① 小学数学总复习答案 代数初步认识
一,方程 2,解:设这个数为X,则 4/5X-1/2X=30,解得:x=100 所以这个数是100。
二、1,(12-7)/(18-8)=1/2, 1/2*18+7=16厘米
② 小学数学数与代数里重要的基础知识有哪些
填空1、一个数,它的亿位上是9,百万位上是7,十万位上和千位上都是5,其余各位都是0,这个数写作(),读作(),改写成以万作单位的数(),省略万后面的尾数是()万。
③ 如何在小学数学教学中渗透代数思维方式
在知识的呈现过程中,适时渗透数学思想方法 。
对于数学而言,知识的发生过程,实际上也就是思想方法的发生过程。因此,象概念的形成过程、结论的推导过程、方法的思考过程、问题的发现过程、规律的被揭示过程等等,都蕴含着向学生渗透数学思想方法、训练思维的极好机会。对于学生来说,最常见的困难之源是:一项工作、一个发现、一个规律、……很少以创始人当初所用的形式出现,它们已经被浓缩了,隐去了曲折、复杂的思维过程,呈现出整理加工的严密、抽象、精炼的结论,而导致其诞生的那些思想方法却往往隐为内在形式,成为数学结构系统的具有潜在价值的“内河流”。我们教学工作的一项重要任务,就是揭开数学这种严谨、抽象的面纱,将发现过程中的活生生的教学“反朴归真”地交给学生,让学生亲自参与“知识再发现”的过程,经历探索过程的磨砺,汲取更多的思维营养。例如,在教学圆的面积时,先引导学生回忆以往在推导平行四边形、三角形、梯形等图形面积计算时的方法,再把圆转化成长方形,进而推导出圆的面积计算公式。我们从方法人手,将待解决的问题,通过某种途径进行转化,归纳成已解决或易解决的问题,最终使原问题得到解决。这样的教学活动让学生经历了知识的形成过程,渗透了化归、极限的数学思想,为后继学习起到了非常重要的作用。
2.在解题思路的探索中,恰当渗透数学思想方法。
课堂教学中,学生是学习的主人。在学习过程中,要引导学生积极主动地参与,亲自去发现问题、解决问题、掌握方法,其实,对于数学思想方法的学习也不例外,在数学教学中,解题思路的探索过程是最基本的活动形式之一,数学问题的解答过程是对数学思想方法亲身体验和获得的过程,也是通过运用对其加深认识和理解的过程。例如,在解决“鸡兔同笼”问题时,学生初读题目,有些无从下手。这时就需要教师引导学生用容易探究的小数量代替《孙子算经》原题中的大数量让学生探究整理,渗透了转化的思想方法;用列表法解决问题,渗透了函数的思想方法;用算术法解决问题,渗透了假设的思想方法;用方程法解决问题,渗透了代数的思想方法;在梳理方法时,利用课件出示简笔画,帮助学生理解各种算法等,渗透了数形结合的思想方法,这样将数学思想方法的渗透和知识教学紧密地结合,帮助学生掌握正确的解题方法,提高发散思维能力。
3.在实际问题的解决中,灵活渗透数学思想方法
解题是数学的心脏,学生不仅通过解题掌握和巩固数学基础知识,而且由于数学解题重在解题的整个过程,所以还能培养和发展学生的数学能力,而教师应对学生的解题活动加以指导,不能为了解题而解题,而忽视对思维过程的展示,要在解题过程中揭示后续解题活动中解决类似问题的通用思想方法。因此,加强数学应用意识,鼓励学生运用数学思想方法去分析解决生活实际问题,引导学生抽象、概括、建立数学模型,探求问题解决的方法,使学生把实际问题抽象成数学问题,在应用数学知识解决实际问题的过程中进一步渗透和领悟数学思想方法。例如,客车和货车同时从甲、乙两镇的中点向相反的方向行驶。3小时后客车到达甲镇,而货车离乙镇还有30千米。已知货车的速度是客车的3/4,求甲、乙两镇相距多少千米?分析:由题意知,客车3小时行完全程一半,货车3小时行完全程的一半少30千米。如设甲乙两镇相距z千米,依据“货车的速度是客车的3/4”,可得方程:多数学生都选用了这种方法。教学时不能停留在此,继续引导学生变换一种方式思考:将已知条件“货车的速度是客车的3/4”改变一种叙述方式“货车与客车的速度比是3:4”,因行车时间相同,所以货车与客车所行路程比是3:4,即货车行3份,客车行了4份,货车比客车少行1份少行30千米,因此易知客车行了4份行了120千米,货车行了90千米,甲乙两镇相距240千米。这样,通过转化,使学生体会到分数应用题也可采用整数解法,即可采用比例应用题的方法进行解答,从而巩固与提高学生解答分数应用题的能力,更重要的是让学生感受到转化的方法能变繁为简、化难为易,有助于培养思维的灵活性,克服思维的呆板性。实际上,在数学解题中经常用到的还有诸如数形结合、化归、符号化等思想方法,恰当运用这些思想方法不仅能提高解题效率,还能激发学生强烈的求知欲与创造精神。
总之,在教学过程中,加强数学思想方法的渗透,在知识的呈现过程中,让学生感知数学思想方法,在解题思路的探索中,让学生感受数学思想方法,在实际问题的解决中,让学生体验数学思想方法,这不仅会提高学生的数学素养,还会为他们进一步学习数学打下扎实的基础。
④ 数与代数课程包括哪些方面的内容
数与代数的内容在义务教育阶段的数学课程中占有重要地位,有着重要的教育价值。与传统的中小学数学的有关部分相比,《标准》对于数与代数这一学习领域,无论从目标还是内容、结构以致教学活动等方面都有了比较大的变化。理解九年义务教育数学课程中"数与代数"部分的教育价值,设计思路,内容和安排以及教学方法的特点等,对于有效地实施和贯彻《标准》是非常重要的。
数与代数的内容在传统中小学数学中占有很大的比重,长期以来,积累了许多教学经验。但与时代的要求相比,按照新的教育理念来看,存在着许多问题。例如,过分追求科学性和系统性,内容庞杂甚至显得繁琐臃肿;过分的追求"形式化",忽视与生活实际的联系,课程中充斥着繁琐的计算和推导,但是学生不理解问题的本质,看不到数学的用处,体会不到数学的价值,更不会用学到的知识去解决问题;以致许多学生感到数学"枯燥无味",失去对数学学习的兴趣和信心。
在《标准》的研制过程中,对"数与代数"部分的改革作了认真的研究和思考,进一步明确了改革的方向,特别表现在:重视对数的意义的理解,培养学生的数感和符号感;淡化过分"形式化"和记忆的要求,重视在具体情境中去体验、理解有关知识;注重过程,提倡在学习过程中学生的自主活动,提高发现规律,探求模式的能力;注重应用,加强对学生数学应用意识和解决实际问题能力的培养;提倡使用计算器,降低对运算复杂性和速度的要求,注重估算等。
1."数与代数"的教育价值
"\'数与代数\'的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。"(《标准》第11页)
这部分内容的教育价值主要体现在以下几个方面:
(1)能使学生体会到数学与现实生活的紧密联系,认识到数、符号是刻画现实世界数量关系的重要语言,方程、不等式与函数是现实世界的数学模型,从而认识到数学是解决实际问题和进行交流的重要工具,从中感受到数学的价值,初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和其他学科学习中的问题,增强应用意识,培养初步的应用能力。
(2)在"数与代数"的学习过程中,通过对现实世界中数量关系及其变化规律的探索,数的概念的建立、扩充以及数的运算,公式的建立和推导,方程的建立和求解,函数关系的探究等活动,有助于促进学生对数学学习的兴趣,提高解决问题的能力和自信心,有利于培养学生初步的创新意识和发现能力。
(3)在"数与代数"中,不仅在知识中存在着对立和统一,例如正数与负数、加法与减法、乘方与开方、常量和变量、精确与近似等,而且在研究过程中也充满了对立与统一,例如已知与未知、特殊与一般、具体与抽象、实践与理论等。同时,在变量和函数的研究中充满着运动、变化的思想,而且在"数与代数"的其他部分的研究中,从运动和变化的观点来考察,也能使认识更加深刻。因此,这部分的学习,必将有助于培养学生的辩证唯物主义观点,有利于学生用科学的观点认识现实世界。
《标准》理念指导下的数与代数,将呈现给学生大量丰富的现实背景,并以学生已有的经验为出发点,关注知识的形成过程、关注学生的学习兴趣和自信心、关注学生探究和运用数学能力的发展,将改变"数与代数"这部分内容烦琐乏味的状况。
《标准》理念指导下的数与代数,将能够发展学生的数感、符号感、估算意识以及把现实问题数学化的能力,并使之逐渐形成理性的力量。字符表示的思想,深刻地揭示和指明存在于一类问题中的共性和普遍性,把认识和推理提到一个更高的水平。代数式、表格、图象等多种表示手段,不仅为数学表示和交流提供了有效的途径,而且为解决问题提供了重要的工具。
方程、不等式中反映的数学模型的思想和方法,将帮助人们更准确、更清晰地认识和描述现实世界,并解决有关的实际问题。凡此种种,都将对培养学生良好的素质、促进学生的全面发展具有重要的价值。
⑤ 小学三年级数学中出现的代数是什么意思
就是用字母代数。。例如用a表示三角形一边的长
⑥ 小学数学应用题中的算术解发和代数解发之间的区别和联系
算术解法将已知数与未知数对立起来,未知数不能直接参与运算,而是用已知数的算式来表示;代数解法将已知数与未知数统一起来,只需用字母表示未知数,使未知数参与运算.
2.算术解法的关键是构造算式,而构造算式往往要经过反复思考.“拐弯抹角”地找出,这是逆向思维的一种范例;代数解法的关键是根据题意找出等量关系,通过设未知数能“直截了当”地列出方程(或方程组).
3.方程比算式直观、易懂.
⑦ 小学数学数与代数部分解决问题内容有哪些
(一)数的认识
1整数【正数、0、负数】
一、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
二、最小的一位数是1,最小的自然数是0。
三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。 +4也可以写成4。
四、像 +4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
五、0既不是正数,也不是负数。正数都大于0,负数都小于0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。
2小数【有限小数、无限小数】
一、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
三、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。
3分数【真分数、假分数】
一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
二、两个数相除,它们的商可以用分数表示。即:a÷b=a/b(b≠0)
三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。
四、分数可以分为真分数和假分数。
五、分子小于分母的分数叫做真分数。真分数小于1。
六、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
七、分子和分母只有公因数1的分数叫做最简分数。
八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
⑧ 小学数学问题,不能用代数啊
第一次相遇与第两次相遇时间是4小时,相当于从A、B两地相向而行,第一次相遇4÷2=2小时
第一次在距A地90千米处相遇
所以甲车的速度
90÷2=45千米/小时
乙车的速度
(45×4-70)÷2=55千米/小时
⑨ 如何进行小学数学数与代数的教学
首先给学生们培养用“数”表达自己意愿的意识。其次讲述数是可以用来计算的,计算是有规律的。学数学的目的是培养逻辑思维能力!
再具体教学时要结合具体事例、游戏和教具寓教于乐等。例如我们记忆最劳的就是火柴棒游戏了。
老师,是个伟大的职业!