导航:首页 > 小学学科 > 小学数学逆推法

小学数学逆推法

发布时间:2020-12-19 18:40:20

小学三年级数学,什么叫逆推法

数学中常用演绎法和分析法,逆推就是分析法中所用的求解方法,往往是从问题或者可以联想到的答案入手,一步步的推测到所给的提示、或推测到可能有的原因。从而找到解题的思路,再用顺序的方法写出来。

小学数学教学的教法和学法主要有哪些

选择和运用教学方法应该考虑以下几个主要原则:
1、坚持启发式教学,反对注入式教学
启发式教学就是指教师从学生的实际情况出发,把学生当成学习的主体,应用各种方式方法调动学生学习的积极性、主动性和能动性,引导学生通过自己积极的学习活动掌握知识、形成技能、发展能力和促进个性健康发展。
启发式教学的精神是尊重学生的主体人格,强调指导学生的学习方法,重视学生的技能形成、能力发展和个性展示。它把学生看成既是教育的对象,又是学习的主体,充分调动学生学习的主动性,激发他们的学习兴趣和求知欲,从而积极地开展思维活动,在理解的基础上掌握知识。这种教学有利于促进学生的智力,特别是思考力的发展和培养学生分析问题、解决问题的能力,是一种科学民主的教学方法。
注入式教学也称“填鸭式”或“灌输式”教学,是指教师从主观出发,把学生置于被动地位,忽视学生的主体能动性,把学生看成是单纯接受知识的“容器”,只注重教学过程的知识传授。可以看出,注入式教学是把学生看成被动的教育对象,不注意调动学生的主动性和积极性,教师只是把知识灌输给学生,使学生生吞活剥,不加咀嚼地呆读死记,抑制了学生的思考力和创新精神。注入式教学方式既不利于学生真正领会掌握知识,又不利于其智慧的发展,是一种不科学不民主的教学方法
2、体现教育价值的原则
小学数学教育的基本价值追求是什么?不同的理解将影响对具体数学教学方法的抉择与组合。如果将小学数学教育的价值简单地理解为就是掌握已经被发现的、最基础的数学知识,那么,可能更多地会考虑“采用什么样的方式讲解,学生更能听懂?”“通过哪些操练能使学生牢固掌握那些基础性的知识!”“如何考量学生是否已经掌握了那些规定性的基础知识?”等这样一些问题,则相应地,在抉择或组合教学方法的时候,可能会更多地集中在“叙述式讲解”、“重复性练习”、“结论性演示”等方法之上;如果将小学数学教育的价值理解为发展学生的数学素养的话,可能更多地会考虑“采用什么样的组织方式能更有利于学生经历一个探索与发现的过程?”“通过哪些获得能促进学生的知识和经验运用于现实情境?”“如何考量学生数学问题解决的能力”等这样一些问题,则相应地,在抉择或组合数学方法的时候,可能会更多地集中在“启发式对话”、“探索性实验”、“引发性问题解决”等方法之上。
3、目标导向原则
在任何一个数学教学活动开始前,教师都会(也必须)依据课程目标、学习任务以及学生特点等,设计出具体的教学目标。随着新课程的实施,教学目标的多元和整合已经深入人心,新课标把教学目标划分成“知识与技能,过程与方法,情感、态度和价值观”三个维度。这个目标就是将数学学习的任务具体化,它是整个课堂学习活动的基本导向,在课堂教学中主导着教与学的方法与过程,是教学的出发点和归宿。因此,教师对数学方法的抉择与组合,首先需要考虑的是,如何能最大限度地达成这个已经被确定的目标。
4、与教学内容相适应的原则
教学任务是通过教学内容的传授实现的。这里的教学内容是指学科性质和一节课的教材内容。教学内容是制约教学方法的重要条件,学科性质不同,教学方法也有不同。同一学科,由于各节课教材内容不同,其方法的选择也有区别。同是传授新知识,如是概念性内容,就要选用讲授法;如是阐明事物的特性、揭示事物发生发展变化的规律,则可选用演示法。所以要依据教学内容来选择与之相适应的教学方法。
5、促进儿童学习的原则
良好的教学方法应该是充分激发学生的学习动机,充分激励学生主动参与学习的一种程序结构。它应充分考虑学生是怎样学习的,怎样才能学得更好,要能充分地引起学生的注意,同时又尽可能地保持学生的这种注意,使学生始终能积极主动地参与学习过程;它不仅要关注教师行为的合理性和有效性,更要充分地关切学生的情绪状态,关切学生参与学习的程度,关切学生参与学习的过程中所遇到的问题或困难,关切学生可能会提出的各种各样的问题等;它要有助于形成和强化学生学习数学的自信心;它要能使学生在学习过程中获得最大可能的体验,并在这种体验下获得某种“成功”的满足。
教师应当通过各种各样的方式让学生明确自己的学习任务和学习目标;帮助学生依据学习内容确定自己的学习方式;注重儿童的个性、经验基础、兴趣导向和学习方式,宁可改变自己预设的教育教学计划;鼓励学生采用不同策略和方式参与学习;让学生运用各种各样方式去观察对象,预见结果,检验假设;将学生在学习过程中所呈现的不同反应整合进自己的教学方法之中。
6、兼顾差异性原则
首先,教师要认识到,不同年龄段的学生,其认知的心理水平和心理特点是不同的,例如,低年龄段的学生,更容易被一些新奇的对象所吸引,但对于一些复杂的情境,要能辨识出数学特征还是比较困难的,他们在学习过程中更多地依赖直观,因而对一些逻辑运算能力还比较弱。因此,在这个年龄段,可以多采用一些材料演示。操作实验等方法。而对稍高年段的学生来说,他们已经开始能从一个较为复杂的情境中辩识出某些数学特征,虽然数学思考仍主要依赖于直观,但已经建立了初步的语言和符号的逻辑运算能力,因此,就可以更多地采用一些启发式谈话、探究式发现、探索性实验等方法。

其次,教师要认识到,不同的学生,其认知结构以及学习风格也是不同的。一个专业成熟的教师,懂得如何依据不同的学生的认知结构特点和学习风格特点,选择有灵活性、开放性和多样性的适应性教学方法,特定的教学方法与特定的学生特征相联系,从而满足学生的学习需要。
最后,教师要认识到,不同年龄段的学生,其生活经历是不同的。即使是同一个年龄段的学生,其生活经验也是不同的。而学生已有的生活经历与相应累积的日常经验以及建立的那些日常概念,是学生实现现实问题数学化的一个基础。因此,在抉择和组合教学方法时,应兼顾这些差异。

❸ 怎样用逆向思维法解答小学数学应用题

当你在纵横交错的道路中找不到出口时,你会怎么办呢?有些聪明的同学常常会反其道而行之,从出口倒回去找入口、然后再沿着自己走过的路返回来.由于从出口返回时,途径单一,很快就会找到入口,然后再由原路退回,走出迷宫自然就不难了.解应用题也是这样,有些应用题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题就很容易得到解决了.这就是逆向思维法,即首先确定你要达到的目标,然后从目标倒过来往回想,直至你现在所处的位置,弄清楚一路上要跨越哪些关口或障碍、是谁把守着这些关口.由于这种思维方法不同于常规,因此往往能出奇制胜,取得意想不到的效果.把这种思维方法用在小学数学应用题的解答中主要有两种:一是逆向分析法,二是逆向推导法.
1、逆向分析法
逆向分析法就是从求解的问题人手,正确选择所需要的两个条件,如果解题所需要的两个条件(或其中的一个条件)是未知的,就要分别求解找出这两个(或一个)条件,然后依次推导,逐层分析清楚要解决这个问题需要哪些条件,一直到所需要的条件都是已知的为止.这条分析链中的最后一步就是解题的第一步,然后,由此逐步返回,最后列出正确的算式,解决问题.逆向思维法尤其适于解答数量关系比较复杂的应用题.
这道题的分析思路如下面所示:
实际比原计划少用多少天
原计划生产的天数、实际生产的天数
生产零件的总个数、实际每天加工的零件个数
原计划每天生产零件的个数
原计划生产的天数
要知道实际比原计划少用多少天,就必须用原计划生产的天数减去实际生产的天数.原计划生产的天数题目中已知,实际生产的天数未知,要求出实际生产的天数,就必须要知道生产零件的总个数和实际每天加工的零件个数两个条件,因为生产零件的总个数÷实际每天加工的零件个数=实际用多少天完成生产任务.实际每天加工的零件个数这个条件题目已经告诉了我们,而生产零件的总个数未知.进一步推导,生产零件的总个数=原计划每天生产零件的个数×原计划生产的天数,这两个条件都在题目中出现了,因此,求生产零件的总个数就是我们解题的第一步.可列出算式:2000x10=20000(个).第二步就可以算出实际生产的天数.列出算式如下:20000÷2500=8(天).第三步就可以求出实际比原计划少用多少天,算式为:10-8=2(天).综合列式为:10-2000x10÷2500=2(天).因此,实际比原计划提前2天完成了这批生产任务.
2、逆向推导法
当应用题的已知条件是原数经过若干次变化的结果时,就其解法与前面讲的几种方法就不一样了.解这类应用题,首先得搞清楚原数经过几次变化,是经过怎样的变化.也要知道变化的结果是多少,然后,才能以结果为线索,照原题的相反意思还原.这里讲的相反意思是什么呢?原数的变化如果是输入.那么,还原的结果就是输出.原数的运算是加法或乘法.那么、还原的运算就是减法或除法.由结果逆推,得到原数的解题方法,就是逆推法,或称还原法.
解析:本题中,商场原有电视机台数是原数.该原数根据题意,经过了三次变化.第一次变化是上午卖出电视机30台;第二次变化是中午从厂家运来50台;第三次变化是下午又卖出15台.原数是经过这三次变化,才成为72台的.
从上图可以清楚地看出逆推法的过程:
第一步:商场现有电视机72台,那么,在卖出15台以前,应有电视机多少台呢?可用加法计算,得:72+15=87(台).
再逆推第二步:在运来50台之前,商场里的电视机是多少台呢?用减法计算,得:87-50=37(台).由此可知,在运来50台之前,商场里的电视机有37台.但问题并没有得到最后解决,因为商场上午还卖出电视机30台,所以还要逆推一步.
逆推第三步:商场上午卖出30台之前,有电视机多少台?这就是商场原有电视机的台数.用加法计算得:37+30=67(台).
综合算式为:72+15-50+30=67(台).
对于同学们来说,学会了逆向思维法,不仅能增加一种解题方法,而且对培养逆向思维推理能力,也有着积极意义.值得注意的是,刚开始学习用逆向思维法解应用题时,一定要画思路图,当对逆向思维法的解题方法已经很熟悉时,可不再画思路图,而直接分析解答应用题了.

小学五年级数学(分式) 求计算过程!

设分子为x,,则有:
(x-6)/(168-x-6)=5/7;
162×5-5x=7x-42;
12x=810+42;
12x=852;
x=71;
所以分母=168-71=97;
分数为71/97;

❺ 小学数学思考里 有哪些数学思想和方法

用逆推法,先去分母,两边同乘4(1+x)(1+y)(1+z),又因为x+y+z=1得4+12xzy+8zy+8xz+8xy<=6+3zy+3xy+3zx+6zxy
6zxy+5zy+5xz+5xy<=2
又因为x,y,z是正数,x+y+z=1可知x,y,z都是小于内1大于0的数
故容xzy,zy,xz,xy都是是百分位,十分位的小数,由此可知
1<6zxy+5zy+5xz+5xy<=2
满足条件,即成立。
还有其它的方法,你也可以试着去推敲。

❻ 小学数学六年级五单元百分数试卷兼答案

六年级数学(上册)《百分数》单元测试题
一、想一想,填一填。
1、28.6%读作( ),百分之零点零七写作( )。
2、火车的速度是120千米/时,燕子的速度是150千米/时。火车的速
度是燕子的( )%。
3、0.6= ( )( ) =( )∶( )= ( )25 =( )%
4、甲乙两数的比是3∶4,甲数是乙数的( )%。
5、比80米少20%的是( )米,( )米的20%是60米。
6、男生20人,女生30人,男生约占女生人数的( )%,男生占全班人数的( )%,女生比男生多( )%。
7、某饭店九月份的营业额是78000元,如果按营业额的5%缴纳营业
税,九月份应纳税( )元。
8、果园今年种了200棵果树,活了198棵,这批果树的成活率是
( )%。
9、一辆自行车原价560元,这辆自行车打八五折后的价钱是( )元。
10、完成下表。
分数 1/8
小数 0.5 0.4
百分数 20% 75%
二、火眼金睛辨对错。
1、用110粒种子做发芽实验,全部发芽,这些种子的发芽率是110%.
2、今年的产量比去年增加了20%,今年的产量就相当于去年的120%。
3、一件衣服打九折,就是指这件衣服比原价便宜90%。 ( )
4、一根绳子长 910 米,可以写成90%米。 ( )
5、 π >33.3% ( )
6、0.12化成百分数是0.12% 。 ( )
三、对号入座。
1、一堆煤,用了40%,还剩这堆煤的( )。
A、40% B、60% C、60吨 D、无法确定
2、某厂上半月完成计划的75%,下半月完成计划的 12 ,这个月增产
( )。 A、25% B、45% C、30% D、20%
3、一种纺织品的合格率是98%,300件产品中有( )件不合格。
A、2 B、4 C、6 D、294
4、丽丽家上月用电50度,本月比上月节约了10度,比上月节约( )。 A、80% B、50% C、40% D、20%
5、右图中的涂色部分用百分数表示是( )。
A、150% B、15 C、15% D、510

6、在3.145、3.14、π、 3.14%中,最大的数是( )。
A、3.145 B、3.14 C、π D、3.14%
7、甲数是240,乙数比甲数多25%,乙数是( )。
A、60 B、240 C、300 D、125
8、把25克盐溶化在100克水中,盐的重量占盐水的( )。
A、20% B、25% C、100% D、125%
四、解决问题。
1、800千克小麦可以磨出面粉576千克,小麦的出粉率是多少?

2、饲养小组养了白兔和灰兔。白兔36只,灰兔12只,白兔和灰兔
分别占总数的百分之几?

3、某乡去年造林15公顷,今年造林18公顷,今年比去年增加了百分之几?

4、育才小学有360名学生,其中有5%的学生没有参加兴趣活动小组,
参加兴趣活动小组的有多少人?

5、少年服饰专卖店换季促销,每件半袖原价50元,现在八折销售。小林买了三件,一共花了多少钱?

6、王爷爷把5000元存入银行,存期3年,年利率4.41%。
①到期支取时,王爷爷要缴纳多少元的利息税?

②最后王爷爷能拿到多少钱?

小学一年级田字格数学数字怎么写

小学一年级数学数字的田字格写法如下图所示:

拼 音 shù shǔ shuò 部 首 攵 笔 画 13 五 行 金 繁 体 数 五 笔 OVTY

[ shù ]

1.数目:次~。~额。

2.几;几个:~次。~日。

3.天数;命运:气~。在~难逃。

4.表示事物的量的基本数学概念。由于生产实践对计数和测量的需要,首先产生了自然数(正整数),后又逐渐产生了分数、零、无理数、负数、虚数等。

5.一种语法范畴。表示名词、代词所指事物的数量。

6.指数学:~理化。

[ shǔ ]

1.点算:~数(shù)。~不清。

2.比较起来最突出:~得上。~一~二。

3.责备;列举错误:~说。~落。

[ shuò ]

屡次:频~。

(7)小学数学逆推法扩展阅读

相关词汇

一、数落 [ shǔ luo ]

1.列举过失而指责,泛指责备:被母亲~了一顿。

2.不住嘴地列举着说:老大娘~着村里的新鲜事儿。

二、数数 [ shuò shuò ]

1.犹汲汲。迫切貌。

2.屡次;常常。

三、次数 [ cì shù ]

动作或事件重复出现的回数:练习的~越多,熟练的程度越高。

四、数据 [ shù jù ]

进行各种统计、计算、科学研究或技术设计等所依据的数值。

❽ 怎样用逆向思维法解答小学数学应用题

当你在纵横交错的道路中找不到出口时,你会怎么办呢?有些聪明的同学常常会反其道而行之,从出口倒回去找入口、然后再沿着自己走过的路返回来。由于从出口返回时,途径单一,很快就会找到入口,然后再由原路退回,走出迷宫自然就不难了。解应用题也是这样,有些应用题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题就很容易得到解决了。这就是逆向思维法,即首先确定你要达到的目标,然后从目标倒过来往回想,直至你现在所处的位置,弄清楚一路上要跨越哪些关口或障碍、是谁把守着这些关口。由于这种思维方法不同于常规,因此往往能出奇制胜,取得意想不到的效果。把这种思维方法用在小学数学应用题的解答中主要有两种:一是逆向分析法,二是逆向推导法。 1、逆向分析法 逆向分析法就是从求解的问题人手,正确选择所需要的两个条件,如果解题所需要的两个条件(或其中的一个条件)是未知的,就要分别求解找出这两个(或一个)条件,然后依次推导,逐层分析清楚要解决这个问题需要哪些条件,一直到所需要的条件都是已知的为止。这条分析链中的最后一步就是解题的第一步,然后,由此逐步返回,最后列出正确的算式,解决问题。逆向思维法尤其适于解答数量关系比较复杂的应用题。 这道题的分析思路如下面所示: 实际比原计划少用多少天 原计划生产的天数、实际生产的天数 生产零件的总个数、实际每天加工的零件个数 原计划每天生产零件的个数 原计划生产的天数 要知道实际比原计划少用多少天,就必须用原计划生产的天数减去实际生产的天数。原计划生产的天数题目中已知,实际生产的天数未知,要求出实际生产的天数,就必须要知道生产零件的总个数和实际每天加工的零件个数两个条件,因为生产零件的总个数÷实际每天加工的零件个数=实际用多少天完成生产任务。实际每天加工的零件个数这个条件题目已经告诉了我们,而生产零件的总个数未知。进一步推导,生产零件的总个数=原计划每天生产零件的个数×原计划生产的天数,这两个条件都在题目中出现了,因此,求生产零件的总个数就是我们解题的第一步。可列出算式:2000x10=20000(个)。第二步就可以算出实际生产的天数。列出算式如下:20000÷2500=8(天)。第三步就可以求出实际比原计划少用多少天,算式为:10-8=2(天)。综合列式为:10-2000x10÷2500=2(天)。因此,实际比原计划提前2天完成了这批生产任务。 2、逆向推导法 当应用题的已知条件是原数经过若干次变化的结果时,就其解法与前面讲的几种方法就不一样了。解这类应用题,首先得搞清楚原数经过几次变化,是经过怎样的变化。也要知道变化的结果是多少,然后,才能以结果为线索,照原题的相反意思还原。这里讲的相反意思是什么呢?原数的变化如果是输入。那么,还原的结果就是输出。原数的运算是加法或乘法。那么、还原的运算就是减法或除法。由结果逆推,得到原数的解题方法,就是逆推法,或称还原法。 解析:本题中,商场原有电视机台数是原数。该原数根据题意,经过了三次变化。第一次变化是上午卖出电视机30台;第二次变化是中午从厂家运来50台;第三次变化是下午又卖出15台。原数是经过这三次变化,才成为72台的。 从上图可以清楚地看出逆推法的过程: 第一步:商场现有电视机72台,那么,在卖出15台以前,应有电视机多少台呢?可用加法计算,得:72+15=87(台)。 再逆推第二步:在运来50台之前,商场里的电视机是多少台呢?用减法计算,得:87-50=37(台)。由此可知,在运来50台之前,商场里的电视机有37台。但问题并没有得到最后解决,因为商场上午还卖出电视机30台,所以还要逆推一步。 逆推第三步:商场上午卖出30台之前,有电视机多少台?这就是商场原有电视机的台数。用加法计算得:37+30=67(台)。 综合算式为:72+15-50+30=67(台)。 对于同学们来说,学会了逆向思维法,不仅能增加一种解题方法,而且对培养逆向思维推理能力,也有着积极意义。值得注意的是,刚开始学习用逆向思维法解应用题时,一定要画思路图,当对逆向思维法的解题方法已经很熟悉时,可不再画思路图,而直接分析解答应用题了。

❾ 急急急!小学数学分数除法的知识孩子上课没听懂,回到家我和孩子爸爸轮番给他讲,孩子还是不会,怎么办

小侄子之前也是遇到分数除法就出错,在书城顺带给他买了《教材帮》,当内时看里面讲得挺详细的容,旁边还有漫画帮助讲解,还会总结方法,讲得很全面。印象比较深的是有幅漫画,计算3÷3/5,漫画就让小人倒立,非常形象地展示了这个过程,特别喜欢,感觉小孩子也能看进去!嗯,兴趣是最好的老师,想办法让孩子愿意学,愿意看,心里不怵完全没问题的!哈哈哈哈哈,不要太感谢我呦!

小学毕业数学试卷

一共俩张试卷,不够的话还可以再添。

(第一张)无答案
一、选择题(把正确答案的序号写在后面的括号里)
1、如果a÷7/8=b×7/8(ab都是自然数),那么( )。
①a>b ②a=b ③ a<b
2、在自然数中,凡是5的倍数( )
①一定是质数 ② 一定是合数 ③可能是质数,也可能是合数
3、小麦的出粉率一定,小麦的重量和磨成的面粉的重量( )
①成反比例 ②成正比例 ③不成比例
4、一个比的前项是8,如果前项增加16,要使比值不变,后项应该( )。
①增加16 ②乘以2 ③除以1/3
5一个三角形的三个角中最大是89度,这个三角形是( )
①锐角三角形 ②直角三角形 ③钝角三角形
6、一个圆柱体,如果它的底面直径扩大2倍,高不变,那么它的体积扩大( )倍。
① 2 ② 4 ③ 6
二、填空题
1、二千零四十万七千写作( ),四舍五入到万位,约是( )万。
2、68个月=( )年( )个月 4升20毫升=( )立方分米
3、0.6:( )= 9.6÷( )=1.2= 1 5 =( )%
4、自然数a除自然数b,商是18,a与b的最小公倍数是( )。
5、在比例尺是1 :50000的图纸上,量得两点之间的距离是12厘米,这两点的实际距离是( )千米。
6、在一个比例里,已知两个外项互为倒数,其中一个内项是最小的质数,另一个内项是( )。
7、一个圆柱体和一个圆锥体等底等高,如果它们的体积相差32立方分米,那么圆锥体的体积为( )立方厘米。
8、从168里连续减去12,减了( )次后,结果是12。
9一根钢材长5米,把它锯成每段长50厘米,需要 3/5小时,如果锯成每段长100厘米的钢段,需要( )小时。
10、一个长方体木料的长和宽都是4分米,高是8分米,这根木料的体积是( );如果把这根木料锯成两个正方体,那么这两个正方体的表面积的和是( )。
11、一个长方形的面积是210平方厘米,它的长和宽是两个连续的自然数,这个长方形的周长是( )。
三、观察与思考
算式中的A 和 B各代表一个数。已知A+ ×0.3=4.2,B ÷0.4=12。
那么,A =( ),B =( )

四、计算题
86400÷120÷3 16×45+99×1001×0

五、列式计算
1. 已知甲数是乙数的1.4倍, 2、 某机关精简后有工作人员75人,
两数相差9.8,求乙数. (用方程解) 比原来少45人,精简了百分之几?

2、甲数是33.5,乙数与丙数的平均数是30.5,
这三个数的平均数是多少?

六、应用题
1、甲乙两地相距405千米。一辆汽车从甲地开往乙地,4小时行驶了180千米。照这样的速度,再行驶多少小时,这辆汽车就可以到达乙地?

2、压路机的滚筒是一个圆柱体。滚筒直径⒈2米,长⒈5米。现在滚筒向前滚动120周,被压路面的面积是多少?(π取3.14)

3、某厂生产一批水泥,原计划每天生产150吨,可以按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?(用比例解)

4、加工一批零件,甲乙合作5小时完成,甲独做9形式完成。已知甲每小时比乙多加工2个零件,这批零件共有多少个?

5、体育场买来16个篮球和12个足球,共付出760元。已知篮球与足球的单价比是5:6,体育场买篮球和足球各付出多少元?

6.某商店购进一批皮凉鞋,每双售出价比购进价多15%。如果全部卖出,则可获利120元;如果只卖80双,则差64元才够成本。皮凉鞋的购进价每双多少元?

7.甲乙两堆煤,如果甲堆运往乙堆10吨,那么甲堆就会比乙堆少5吨。现在两堆都运走相同的若干吨后,乙堆剩下的是甲堆剩下的17 。这时甲堆剩下的煤是多少吨?

(第二张)有答案
一、填空题:

2.把33,51,65,77,85,91六个数分为两组,每组三个数,使两组的积相等,则这两组数之差为______.
大的分数为______.
4.如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.

5.字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如右,那么三位数ABC是______.

7.如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,则所得物体的表面积为______.

8.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么,这堆糖中有奶糖______块.

10.某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角,则甲交了______角______分.
二、解答题:
1.求在8点几分时,时针与分针重合在一起?
2.某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?
3.兄弟三人分24个苹果,每人所得个数等于其三年前的年龄数.如果老三把所得苹果数的一半平分给老大和老二,然后老二再把现有苹果数的一半平分给老大和老三,最后老大再把现有苹果数的一半平分给老二和老三,这时每人苹果数恰好相等,求现在兄弟三人的年龄各是多少岁?

以下小升初数学试题答案,仅供参考:
一、填空题:
1.(B)
取倒数进行比较.

2.(16)
把各数因数分解.33=11×3;51=17×3;65=13×5;77=11×7;85=17×5;91=13×7,所以33×85×91=77×51×65故差为91+85+33-77-65-51=16.

5.(421)
由A+B+C=7,A、B、C都是自然数,且A>B>C,所以A=4,B=2,C=1.即三位数为421.
6.(400)

7.(72)
没打洞前正方体表面积共6×3×3=54,打洞后面积减少6又增加6×4(洞的表面积),即所得形体的表面积是54-6+24=72.
8.(9块)45%

9.(3994)

10.27角6分
不妨设甲家用电x度,乙家用电y度,因为96既不是20的倍数,也不是9的倍数.所以必然甲家用电大于24度,乙家小于24度.即x>24≥y.由条件得.24×9+20(x-24)=9y+96,20x-9y=360,由9y=20x-360,20|9y,又(9,20)=1,所以|20y.当0≤y≤24时,y=20或0.而y=0即x=18<24,矛盾,故y=20,x=27.甲应交24×9+20×(27-24)=276(分)=27.6(角).
二、解答题:

考虑8点时,分针落后时针40个格(每分为一格),而时针速度为每分
2.(1344)
设洗衣机x元,则每月应得报酬为:

3.(16,10,7)
列表用逆推法求原来兄弟三人的苹果数:

所以老大年龄为13+3=16(岁),老二年龄为7+3=10(岁),老三年龄为4+3=7(岁).

阅读全文

与小学数学逆推法相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99