① 小学数学六年级
如果姐姐没有花去1/10,妹妹挣了15,那么姐妹俩一共有175+15=190元。
把姐姐原有的钱分成10份,花了1/10,就是花了1份,还剩9份。妹妹挣了15元后的钱刚好和姐姐剩下的9份钱相等。
也就是说这190元钱,由3部分组成:姐姐剩下的9份,妹妹挣后的9份,姐姐姐花掉的1份。一共可以分成9+9+1=19份钱,每份为190/19=10元
所以姐姐原来的钱就是:10元*10=100元。
② 小学数学一到六年级公式大全
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
不同地方教材可能不一样,这个应该比较全面了
小学教学没有必要死记公式,重在理解
③ 小学数学6+3+8等于多少
17
④ 小学数学六年级
-----公式定义
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
-----公理定理
一、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
⑤ 小学数学六年级
原来来的男生占5/9,那么自女生占4/9
女生加3人后,占比变成9/19
以上都是根据题目已知的,接下来我们考虑个常识问题,一个班的学生人数不会太多,估计也就几十个,而且人数都是整数
我们看下分母,一个是9,一个是加了3人后的19,意思也就是说19或者19的整数倍减去3人后必须是9的倍数才行,简单理解就是如果不要那三个女生,剩下的人必须能平均分9份,男生占5份
现在看看19-3是否是9的倍数,很明显不是
19×2-3呢,也不是
19×3-3呢,得54,等于6×9
这个54是否满足题意,我们代进去看看
54的5/9即为30,也就是说男生30人,女生24人,这个是一开始的男女占比
现在给女生加3人,为27人,总人数加3人为57人,女生占比刚好9/19,说明没问题,这个数字完全正确,而且五十多人也符合一个班的学生大概人数,正常水平,人数再多的话就有点挤了,最后排的学生可能会看不到黑板
⑥ 小学数学六年级,,, 比和比例
⑦ 小学数学1到6年级全部重点
小学生数学复习考试全图
这些知识归结了小学全部数学重点。这些知识可能在每次考试中以不同形式(填空、选择、判断、连线、解答应用题等)出现,也是学生将来进入初中、高中的基础,所以一定要牢固掌握。
一、 小学生数学法则知识归类
(一)笔算两位数加法,要记三条:
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条:
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则:
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序去处;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法:
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;末位不管有几个0都不读。
(五)四位数写法:
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条:
1、相同数位对齐;
2、从个位减起;
3、位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则:
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则:
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则:
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则:
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,再试除前三位数;
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则:
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个0都只读一个“零”。
(十二)多位数的读法法则:
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个“零”。
(十三)小数大小的比较:
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则:
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数简洁的计算法则:
计算小数乘法,先按照简洁的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则:
除数是整数的小数除法,按照整数除法的法则却除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则:
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤:
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(十九)列方程解应用题的一般步骤:
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;检验、写出答案。
(二十)同分母分数加减的法则:
同分母分数相加减,分母不变,只把分子相加减。
(二十一)同分母带分数加减的法则:
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则:
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(二十三)分数乘以整数的计算法则:
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则:
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(二十五)一个数除以分数的计算法则:
一个数除以,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法:
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、 小学教学口诀定义归类
1、 什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、 什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、 加法各部分之间的关系:
一个加数=和-另一个加数
4、 减法各部分之间的关系:
差数=被减数-差,被减数=差数+差
5、 乘法各部分之间的关系:
一个因数=积÷另一个因数
6、 除法各部分之间的关系:
除数=被除数÷商,被除数=商×除数
7、 角:
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角叫直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90°的角叫锐角。
(7)什么是钝角?
大于90°而小于180°的角叫做钝角。
(8)什么是周角?
一条射线绕它的闪电战旋转一周所在的角叫周角,一个周角是360°。
8、
(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、 三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?
每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
在等腰三角形里,相等的两个边叫等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫做等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?
什么叫三角形的底?从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形的内角和是180°。
10、 四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平行四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平行的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平行的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、 什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、 什么是四舍五入法?
求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。
这种求近似数的方法,叫做四舍五入法。
13、 加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、 什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、 什么是被减数?
什么是减数?什么叫差?在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、 加法各部分之间的关系:
和=加数+加数,加数=和-另一加数
17、 减法各部分之间的关系:
差=被减数-减数,减数=被减数-差,被减数=减数+差
18、 乘法:
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、 除法:
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中已知的一个因数叫除数。
(4)什么是商?
在除法中求出的未知因数叫商。
20、 乘法各部分之间的关系:
积=因数×因数,一个因数=积÷另一个因数。
21、(1)除法各部分之间的关系:
商=被除数÷除数,除数=被除数÷商,被除数=商×除数。
(2)有余数的除法各部分之间的关系:
被除数=商×除数+余数。
22、 什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、 什么是单名数?
只带有一个单位名称的数叫单名数。
24、 什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、 什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26、 什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、 什么是而有限小数?
小数部分的位数是有限的小数叫有限小数。
28、 什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、 什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、 什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、 什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、 什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、 什么是方程?
含有未知数的等式叫方程。
34、 什么是解方程?
求方程解的过程叫解方程。
35、 什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数。b就叫a的约数(或a的因数)。
36、 什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、 什么是偶数?
能被2整除的数叫偶数。
38、 什么是奇数?
不能被2整除的数叫奇数。
39、 什么样的数能被5整除?
个位上是“0”或是“5”的数能被5整除。
40、 什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、 什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、 什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、 什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、 什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、 什么是公约数?
什么叫最大公约数?几个数公有的约数叫公约数,其中最大的一个叫最大公约数。
46、 什么是互质数?
公约数只有1的两个数叫互质数。
47、 什么是公倍数?
什么叫最小公倍数?几个数公有的倍数叫这几个数的公倍数,其中最小的一个叫这几个数的最小公倍数。
48、 分数:
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是分数线?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位“1”平均分成若干份,表示其中的一份叫分数单位。
49、 怎么比较分数大小?
(1)分母相同两个分数,
分子大的分数比较大。
(2)分子相同的两个分数,
分母小的分数较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
50、 比:
(1)什么是比?
两个数相除又叫两个数的比。
(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
51、 长方体和正方体:
(1)什么是棱?
两个面相交的边叫棱。
(2)什么是顶点?
三条棱相交的点叫顶点。
(3)什么是长方体的长、宽、高?
相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。
(4)什么是正方体(立方体)?
长宽高都相等的长方体叫正方体(立方体)。
(5)什么是长方体的表面积?
长方体六个面的总面积叫长方体的表面积。
(6)什么是物体的体积?
物体所占空间的大小叫做物体的体积。
52、 圆
(1)什么是圆心?
圆中心的点叫圆心。
(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心,并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是弧?
在圆上两点之间的部分叫弧。
(8)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
53、 什么是百分数?
表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。
54、 比例:
(1)什么是比例?
表示两个比相等的式子叫比例。
(2)什么是比例的项?
组成比例的四个数叫比例的项。
(3)什么是比例外项?
两端的两项叫比例外项。
(4)什么是比例内项?
中间的两项叫比例内项。
(5)什么是比例的基本性质?
在比例中两个外项的积等于两个内项的积。
(6)什么是解比例?
求比例中的未知项叫解比例。
(7)什么是正比例关系?
两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。
(8)什么是反比例关系?
两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。
55、 圆柱:
(1)什么是圆柱底面?
圆柱的上下两个面叫圆柱的底面。
(2)什么是圆柱的侧面?
圆柱的曲面叫圆柱的侧面。
(3)什么是圆柱的高?
圆柱两个底面的距离叫圆柱的高。
三、 小学数学量的计算单位及进率归类
(1)长度计量单位及进率:千米(公里)、米、分米、厘米、毫米
1千米=1公里,
1千米=1000米,
1米=10分米,
1分米=10厘米,
1厘米=10毫米
(2)面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷,
1平方千米=1000000平方米
1公顷=10000平方米,
1平方米=100平方分米,
1平方分米=100平方厘米
(3)体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米,
1立方分米=1000立方厘米,
1升=1000毫升
1立方分米=1升,
1立方厘米=1毫升
(4)质量单位及进率:吨、千克、公斤、克
1吨=1000千克,
1千克=1公斤,
1千克=1000克
(5)时间单位及进率:世纪、年、月、日、小时、分、秒
1世纪=100年,
1年=12个月
(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天),
1天=24小时,
1小时=60分,
1分=60秒
四、 常用计算公式表
(1)长方形面积=长×宽,计算公式:S=a×b
(2)正方形面积=边长×边长,计算公式:S=a×a
(3)长方形周长=(长+宽)×2,计算公式:C=(a+b)×2
(4)正方形周长=边长×4,计算公式:C=4a
(5)平行四边形面积=底×高,计算公式:S=ah
(6)三角形面积=底×高÷2,计算公式:S=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式:S=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式:V=abh
(9)圆的面积=圆周率×半径平方,计算公式:S=πr2
(10)正方体体积=棱长×棱长×棱长,计算公式:V=a3
(11)长方体和正方体的体积都可以写成:底面积×高,计算公式:V=sh
(12)圆柱的体积=底面积×高,计算公式:V=sh
(13)圆锥的体积=底面积×高÷3,计算公式:V=s×h÷3
等底等高的圆柱体积是圆锥体积的3倍。
⑧ 小学数学中"6前面的数是几"这样的表述,答案是唯一的吗
小学有不有小数啊?如果没小数的话,我认为应该是5,因为如果说6前面的数是7的话,那6后面的数是几呢?是5吗?那不就更加不对了。所以,6前面的数应该是5.
⑨ 小学数学题请问6万X8万等于多少
60000×80000=4800000000
此题考查了乘法的运算。
(1)整数乘法的意义:求几个相同加数的和的专简便运算。如3×4既可以属说:4个3相加的和是多少;也可以表述成:3的4倍是多少。
(2)小数乘整数的意义和整数乘整数的意义相同,都是求几个相同加数的和的简便运算。如:2.5×6,表示6个2.5相加的和是多少;也可以表述成2.5的6倍是多少。
(9)小学数学6扩展阅读
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
15×17= 255
15 + 7 = 22
5 × 7 = 35
即:220+35=255
二、个位是1的两位数相乘
方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。 例1:
51 × 31 = 1581
50 × 30 = 1500
50 + 30 = 80
1500 + 80 = 1580
因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1580 + 1 = 1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
⑩ 小学数学六年级
方程的方法:
解:设姐姐原来有x元,则妹妹原有(175-x )元,
利用现在姐妹的钱数相等为等量关系 列方程
x-(1/10)x=175-x+15
x=100
所以姐姐原来有100元,妹妹原来有75元。
用小学“单位1”方法:
对应数量除以对应比例结果为单位1的数量:
画图设姐姐原来的钱为单位1,由图知,姐姐原来+妹妹现在的数量=175+15=190;姐姐原来+妹妹现在的比例=1+1-1/10=19/10,所以姐姐代表单位1 用190/(19/10)=100元。所以姐姐原来的钱是100元。