4)ab+xa=xb-ba(a≠b);
(5)a2x+2=a(x+2)(a≠0,a≠1).
2.填空:
(1)已知y=rx+b r≠0,则x=_______;
(2)已知F=ma,a≠0,则m=_________;
(3)已知ax+by=c,a≠0,则x=_______.
3.以下公式中的字母都不等于零.
(1)求出公式m=pn+2中的n;
(2)已知xa+1b=1m,求x;
(3)在公式S=a+b2h中,求a;
(4)在公式S=υot+12t2x中,求x.
答案:
1.(1)x=3a+5b 3; (2)x=ab; (3)x=mn m+n; (4)x=a2+b2 a-b (5)x=2a.
2.(1)x=y-b r; (2)m=Fa; (3)x=c-by a.
3.(1)n=p-2m m; (2)x=ab-am bm; (3)a=2s-bh h;
(4)x=2s-2υott2.
四、小结
1.含字母系数的一元一次方程与只含有数字系数的一元一次方程的解法相同,但应特别注意,用含有字母的式子去乘或除方程的两边时,这个式子的值不能为零.我们所举的例题及课堂练习的题目中所给出的条件,都保证了这一点.
2.对于公式变形,首先要弄清公式中哪些是已知量,哪个是未知量.把已知量作为字
母系数,求未知量的过程就是解关于字母系数的方程的过程.
五、作业
1.解下列关于x的方程
(1)(m2+n2)x=m2-n2+2mnx(m-n≠0);
(2)(x-a)2-(x-b)2=2a2-2b2 (a-b≠0);
(3)x+xm=m(m≠-1);
(4)xb+b=xa+a(a≠b);
(5)m+nx m+n=a+bx a+b(mb≠na).
2.在公式M=D-d 2l中,所有的字母都不等于零.
(1)已知M,l ,d求D; (2)已知M,l D,求d.
3.在公式S=12n[a1+(n-1)d]中,所有的字母都是正数,而且n为大于1的整数,求d.
答案:
1.(1)x=m+n m-n; (2)x=-a+b 2; (3)x=m2 m+1; (4)x=ab; (5)x=1.
2.(1)D=2lM+d; (2)d=D-2lM.
3.d=2S-na1 n(n-1).
课堂数学设计说明
1.学生对含有字母系数的方程的认识和解法以及公式变形,接受起来有一定困难.含字
母系数的方程与只含数字系数的方程的关系,是一般与特殊的关系,当含有字母系数的方程
中的字母给出特定的数字时,就是只含数字系数的方程.所以在教学设计中是从复习解只含
数字系数的一元一次方程入手,过渡到讨论含字母系数的一元一次方程的解法和公式变形,
体现了遵循学生从具体到抽象,从特殊到一般的思维方式和认识事物的规律.
2.在代数教学中应注意渗透推理因素.在解含有字母系数的一元一次方程和公式变形的过程中,引导学生注意所给题中的已知条件是什么,在方程变形中要正确运用题中的已知条件.如在解方程中,常用含有字母的式子乘(或除)方程的两边,并要论述如何根据已知条件,保证这个式子的值不等于零,从中有意识地训练和提高学生的逻辑推理能力,把代数运算和推理蜜切结合.
9. 小学阶段“简易方程”的教学,以往大纲强调利用什么解方程
以往大纲强调利用四则混合运算各部分的关系和解方程,现在《课标》提出利用等式的基本性质姐方程。
10. 如何讲解小学一元一次方程方程的解法
如果我是老师,我绝对先不讲什么叫一元什么叫一次什么叫方程。
我会由已知条件建立一个等式,例如妈妈买了一些苹果,我们吃了两个,吃完一数,还有3个,可以列一个等式
x - 2 = 3
然后玩两边同时加一个数等式还是等式的游戏。。。。