A. 小学趣味数学:
1:50=35:酒精=35:1750
35+1750=1785
B. 小学四年级 趣味数学及答案
1.小华的爸爸1分钟可以剪好只自己的指甲。他在5分钟内可以剪好几只自己的指甲?
2.小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么?
3.小军说:"我昨天去钓鱼,钓了一条无尾鱼,两条无头的鱼,三条半截的鱼。你猜我一共钓了几条鱼?"同学们猜猜小军一共钓了几条鱼?
4.6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里?
5.一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?
6.王某从甲地去乙地,1分钟后,李某从乙地去甲地。当王某和李某在途中相遇时,哪一位离甲地较远一些?
7.时钟刚敲了13下,你现在应该怎么做?
8.在广阔的草地上,有一头牛在吃草。这头牛一年才吃了草地上一半的草。问,它要把草地上的草全部吃光,需要几年?
9.妈妈有7块糖,想平均分给三个孩子,但又不愿把余下的糖切开,妈妈怎么办好呢?
10.公园的路旁有一排树,每棵树之间相隔3米,请问第一棵树和第六棵树之间相隔多少米?
11.把8按下面方法分成两半,每半各是多少?算术法平均分是_,从中间横着分是_,从中间竖着分是_.
12.一个房子4个角,一个角有一只猫,每只猫前面有3只猫,请问房里共有几只猫?
13.一个房子4个角,一个角有一只猫,每只猫前面有4只猫,请问房里共有几只猫?
14.小军、小红、小平3个人下棋,总共下了3盘。问他们各下了几盘棋?(每盘棋是两个人下的)
15.小明和小华每人有一包糖,但是不知道每包里有几块。只知道小明给了小华8块后,小华又给了小明14块,这时两人包里的糖的块数正好同样多。同学们,你说原来谁的糖多?多几块?
答案:
1.20只,包括手指甲和脚指甲
2.因为他付给售货员40元,所以只找给他2元;
3.0条,因为他钓的鱼是不存在的;
4.6里,36里;
5.只要教小狗转过身子用后脚抓骨头,就行了。
6.他们相遇时,是在同一地方,所以两人离甲地同样远;
7.应该修理时钟;
8.它永远不会把草吃光,因为草会不断生长;
9.妈妈先吃一块,再分给每个孩子两块;
10.15米;
11.4,0,3.
12.4只;
13.5只;
14.2盘;
15.原来小华糖多;14-8=6块,因为多给了6块两人糖的块数正好同样多,所以原来小华比小明多12块。
特别说明:由于各方面情况的不断调整与变化,中小学教育网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
小学四年级趣味数学题
1,大人上楼的速度是小孩的2倍,小孩从一楼上到四楼要6分钟,问大人从一楼到六楼需要几分钟?2,大小鱼缸鱼条数相等,如果从小缸拿出5条放到大缸,大缸鱼的条数是小缸的6倍。问:原来大小缸各有多少条鱼?3,有两列火车,一列长180米,平均每秒行驶15米,另一列火车长150米,平均每秒行驶18米。两列火车从相遇到相离共用了多少时间?1,大人上楼的速度是小孩的2倍,小孩从一楼上到四楼要6分钟,问大人从一楼到六楼需要几分钟?2,大小鱼缸鱼条数相等,如果从小缸拿出5条放到大缸,大缸鱼的条数是小缸的6倍。问:原来大小缸各有多少条鱼?3,有两列火车,一列长180米,平均每秒行驶15米,另一列火车长150米,平均每秒行驶18米。两列火车从相遇到相离共用了多少时间?4,甲乙两车分别从A,B两地相向而行,在距两地在中点40千米处相遇,已知甲的速度是乙的3倍,求A,B两地相距多少千米?5,甲乙两车共有乘客160人,从A站经过B站开往C站,在B站甲车增加17人,乙车减少23人,到C站两车人数相等。求原来两车各有多少人?6,学校买来83本书,其中科技书是故事书的2倍,故事书比文艺书多5本,问:三种书各多少本?7,两地相距978千米,两列火车同时从两站相对开出,6小时相遇。已知一列火车每小时行78千米,另一列火车每小时行驶多少千米?8,5个连续自然数的和是225,求第一个数是多少?9,默写等差数列,求总和,项数,末项的公式10,甲乙丙三人的速度分别是每分钟30千米,40千米和50千米。甲乙在A地,丙在B地同时相向而行,丙遇到乙后15分钟后遇见甲,求AB之间的距离。11,一艘轮船顺水航行48千米需要4个小时,逆水航行48千米需要6小时。现在从相距72千米的A港到B港,开船的时候掉下一块木板,问:船到B港的时候,木板离B港还有多远?12,轮船在静水的速度是每小时20千米,自甲港逆水航行8小时,到达相距114千米的乙港,问:再从乙港返回甲港需要几个小时?13,商场销售电视,早上卖了总数的一半多10台,下午卖了剩下的一半多20台,最后还剩95台,商场原来有电视多少台?14,有两列火车,一列车长130米,每秒行驶23米,另一列火车长250米,每秒行驶15米,两车相遇到相离需要多少时间?15,学校派学生去植树,每人植6棵,差4棵;每人植8棵,差18棵。问:学生有多少人?树苗有多少棵?16,默写罗泊法口诀。17,在某海船上,有红黄蓝三面旗子,共可以表示多少种信号?一一列举出来。18,有一桶水,一头牛喝需要15天,如果和马一起喝,可以用10天。那么如果这桶水让马单独喝,需要多少天?19,三个空瓶可以换1瓶,小明一共买了22瓶酒,一共可以喝多少瓶?20,38个同学去划船,大船每条可以坐6人,租金是10元,小船每条可以坐4人,租金是8元,你准备怎么坐?21,机械厂产一批机器计划用30天。实际每天比原计划多生产80台,结果25天就完成了任务,这批机器有多少台?22,在1~200中,既不是5的倍数又不是8的倍数的数有多少个?23,兄弟二人3年后的年龄和是27岁,今年弟弟的年龄恰好是两个人的年龄差,求:哥哥和弟弟今年各多少岁?24,张老师说:"当我象你这么大的时候,你才7岁,当你想我这么大的时候,我已经37岁了,你知道张老师的年龄吗?25,有一批货物,用小车装需要35辆,用大车装需要30辆。现在知道大车比小车每辆都多装3吨,问你:这批货物有多少吨?26,鸡和兔共有100只,鸡的脚比兔的多80只,鸡和兔各有多少只?小学五年级趣味数学题1.有9棵树,要栽10行,每行3棵,请你帮忙按照题意,每行3棵,要栽10行,似乎需要30棵树。可是,现在只有9棵。由此可知,至少有些树应栽在几行的交点(数学上称为重点)上。为此,我们可设计出6个三重点(三行交点)和3个四重点(四行交点)2.一棵树有八米高,一个人每一分钟爬上去四米,又掉下去三米,问几分钟能到达树顶?(8-4)/(4-3)+1=5 3.爷爷对小军说:"我现在的年龄是你的7倍,过几年是你的年龄的6倍,再过若干年就分别是你的5倍,4倍,3倍,2倍。"爷爷和小军现在的年龄分别是多少岁?爷爷对小军说:"我现在的年龄是你的7倍"那么爷爷的年龄现在就是7的倍数考虑100以内7的倍数有7 14 21 28 35 42 49 56 63 70 77 84 91 98由于这是实际问题爷爷的年龄拟考虑56 63 70 77 84这5个数字那么对应的小军的年龄就是8 910 11 12设过x年爷爷的年龄是小军的6倍列方程(8+x)*6=56+x解得x不为整数,所以小军8岁这个答案排除列方程(9+x)*6=63+x解得x不为整数,所以小军9岁这个答案排除列方程(10+x)*6=70+x解得x=2,所以小军10岁这个答案可以考虑列方程(11+x)*6=84+x解得x不为整数,所以小军11岁这个答案排除【实际上只要现在爷爷的年龄减去小军的年龄的6倍是10的倍数就满足条件了】那么现在有答案小军10岁爷爷70岁然后我们来验证已知条件设过x年爷爷的年龄是小军的5倍列方程(10+x)*5=70+x解得x=5设过x年爷爷的年龄是小军的4倍列方程(10+x)*4=70+x解得x=10设过x年爷爷的年龄是小军的3倍列方程(10+x)*3=70+x解得x=20设过x年爷爷的年龄是小军的2倍列方程(10+x)*2=70+x解得x=50最终答案爷爷现在70岁小军10岁过2年爷爷的年龄是小军的6倍过5年爷爷的年龄是小军的5倍过10年爷爷的年龄是小军的4倍过20年爷爷的年龄是小军的3倍过50年爷爷的年龄是小军的2倍小学三年级趣味数学题1.小冬和小军的平均体重是32千克,小华和小军的平均体重是28千克,小冬和小华的平均体重是30千克,这三个同学的平均体重是多少千克?这三个同学的体重各是多少千克?(1)小冬和小军的体重是:32×2=64千克小华和小军的体重是:28×2=56千克小冬和小华的体重是:30×2=60千克小冬,小军,小华的体重是:(64+56+60)÷2=90千克这三个同学的平均体重是:90÷3=30千克(2)小冬重:90-56=34千克小军重:90-60=30千克小华重:90-64=26千克123456789九个数字,每个括号填一个数字,使算式成立(每个数字不能重复使用)第一题:()()+()-()=()()*()=()()第二题:()()()()*()=()()()()第一题:⑴⑶+⑵-⑺=⑻⑹*⑼=⑸⑷第二题:⑴⑺⑶⑻*⑷=⑹⑼⑸⑵或者:⑴⑼⑹⑶*⑷=⑺⑻⑸⑵小民沿着一个长60米的长方形跑了6分钟,每分钟跑120米,求宽.一共跑了:120*60=720(米)720\60=12(米)小学数学趣味题
1、黑兔、兔和白兔三只兔子在赛跑。黑免说:"我跑得不是最快的,但比白兔快。"请你说说,谁跑得最快?谁跑得最慢?()跑得最快,()跑得最慢。2、三个小朋友比大小。根据下面三句话,请你猜一猜,谁最大?谁最小?(1)芳芳比阳阳大3岁;(2)燕燕比芳芳小1岁;(3)燕燕比阳阳大2岁。()最大,()最小。3、根据下面三句话,猜一猜三位老师年纪的大小。(1)王老师说:"我比李老师小。"(2)张老师说:"我比王老师大。"(3)李老师说:"我比张老师小。"年纪最大的是(),最小的是()。4、光明幼儿园有三个班。根据下面三句括,请你猜一措,哪一班人数最少?哪一班人数最多?(1)中班比小班少;(2)中班比大班少;(3)大班比小班多。()人数最少,()人数最多。5、三个同学比身高。甲说:我比乙高;乙说:我比丙矮;丙:说我比甲高。()最高,()最矮。6、四个小朋友比体重。甲比乙重,乙比丙轻,丙比甲重,丁最重。这四个小朋友的体重顺序是:()>()>()>()。7、小清、小红、小琳、小强四个人比高矮。小清说我比小红高;小琳说小强比小红矮;小强说:小琳比我还矮。请按从高到矮的顺序把名字写出来:()、()、()、()。8、有四个木盒子。蓝盒子比黄盒子大;蓝盒子比黑盒子小;黑盒子比红盒子小。请按照从大到小的顺度,把盒子排队。()盒子,()盒子,()盒子,()盒子。9.张、黄、李分别是三位小朋友的姓。根据下面三句话,请你猜一猜,三位小朋友各姓什么?(1)甲不姓张;(2)姓黄的不是丙;(3)甲和乙正在听姓李的小朋友唱歌。甲姓(),乙姓(),丙姓()。10.张老师把红、白、蓝各一个气球分别送给三位小朋友。根据下面三句话,请你猜一猜,他们分到的各是什么颜色的气球?(1)小春说:"我分列的不是蓝气球。"(2)小宇说:"我分到的不是白气球。"(3)小华说:"我看见张老师把蓝气球和红气球分给上面两位小朋友了。"小春分到()气球。小宇分到()气球。小华分到()气球。11.甲、乙、丙三个小朋友赛跑。得第一名的不是甲,得第二名的不是丙,乙看见甲和丙都在自己的前面到达了终点。甲得了第()名,乙得了第()名,丙得了第()名。12.A、B、C三名运动员在一次运动会上都得了奖。他们各自参加的项目是篮球、排球和足球。现在我们知道:(1)A的身材比排球运动员高;(2)足球运动员比C和篮球运动员都矮。诸你想一想:A是()运动员,B是()运动员,C是()运动员。13、爸爸买了3个皮球,两个红的,一个黄的。哥哥和妹妹都想要。爸爸叫他们背对着背坐着,爸爸给哥哥塞了个红的,给妹妹塞了个黄的,把剩下的一个球藏在自己背后。爸爸让他们猜他手里的球是什么颜色的,谁猜对了,就把球给谁。那么,谁一定能猜对呢?()。
C. 小学生二年级趣味数学题
97元。
分析:在这次交易中,用王老板的支出-收入,所得结果即为所求
解答:因为总付出79+18+100=197,
总收入100+100(假币)=100,所以197-100=97.
这道题运用了有理数的知识点,有理数的混合运算,它没有考查单纯的计算,而是与实际问题相结合。
。
参考资料来源:网络--有理数
D. 小学趣味数学题
1.四个连续自然数的积是5038,这四个连续自然数分别是( ),( ),( )。
2.一个口袋有红,黄,蓝,三种颜色的小球各10个,要一次摸出相同颜色的小球,一次至少要摸出( )个球。
3.有下面两组数:
甲组:1、3、5、7、9、11、13、15、17、19
乙组:2、4、6、8、10、12、14、16、18、20
每次分别从甲、乙两组中各去一个数相加求和,不同的结果有( )个。
4.一个服装的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装。现有66名工人生产,每天最多能生产多少套服装?
问题补充:5、小王有三本集邮册,全部邮票的五分之一在第一本上,N除以8(N为非零自然数)在第二本上,剩余的39张在第三本上。小王有多少张邮票?
6.小明看着自己的成绩表预测:如果下次数学考试100分,那么总平均分是91分,如果下次考80分,那么数学总平均成绩是86分,小明数学统计表是已经有几次考试?
7.一个数乘以三分之四,粗心的小明把三分之四看成了四分之三。正确答案应该是多少?
小李和小王到书店买各同一本书,可是他们带的钱都不够,小李差4.5元,小王差0.6元,两人就决定和买一本,钱刚好够,这本书多少钱?
1 由于一个10,三个9相乘得7290超过5038,可知,此四个数最大不超过10.
假设这四个数,最大为10,则其余三个为7,8,9.
此四个数相乘得 7×8×9×10=5040
若这四个数中最大数为9,则其余三个为6,7,8.
此四个数相乘得 6×7×8×9=3024
由此可知.这四个数应该为7,8,9,10. 相乘结果应为5040
2 一次至少拿4个球,就可以保证有两个球的颜色相同.
3 甲组的数为 2n-1 ,n为1,2,3,4,5,6,7,8,9,10
乙组的数为 2t, t为1,2,3,4,5,6,7,8,9,10
则甲、乙两组各取一数相加结果为 2n-1+2t
结果只取决于n+t. 因此只要知道 n+t 有多少个不同结果,就可以知道原题意有多少个不同结果。
(1)当n=1时,t取任意数,则有10个结果;
(2)当n=2时,只有当t=10时,才得到与(1)不同的结果;
(2)当n=3时,只有当t=10时,才得到与(1)、(2)不同的结果;
...........................
(10)当n=10时,只有当t=10时,才得到与(1),(2)......,(10)不同的结果
因此共有 10+1×9=19 个不同结果
4 设x名工人生产上衣,得
4x=7×(66-x)
则x=42
所以一天可以生产 4×42=168 套服装
6 设有x次考试的成绩,现在的平均分为a.则有
(xa+100)/(x+1)=91
(xa+80)/(x+1)=86
两式相减得20/(x+1)=5
则x=3 a=88
即 现有3次考试的成绩
5 设其有x张邮票.得
x/5+N/8+39=x
化简得 4x/5-N/8=39
由题意知,N为8的陪数,又4x/5为偶数,39为奇数.则N为8的奇数陪数.设N=(2t+1)×8 得4x/5-(2t+1)=39
x=(100+5t)/2
则5t为偶数,再设t=2w,得x=(100+5×2w)/2=50+5w
由此可知,共有50+5w 张邮票, w为0,1,2,3,4,......
此时N=32w+8
7 设被乘数为a,则结果应为4a/3
E. 小学趣味数学题 急急急...................................
小学趣味数学题
更新时间:2007-9-21 23:10:23 阅读次数:53
1.四个连续自然数的积是5038,这四个连续自然数分别是( ),( ),( )。
2.一个口袋有红,黄,蓝,三种颜色的小球各10个,要一次摸出相同颜色的小球,一次至少要摸出( )个球。
3.有下面两组数:
甲组:1、3、5、7、9、11、13、15、17、19
乙组:2、4、6、8、10、12、14、16、18、20
每次分别从甲、乙两组中各去一个数相加求和,不同的结果有( )个。
4.一个服装的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装。现有66名工人生产,每天最多能生产多少套服装?
问题补充:5、小王有三本集邮册,全部邮票的五分之一在第一本上,N除以8(N为非零自然数)在第二本上,剩余的39张在第三本上。小王有多少张邮票?
6.小明看着自己的成绩表预测:如果下次数学考试100分,那么总平均分是91分,如果下次考80分,那么数学总平均成绩是86分,小明数学统计表是已经有几次考试?
7.一个数乘以三分之四,粗心的小明把三分之四看成了四分之三。正确答案应该是多少?
小李和小王到书店买各同一本书,可是他们带的钱都不够,小李差4.5元,小王差0.6元,两人就决定和买一本,钱刚好够,这本书多少钱?
A组:
1.兄弟俩轮流数数,兄每次数单数,第一次数1,接着数3、5、7、9、11、13、15。弟每次数双数,第一次数2,接着数4、6、8、10、12、14、16。请快点回答,兄数的8个数的和比弟数的8个数的和少几?
2.相邻两个双数分别与某数相乘,所得的两个积相差100。问某数是多少?
3.在1至100这一百个数中,两个数相除商是2的有( )对,其中被除数和除数都最小的一对是( )和( ),被除数和除数都最大的是( )和几?
4.1根绳子对折,再对折,然后从中间剪断,共剪成多少段?
5.妈妈对小琴说:“我给你9角钱,你到邮局去买邮票,只要3分、4分、8分这三种,每种张数一样多。”问小琴最多能买回多少张邮票?
6.从8、9、16、19、23和27这六个数中选出5个数,使其中3个数的和是另外两个数的和的2倍。应该怎么选?
7.某数乘以4的积比它乘以40的积少900,这个数是多少?
8.甲数与乙数的和比甲数与丙数的和大3,丙数与乙数相差多少?
B组:
9.把100分成12个数的和,使每个数中都有数字“3”。怎么分?
10.口袋中有9个球,每个球上标有一个数字,分别是1、2、3、4、5、6、7、8、9。A、B、C、D四个人每人从口袋中取出两个球,A取的两球数字和是10,B取的两球数字之差是1,C取的两球数字之积是24,D取的两球之商是3。请问,口袋中剩下的一个球标有一个什么数字?
11.马戏团里有22只常见的森林动物,22只动物共有40只脚,2只脚的动物是4只脚动物的2倍。问两只脚的动物有几只?(注:还有没有脚的蛇)
12.哥五个各有一些糖块,大的比小的多。老大把自己的分给大家一些,谁有多少块再分给谁多少块;然后老二把现有的块数分给大家一些,谁现在有多少再分给多少,老三、老四、老五也照此方法办;最后五个人每人都有32块糖。请问原来各有多少块糖?
C组:
13.小牛对人说:“昨天,我跟两位象棋高手下棋。我面前摆着两副棋盘,我一个人走两盘棋,同时跟这两位高手比赛。你们猜,谁胜谁负?”“准是你两盘都输了。”人们知道小牛刚学下象棋,连马步怎么走都记不住。“不对。头一回,两盘都是和棋。第二回,我输一盘,赢一盘。无论再下多少回,我也不会同时输两盘棋。”“你吹牛。”
两位象棋高手出来证明:小牛没有吹牛,我们也没有让棋。是他采取巧妙的办法来和我们下棋的。小牛用的是什么巧妙办法。
14.我准备2元钱去买东西,只要不超过2元,不论买的东西是多少钱,都能拿出正合适的数目,不需要售货员找钱。
可是我不希望带很多零钱,要求只带最少的硬币和纸币。那么,硬币最少带几个?纸币最少带几张?
15.1×2×3×…×48×49×50=?1到50的五十个数相乘,乘积是一个非常大的数。用笔算很困难,用电子计算机算,很快就算出这是一个65位的数。这个65位的数,尾部有好多个零。现在请你巧算一下,到底有几个零?(注:不是10个零)
答案:
A组:1.8;2.50;3.50对,2和1,100和50;4.5段;5.90÷(3+4+8)=6,6×3=18张;6.(8+19+23)÷(9+16)=2(倍);7.900÷(40-4)=25;8.乙数比丙数大3。
B组:9.100=30+30+13+3+3+3+3+3+3+3+3+3;10.7;11.由题目可知,2只脚动物与4只脚动物的脚的只数相同,40÷2=20(只脚),20×2=19(只);12.用还原法分析,80、41、21、11、6块。
C组:13.为了方便说明,不妨给两位棋手取两个名字:一位是高明,一位是毕胜。小牛和高明下的那盘棋,让高明先走;另一盘棋让毕胜后走。然后,小牛看看高明怎么走,就照搬过来对毕胜,再看毕胜走哪一步,又搬回来对高明。这样,表面上是小牛同时下两盘棋,实际上是高明和毕胜对下。高明和毕胜不可能同时赢,小牛就不会两盘都输。14.硬币:1分1个,2分2个,5分1个共4个;纸币:1角2张,2角1张,5角1张,1元1张共5张。15.在1到50这五十个数中,末尾有0的数有10、20、30、40、50五个,相乘的积末尾有6个零;末尾有5的数有5、15、25、35、45五个,与末尾没有0的偶数相乘,积的末尾有6个零,因此,这个65位的数尾部有12个零。(注意:50=5×10,25=5×5
A组:
1.兄弟俩轮流数数,兄每次数单数,第一次数1,接着数3、5、7、9、11、13、15。弟每次数双数,第一次数2,接着数4、6、8、10、12、14、16。请快点回答,兄数的8个数的和比弟数的8个数的和少几?
2.相邻两个双数分别与某数相乘,所得的两个积相差100。问某数是多少?
3.在1至100这一百个数中,两个数相除商是2的有( )对,其中被除数和除数都最小的一对是()和( ),被除数和除数都最大的是( )和几?
4.1根绳子对折,再对折,然后从中间剪断,共剪成多少段?
5.妈妈对小琴说:“我给你9角钱,你到邮局去买邮票,只要3分、4分、8分这三种,每种张数一样多。”问小琴最多能买回多少张邮票?
6.从8、9、16、19、23和27这六个数中选出5个数,使其中3个数的和是另外两个数的和的2倍。应该怎么选?
7.某数乘以4的积比它乘以40的积少900,这个数是多少?
8.甲数与乙数的和比甲数与丙数的和大3,丙数与乙数相差多少?
B组:
9.把100分成12个数的和,使每个数中都有数字“3”。怎么分?
10.口袋中有9个球,每个球上标有一个数字,分别是1、2、3、4、5、6、7、8、9。A、B、C、D四个人每人从口袋中取出两个球,A取的两球数字和是10,B取的两球数字之差是1,C取的两球数字之积是24,D取的两球之商是3。请问,口袋中剩下的一个球标有一个什么数字?
11.马戏团里有22只常见的森林动物,22只动物共有40只脚,2只脚的动物是4只脚动物的2倍。问两只脚的动物有几只?(注:还有没有脚的蛇)
12.哥五个各有一些糖块,大的比小的多。老大把自己的分给大家一些,谁有多少块再分给谁多少块;然后老二把现有的块数分给大家一些,谁现在有多少再分给多少,老三、老四、老五也照此方法办;最后五个人每人都有32块糖。请问原来各有多少块糖?
C组:
13.小牛对人说:“昨天,我跟两位象棋高手下棋。我面前摆着两副棋盘,我一个人走两盘棋,同时跟这两位高手比赛。你们猜,谁胜谁负?”“准是你两盘都输了。”人们知道小牛刚学下象棋,连马步怎么走都记不住。“不对。头一回,两盘都是和棋。第二回,我输一盘,赢一盘。无论再下多少回,我也不会同时输两盘棋。”“你吹牛。”
两位象棋高手出来证明:小牛没有吹牛,我们也没有让棋。是他采取巧妙的办法来和我们下棋的。小牛用的是什么巧妙办法。
14.我准备2元钱去买东西,只要不超过2元,不论买的东西是多少钱,都能拿出正合适的数目,不需要售货员找钱。
可是我不希望带很多零钱,要求只带最少的硬币和纸币。那么,硬币最少带几个?纸币最少带几张?
15.1×2×3×…×48×49×50=?1到50的五十个数相乘,乘积是一个非常大的数。用笔算很困难,用电子计算机算,很快就算出这是一个65位的数。这个65位的数,尾部有好多个零。现在请你巧算一下,到底有几个零?(注:不是10个零)
答案:
A组:1.8;2.50;3.50对,2和1,100和50;4.5段;5.90÷(3+4+8)=6,6×3=18张;6.(8+19+23)÷(9+16)=2(倍);7.900÷(40-4)=25;8.乙数比丙数大3。
B组:9.100=30+30+13+3+3+3+3+3+3+3+3+3;10.7;11.由题目可知,2只脚动物与4只脚动物的脚的只数相同,40÷2=20(只脚),20×2=19(只);12.用还原法分析,80、41、21、11、6块。
C组:13.为了方便说明,不妨给两位棋手取两个名字:一位是高明,一位是毕胜。小牛和高明下的那盘棋,让高明先走;另一盘棋让毕胜后走。然后,小牛看看高明怎么走,就照搬过来对毕胜,再看毕胜走哪一步,又搬回来对高明。这样,表面上是小牛同时下两盘棋,实际上是高明和毕胜对下。高明和毕胜不可能同时赢,小牛就不会两盘都输。14.硬币:1分1个,2分2个,5分1个共4个;纸币:1角2张,2角1张,5角1张,1元1张共5张。15.在1到50这五十个数中,末尾有0的数有10、20、30、40、50五个,相乘的积末尾有6个零;末尾有5的数有5、15、25、35、45五个,与末尾没有0的偶数相乘,积的末尾有6个零,因此,这个65位的数尾部有12个零。(注意:50=5×10,25=5×5)
F. 小学趣味数学题
大马有x,中马有y,小马有z,(显然这三个未知数都是正整数或0)
然后可以列出两个等式:
x+y+z=100
3x+2y+z/2=100
同时可以得出x,y,z三个未知数的范围x[0,34],y[0,50],z[0,100]
然后根据上述两个等式消除未知数z得到
5x+3y=100
将未知数分到等号两边
y=(100-5x)/3,用迭代的方法求解x与y的组合,因为x与y都为正整数或0,因此组合比较少,如下:
x=2,y=30
x=5,y=25
x=8,y=20
x=11,y=15
x=14,y=10
x=17,y=5
x=20,y=0
将以上组合带入前面的等式,
可以得到z:
x=2,y=30,z=68
x=5,y=25,z=70
x=8,y=20,z=72
x=11,y=15,z=74
x=14,y=10,z=76
x=17,y=5,z=78
x=20,y=0,z=80
G. 小学趣味数学题
献给了日月星辰登养阵析
啊·
H. 关于小学生趣味数学的内容
数学趣闻
有人梦见自己在和上帝对话。“伟大的安拉,在你眼里,1000年意味着什么?”上帝回答说:“只不过一分钟罢了。”那人又说:“大慈大悲的真主,请告诉我,10万金币意味着什么?”“一个铜板罢了”。“至高无上的真主,请您恩赐我一个铜板吧”!上帝说:“也好,那就请等一分钟吧!”这意味着这位“贪财”之人得等上足足1000年。
在中国传统民间资料也有类似的寓言。一位聪明的媒婆正在称赞某位姑娘的人、德、品俱佳,心直口快的小伙子说:“那位姑娘我见过,好象有一只眼睛是瞎的?”媒婆忙说:“那好哇,别的男人就不会和她挤眉弄眼!”“听说她是个哑吧?”“挺好的呀,她不会叽叽喳喳,多嘴多舌。”“有人说她好像有一只手不听使唤!”“是个很大的优点,她不会偷鸡摸狗。”“据说她有只脚不大会走路?”“她更加老实本份,不会惹是生非!”“她很矮!”“可省衣料!”……
一位数学家兼电脑学家读了这则寓言后,竟想出一则有趣的题目,这位数学家来自德黑兰,就是20世纪60年代,创造模糊数学的大师洛德菲札德。我们知道0,1,2,3,4,5……9,10个数构成不重不漏的基本单位。这位数学家,想到10位数字可以由5位数的平方算出。也就是把12,3,4,……分成两组,构成2个5位数,使两个5位数的平方的和结果是由0,1,2,3,……9这10个数字构成,不重不漏的10位数。如果单凭人力,想把“十全十美”的数搜查出来,无异于大海捞针,好在我们有了电脑,经过一番努力,有人利用电脑达到了目的,看下面:
57321*57321=3285697041
60984*60984=3719048256
可见数学思维不仅体现在数学领域,还渗透在文学故事中。
I. 小学的趣味数学故事
智斗猪八戒
话说唐僧师徒西天取经归来,来到郭家村,受到村民的热烈欢迎,大家都把他们当作除魔降妖的大英雄,不仅与他们合影留念,还拉他们到家里作客。
面对村民的盛情款待,师徒们觉得过意不去,一有机会就帮助他们收割庄稼,耕田耙地。开始几天猪八戒还挺卖力气,可过不了几天,好吃懒做的坏毛病又犯了。他觉得这样干活太辛苦了,师傅多舒服,只管坐着讲经念佛就什么都有了。其实师傅也没什么了不起的,要不是猴哥凭着他的火眼金睛和一身的本领,师傅恐怕连西天都去不了,更别说取经了。要是我也有这么一个徒弟,也能有一番作为,到那时,哈哈,我就可以享清福了。
于是八戒就开始张落起这件事来,没几天就召收了9个徒弟,他给他们取名:小一戒、小二戒…小九戒。按理说,现在八戒应该潜心修炼,专心教导徒弟了。可是他仍然恶习不改,经常带着徒弟出去蹭吃蹭喝,吃得老百姓叫苦不迭。老百姓想着他们曾经为大家做的好事,谁也不好意思到悟空那里告状。就这样,八戒们更是有恃无恐,大开吃戒,一顿要吃掉五、六百个馒头,老百姓被他们吃得快揭不开锅了。
邻村有个叫灵芝的姑娘,她聪明伶俐,为人善良,经常用自己的智慧巧斗恶人。她听了这件事后,决定惩治一下八戒们。她来到郭家村,开了一个饭铺,八戒们闻讯赶来,灵芝姑娘假装惊喜地说:“悟能师傅,你能到我的饭铺,真是太荣幸了。以后你们就到我这儿来吃饭,不要到别的地方去了。”她停了一下说:“这儿有张圆桌,专门为你们准备的,你们十位每次都按不同的次序入座,等你们把所有的次序都坐完了,我就免费提供你们饭菜。但在此之前,你们每吃一顿饭,都必须为村里的一户村民做一件好事,你们看怎么样?”八戒们一听这诱人的建议,兴奋得不得了,连声说好。于是他们每次都按约定的条件来吃饭,并记下入座次序。这样过了几年,新的次序仍然层出不穷,八戒百思不得其解,只好去向悟空请教。悟空听了不禁哈哈大笑起来,说:“你这呆子,这么简单的帐都算不过来,还想去沾便宜,你们是永远也吃不到这顿免费饭菜的。”“难道我们吃二、三十年,还吃不到吗?”悟空说:“那我就给你算算这笔帐吧。我们先从简单的数算起。假设是三个人吃饭,我们先给他们编上1、2、3的序号,排列的次序就有6种,即123,132,213,231,312,321。如果是四个人吃钣,第一个人坐着不动,其他三个人的座位就要变换六次,当四个人都轮流作为第一个人坐着不动时,总的排列次序就是6×4=24种。按就样的方法,可以推算出:五个人去吃饭,排列的次序就有24×5=120种……10个人去吃钣就会有3628800种不同的排列次序。因为每天要吃3顿钣,用3628800÷3就可以算出要吃的天数:1209600天,也就是将近3320年。你们想想,你们能吃到这顿免费钣菜吗?”
经悟空这么一算,八戒顿时明白了灵芝姑娘的用意,不禁羞愧万分。从此以后,八戒经常带着徙弟们帮村民们干活。他们又重新赢得了人们的喜欢。
取胜的对策
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。但是田忌采纳了门客孙膑(著名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
下面有一个两人做的游戏:轮流报数,报出的数不能超过8(也不能是0),把两面三刀个人报出的数连加起来,谁报数后使和为88,谁就获胜。如果让你先报数,你第一次应该报几才能一定获胜?
分析:因为每人每次至少报1,最多报8,所以当某人报数之后,另一人必能找到一个数,使此数与某所报的数之和为9。依照规则,谁报数后使和为88,谁就获胜,于是可推知,谁报数后和为79(=88-9),谁就获胜。88=9×9+7,依次类推,谁报数后使和为16,谁就获胜。进一步,谁先报7,谁就获胜。于是得出先报者的取胜对策为:先报7,以后若对方报K(1≤K≤8),你就报(9-K)。这样,当你报第10个数的时候,就会取得胜利。
蜗牛何时爬上井?
一只蜗牛不小心掉进了一口枯井里。它趴在井底哭了起来。一只癞(
lai)蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟!哭也没用,这井壁太高了,掉到这里就只能在这生活了。我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了!”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里!”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬上去!请问这口井有多深?”“哈哈哈……,真是笑话!这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每天爬一段,总能爬出去!”第二天,蜗牛吃得饱饱的,喝足了水,就开始顺着井壁往上爬了。它不停的爬呀,到了傍晚终于爬了5米。蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。”想着想着,它不知不觉地睡着了。早上,蜗牛被一阵呼噜声吵醒了。一看原来是癞大叔还在睡觉。它心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后从井壁上滑下来4米。蜗牛叹了一口气,咬紧牙又开始往上爬。到了傍晚又往上爬了5米,可是晚上蜗牛又滑下4米。爬呀爬,最后坚强地蜗牛终于爬上了井台。小朋友你能猜出来,蜗牛需要用几天时间就能爬上井台吗?