导航:首页 > 小学学科 > 小学数学方程思想

小学数学方程思想

发布时间:2020-12-23 16:09:12

A. 什么叫方程什么叫解方程什么叫方程的解

1、方程是指含有未知数的等式,是表示两个数学式(如两个数、函数、量、运算)之间内相等关系的一种容等式。

2、求方程的解的过程称为“解方程”。

3、使含有未知数的等式成立的未知数的值称为“解”或“根”。

解方程的依据:移项变号——把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘。

(1)小学数学方程思想扩展阅读

方程与等式的关系:

方程一定是等式,但等式不一定是方程。

例子:a+b=13 符合等式,有未知数。这个是等式,也是方程。

1+1=2 ,100×100=10000。这两个式子符合等式,但没有未知数,所以都不是方程。

在定义中,方程一定是等式,但是等式可以有其他的,比如上面举的1+1=2,100×100=10000,都是等式,显然等式的范围大一点。

B. 小学六年级数学怎么能有效地提高成绩!

看来你是聪明的,只是计算总出错误。跟我正在读小学六年级的儿子从前差不多。三年级及以前,我儿子也是这样,每次都是85分-90之间,但我教了他几招后,四年级开始每个学期数学都不下97,一跃成为全年级三百名学生中最受老师关注的学生。
是哪几招呢?
一、十几乘十几:12*14。心算程序:12+4=16,2*4=8,所以12*14=168
例:12*13。因为12+3=15,2*3=6,所以12*13=156
13*15。因为13+5=18,3*5=15,所以13*15=195
15*18。因为13+8=23,5*8=40,所以15*18=270
18*19。因为18+9=27,8*9=72,所以18*19=342
二、十位数相同,个位数相加得十:(口诀:头加1乘头,尾相乘连后。)
43*47。心算程序:4+1=5,4*5=20,3*7=21,所以43*47=2021
72*78。因为7*8=56,2*8=16,所以72*78=5616
31*39。因为3*4=12,1*9=09,所以31*39=1209
91*99。因为9*10=90,1*9=09,所以91*99=9009
72*74。因为7*8=56,2*4=08,所以72*78=5608
24*26。因为2*3=06,4*6=24,所以24*26=624
三、九十几乘九十几:口诀:一百差几就补几。
97*96。97差3,96差4,一共差7,100-7=93,3*4=12,所以97*96=9312
97*99。差3差1共差4,100-4=96,3*1=03,所以97*99=9603
94*98。差6差2,100-8=92,6*2=12,所以94*98=9212
91*93。差9差7,100-16=84,9*7=63,所以91*93=8463
97*88。差3差12,100-15=85,3*12=36,所以97*88=8536
89*95。差11差5,100-16=84,11*5=55,所以89*95=8455
训练一个小时,你就可以掌握上述方法。
任意两位数乘法需要训练三天,每天一个小时。
口诀:大头加一乘小头,两尾相乘连后边。大几加上几个尾,尾和比十调加减。
解释:十位数称头,个位数字称尾。
举例:37*45。第一步:4+1=5,5*3=15,7*5=35,心里得数1535。
第二步:4比3大1,加1个7,7+5=12,比10多2,加2个3=6,共加13,3加在十位,1加在百位,最后答案:37*45=1535+13(0)=1665
例2:计算36*75。第一步:7+1=8,3*8=24,5*6=30,心中得数2430。
第二步:7-4=3,加3个6=18,5+6=11比10大1加1个3,共加21。
最后答案:36*75=2430+21(0)=2640
例3:计算59*61。第一步:6+1=7,5*7=35,1*9=09,心中得数3509
第二步:7-6=1,加1个9=9,9+1=10不加不减。
最后答案:59*61=3509+9(0)=3599
例4:计算73*26。第一步:8*2=16,3*6=18,心中数1618
第二步:7-2=5,加5个6=30,3+6=9比10少1,减1个2。共加28
最后答案:73*26=1618+28(0)=1898
例5:62*34=2108+12(0)-12(0)=2108。

第三种算法主要是用来检验你考试时计算正确与否,计算大致得数的。但若运用熟练,两位数乘法可以瞬间报出答案。

C. 怎样渗透小学数学思想

“函数”在汉代许慎《说文解字》中解释为“容也”,还解释为“匣、封套”。“函数”一词在我国最先出现在1859年,是由清代数学家李善兰创用的,并给出定义“凡此变数中函彼变数,则此为彼之函数”。在小学阶段没有出现“函数”这一概念,但在整个小学阶段的数学中无不渗透着函数的思想,可以说,凡是有变化的地方就蕴藏着变化的规律,都蕴涵着函数思想。
函数的核心即是:把握并刻画变化中的不变,其中变化的是“过程”,不变的是“规律”,是相关联的量的“关系”。学生愿意去发现规律并能够将规律表现出来的意识与能力,就是函数思想在教学中的渗透。
在小学低年级,主要发现给定的事物(事物、图形、简单数列)中隐含的简单规律,并以数学方式表示其情境,体验彼此相关的数量。描述事物的定性变化,如“我长高了”;或描述事物的定量变化“我在一年中长了4厘米”;或观察模式,并合理推测发展趋势,如找规律“1、1、2、1、1、2……”“◎□○◎□○……”。这样在早期数的学习阶段通过观察事物的变化,探索模式是学生对函数关系的初步体验。
2001年出版的《全日制义务教育数学课程标准》把探索规律做为渗透函数思想的一个重要内容。因此,在第二学段的知识目标中,要求学生能在具体情境中感悟“规律”,并逐步学会用字母或含有字母的式子表示规律。在这次数学教学比武中,肖老师的《用字母表示数》中猜猜老师的年龄,设计很恰当。从直观入手:生10岁,师比生大19岁,那么师29岁;回忆过去,生上一年级时6岁,师多大;展望未来,生18岁考上大学时,师多大。然后用语言来描述:什么变了,什么没变。通过几组数的计算和自由探索规律,发现随着时间的推移,师生的年龄都在变,可师比生大19岁这个关系不会变。最后把语言描述的关系式即探索出来的规律抽象为代数式,即当生a岁时,师是a+19岁,如果师t岁时,生是t-19岁。这样,从直观(图形、表象)——语言——代数式,三者有机结合,是数学学习的重要途径。肖老在渗透函数思想时,很好地把握了两条基本原则:①创设“变化”的过程,才能感受到函数思想;②激发学生“探究”的本性,于“变”中把握“不变”,满足人的好奇本性。这样探求给定的事物中隐含的规律或变化趋势,使我们不仅能知道过去,还能预测未来,并掌握未来。
在小学阶段,除了用字母表示数,还有许多地方也蕴涵着丰富的函数思想,反映着有规律的事物,只是表达形式不一样:
1、数数,一个一个地数,两个两个的数……,“正”着数,“倒”着数。无论怎么数,都可以让学生体验、发现并描述出在数数过程中的“规律”。
2、计算中的规律:20以内加法表、九九乘法表中也蕴涵丰富的规律,同样,在“和不变”、“差不变”、“积不变”、“商不变”等条件下,两个数之间的关系,实际上,一个数就是另一个数的函数。
3、百数图中的规律:除了横、竖、斜的排列规律,还可以探究每一行中或每一列中相邻两个数的关系,甚至两行两列相邻4个数之间的关系,这些关系可以先用语言表述,然尝试用字母表示。
4、几何图形的变化规律:像一些基本几何图形都可以经过三角形变形而得到,并且面积也有密切的关系。
5、基本数量关系:周长、面、体积公式;总价、单价与数量;工作总量、工作效率与工作时间;路程、速度与时间及正比例、反比例等。
6、统计图:尤其是折线统计图,运行图本身就是函数的图像。
可以说函数无处不在,而小学阶段渗透函数思想,可以使学生了解一切事物处于不断变化的过程中,而且在变化过程中互相联系、互相制约,从而需要了解事物的变化趋势及其运动的规律。这对于培养学生的辨证唯物主义观点,培养他们分析和解决问题的能力,都有极其重要的意义。在小学数学教学中有意识地渗透函数思想,也可以为学生后续学习中学习数学,奠定良好的知识基础与学习经验的准备。

D. 怎么提高自己的数学成绩

数学成绩的提高,首先要摸清脉象。正所谓“数学清清楚楚一条线,语文模模糊糊一大片。”数学成绩的提升,来源于在知识掌握基础上的技能技巧提升和准确率的提高。不论是小学知识,还是初中以上的知识。要提高学生的数学成绩,第一步是对基础知识全部掌握,同时对拔高知识有一定的解题思路,对更高的知识有兴趣。只有这样,才可以有的放矢地进行训练。对于知识,不能仅仅局限在“会、掌握”的范畴上,更重要的是要“精”,要有速度。举个例子,对于一张试卷,同学45分钟做完了,全部正确,而你只用10分钟做完,准确率也是100%。这就意味着,你的潜力很大。正所谓熟能生巧,对于会的知识、会的练习题,不厌其烦地多做几遍,多练习几个本子,就会发现自己的运算能力和准确度,仿佛肌肉记忆般精准。其次,要攻克难关。对于不会的作业或者知识点,要善于自己揣摩、自我突破。教师教给自己的知识与自学的而成的知识相比,自学的知识更具有含金量,更能提升自己的成功欲望。因此,对于同类的题,同质量的题,要有量的训练,同时也要在规定时间里面,训练自己的准确度。只有这样,才会很快提升数学运算的准确度和正确率。更有利于提升数学成绩。总之,数学成绩的提高,来源于数学运算能力和准确度的提升。这是不能投机取巧的。

E. 小学数学建模论文

数学建模论文范文--利用数学建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式

应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等

3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力

摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题
数学模型
数学抽象
简化原则
演算推理
现实原型问题的解
数学模型的解
反映性原则
返回解释
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。
例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。
时间(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990
人中数(百万) 39 50 63 76 92 106 123 132 145
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
四、培养学生的其他能力,完善数学建模思想。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:
(1)理解实际问题的能力;
(2)洞察能力,即关于抓住系统要点的能力;
(3)抽象分析问题的能力;
(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;
(5)运用数学知识的能力;
(6)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
例2:解方程组

x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根
t3-t2+1/3t-1/27=0 (4)
函数模型:
由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)
平面解析模型
方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。
总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式

应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等

3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

F. 如何培养小学生的建模思想

摘要:随着我国的不断发展进步,对教育界也提出了较高的要求。当前,新课程与素质教育广泛地普及到了学校中,推动着我国教育的发展。数学是初中阶段很重要的一门学科,被称为“思维的体操”,可见学好数学对学生能力的发展是有重要作用的。但是实际的教学情况却并不如意,学生对数学没有兴趣,认为数学是枯燥无味的,学习效果不好。因此,我们要培养学生具有数学模型意识,将平面的知识变得立体起来,这样教学效果是很好的。
关键词:数学模型思想培养
初中数学对于初中阶段的孩子来说是较难的,因此,为了提高学生的学习兴趣,将知识形象化,我们要培养学生具有数学建模的思想。初中数学中常见的建模方法为:对在实际的生活中普遍存在的等量关系(不等关系)建立期方程模型(不等式模型),对在实际生活中普遍存在的变量关系建立起函数模型,对那些涉及图形的知识建立起几何模型等等,这些内容是很重要的。初中数学的建模教学是符合数学新课程改革理念的,也符合素质教育的要求。通过对学生进行建模教学,能够使学生对数学知识与方法的理解和掌握更加深刻,使学生的感官变得更加敏捷,学生的应用数学意识与自主、合作、探索、创新的精神得到了更好的培养,使学生真正成为了学习的主体。本文就在新课标下怎样培养学生的数学建模思想进行了相关的探索,现将相关内容介绍如下:
一、方程思想
新课标要求:要能够依据具体问题中的数量关系列出相应的方程,方程是刻画现实世界的一个有效的数学模型。在初中数学教学中应用方程模式,就要求我们能够从问题的数量关系入手,应用相关的数学语言把问题中的条件转化成方程(组),然后将列出的方程(组)解出来,得到结果。比如,学校准备在图书馆的后面建一个面积是50平方米的长方形的自行车棚,一边可以利用图书馆的后墙,它已有的总长是25米的铁围栏,请你设计怎样搭建车棚是比较合适的?这道题考查的是学生在现实生活背景中能否较好地理解基本数量关系。很显然,利用方程的思想就是把不知道的量用字母的形式表现出来,然后和已知的量一起建立起相应的方程,这体现了未知量和已知量的一种协调统一。因此,在建立方程模型的时候,教师要重视培养学生正确地找到问题中的已知量和未知量,并且能够准确地建立起它们的相互关系。随着社会的不断发展,教育界也有了很好的发展,在考试中数学命题更加重视以社会热点焦点问题为依托,出现的都是实际生活中我们熟悉的情况。

G. 怎样才能学好小学数学呢

怎样才可以学好数学呢?

第一点,深刻理解概念。

概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。

深刻理解概念,还需要多做一些练习,什么是“多做多练习”,怎样“多做练习”呢?

第二点,多看一些例题。

细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:1.不能只看皮毛,不看内涵。

我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观断,那样会犯经验主义错误,走进死胡同的。.
2.要把想和看结合起来。

我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。

3.各难度层次的例题都照顾到。

看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。

这样可以丰富知识,拓宽思路,这对提高综合运用知识的能力很有帮助。

学好数学,看例题是很重要的一个环节,切不可忽视。

第三点,多做练习。

要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。
学习方法技巧:如何做数学课堂笔记
听课时,我们应该如何做笔记?值得我们思考。
学习数学做好课堂笔记至关重要,那么如何做数学课堂笔记呢?
一、记提纲老师讲课大多有提纲,并且讲课时老师会将备课提纲书写在黑板上,这些提纲反映了授课内容的重点、难点,并且有条理性,因而比较重要,故应记在笔记本上。
二、记问题将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。
三、记疑点对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后与老师商榷。
四、记方法勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
五、记总结注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的关系

H. 高等数学,变上限积分,换元法,为何改变了积分上下限位置

u=x-t,上限t=x导出u=x-t=0,下限t=0导出u=x-0=x。

指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。

在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。

初等数学研究的是常量与匀变量,高等数学研究的是非匀变量。高等数学(它是几门课程的总称)是理、工科院校一门重要的基础学科,也是非数学专业理工科专业学生的必修数学课,也是其它某些专业的必修课。

作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。

人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。

I. 数学和语文哪个重要必须要一分高下

学霸跟学霸之间差一门语文,学霸跟学渣之间差一门数学,学渣跟学回渣之间差一答门英语。
也就是说,对学霸来说,学好英语、数学是前提,也是拉不开成绩的,只能靠语文来决定胜负;数学,是检验学生智商的最简单标准,学渣无论如何也学不好数学,这也是为什么各初中名校纷纷拿奥数来点招,初中9门齐上的时候才会更有保证;而英语,则相对来说不需要太高的智商,因为非母语,又没有语文那么高的要求,所以相对来说是最简单的。
学前阶段,英语更重要,但这个重要性随着年级的增长而减弱。如果前面学的力度够了,到了初高中,也许就几乎不用学了,工作后再根据专业方向,学精学专。说到底,英语是一门工具。
中小学阶段,数学也重要,数学思维必须有一个质的拉升,不管你择校不择校。这个数学的重要性,随着年级的增长而加强,一直持续到高考。
如果从一辈子来看,语文最重要,小学迫切需要解决认字、读字书、写字等一系列问题,同时课内如果基础没打好,后面的影响还很深远。说到底,语文是终生的修养。
另外中高考语文难度越来越大,当大家数学拼得差不多的时候,语文就会像以前的数学一样,优生差生的距离会越来越大。

J. 数学学不好是因为笨吗

说实话我觉得真不是。我觉得就是心里太过于对于学不好的东西在意了。我初中时候数学成绩很好,但是一到高二我数学真的没及格过,真的是碰到了一个什么都不管的老师,可能我本来数学底子就弱,再加上老师不管,我真的是自我放弃。。。。所以你能说我笨吗?笨为什么我初中到高一都能考高分。所以还是因为一些原因使得这个科目没有打牢基础,越学越差劲
16 8
下一条回答
周围人还关注
数学成绩不好怎么办
数学不好怎么办
小学作文培训
学动漫设计好学吗
英语基础不好怎么学
作文加盟
作文品牌加盟
什么生意挣钱

3条评论

无观点,不青春
发布

gygy_1984
1
笨还是主因啦。。。初中到高一没那么难,后面难了跟不上,比如高二开始学解析几何,遭到挫折后降低兴趣和学习成就感,于是断崖式跌落
2018-10-14 10:16 · 回复Ta

lixiong1533

这个不能说是笨,只能说你没有科学家的天赋。 爱因斯坦评价《几何原本》里说大概意思是:如果你没有第一眼就被这本书所吸引说明你没有成为科学家的天赋异禀。 同理我们对感兴趣的学科不会差 吧 谢谢采纳
2019-03-29 15:41 · 回复Ta

minhyuk324 (回答者)

你光说笨太片面了
2018-10-22 15:10 · 回复Ta
为您推荐
我数学不好是因为脑子笨吗
数学的考察主要还是基础知识,难题也不过是在简单题的基础上加以综合。所以课本上的内容是很重要的,如果课

1 浏览103 2017-08-11
数学学不好是什么原因啊?
数学学不好的原因因人而异。有的同学成绩也不错,但对数学学科来说,非常吃力才能勉强稳固他们的成绩,想再

141 浏览123 2017-11-26
学不好数学是因为笨吗?
不是笨,只是没找到方法,上课认真听课,认真做笔记,没有小孩是笨的,只是没找到方法或者不想学或者想引起

浏览57

数学学不好是不是很笨
数学成绩不好,并不意味着这个人很笨。 衡量智力的方法主要是IQ测试,但是人大脑的智能往往是多方面的

浏览22 2017-05-13

正在加载

阅读全文

与小学数学方程思想相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99