导航:首页 > 小学学科 > 类比小学数学

类比小学数学

发布时间:2020-12-16 06:24:28

① 寻求关于小学数学有关类比法的题目

比就相当于除法
所以180:(3/7)=180÷(3/7)=180×(7/3)=420=420:1

0.6:1.4=0.6÷1.4=(3/5)÷(7/5)=(3/5)×(5/7)=3/7=3:7

② 怎样渗透小学数学思想

“函数”在汉代许慎《说文解字》中解释为“容也”,还解释为“匣、封套”。“函数”一词在我国最先出现在1859年,是由清代数学家李善兰创用的,并给出定义“凡此变数中函彼变数,则此为彼之函数”。在小学阶段没有出现“函数”这一概念,但在整个小学阶段的数学中无不渗透着函数的思想,可以说,凡是有变化的地方就蕴藏着变化的规律,都蕴涵着函数思想。
函数的核心即是:把握并刻画变化中的不变,其中变化的是“过程”,不变的是“规律”,是相关联的量的“关系”。学生愿意去发现规律并能够将规律表现出来的意识与能力,就是函数思想在教学中的渗透。
在小学低年级,主要发现给定的事物(事物、图形、简单数列)中隐含的简单规律,并以数学方式表示其情境,体验彼此相关的数量。描述事物的定性变化,如“我长高了”;或描述事物的定量变化“我在一年中长了4厘米”;或观察模式,并合理推测发展趋势,如找规律“1、1、2、1、1、2……”“◎□○◎□○……”。这样在早期数的学习阶段通过观察事物的变化,探索模式是学生对函数关系的初步体验。
2001年出版的《全日制义务教育数学课程标准》把探索规律做为渗透函数思想的一个重要内容。因此,在第二学段的知识目标中,要求学生能在具体情境中感悟“规律”,并逐步学会用字母或含有字母的式子表示规律。在这次数学教学比武中,肖老师的《用字母表示数》中猜猜老师的年龄,设计很恰当。从直观入手:生10岁,师比生大19岁,那么师29岁;回忆过去,生上一年级时6岁,师多大;展望未来,生18岁考上大学时,师多大。然后用语言来描述:什么变了,什么没变。通过几组数的计算和自由探索规律,发现随着时间的推移,师生的年龄都在变,可师比生大19岁这个关系不会变。最后把语言描述的关系式即探索出来的规律抽象为代数式,即当生a岁时,师是a+19岁,如果师t岁时,生是t-19岁。这样,从直观(图形、表象)——语言——代数式,三者有机结合,是数学学习的重要途径。肖老在渗透函数思想时,很好地把握了两条基本原则:①创设“变化”的过程,才能感受到函数思想;②激发学生“探究”的本性,于“变”中把握“不变”,满足人的好奇本性。这样探求给定的事物中隐含的规律或变化趋势,使我们不仅能知道过去,还能预测未来,并掌握未来。
在小学阶段,除了用字母表示数,还有许多地方也蕴涵着丰富的函数思想,反映着有规律的事物,只是表达形式不一样:
1、数数,一个一个地数,两个两个的数……,“正”着数,“倒”着数。无论怎么数,都可以让学生体验、发现并描述出在数数过程中的“规律”。
2、计算中的规律:20以内加法表、九九乘法表中也蕴涵丰富的规律,同样,在“和不变”、“差不变”、“积不变”、“商不变”等条件下,两个数之间的关系,实际上,一个数就是另一个数的函数。
3、百数图中的规律:除了横、竖、斜的排列规律,还可以探究每一行中或每一列中相邻两个数的关系,甚至两行两列相邻4个数之间的关系,这些关系可以先用语言表述,然尝试用字母表示。
4、几何图形的变化规律:像一些基本几何图形都可以经过三角形变形而得到,并且面积也有密切的关系。
5、基本数量关系:周长、面、体积公式;总价、单价与数量;工作总量、工作效率与工作时间;路程、速度与时间及正比例、反比例等。
6、统计图:尤其是折线统计图,运行图本身就是函数的图像。
可以说函数无处不在,而小学阶段渗透函数思想,可以使学生了解一切事物处于不断变化的过程中,而且在变化过程中互相联系、互相制约,从而需要了解事物的变化趋势及其运动的规律。这对于培养学生的辨证唯物主义观点,培养他们分析和解决问题的能力,都有极其重要的意义。在小学数学教学中有意识地渗透函数思想,也可以为学生后续学习中学习数学,奠定良好的知识基础与学习经验的准备。

③ 数学概念引入的途径有哪些

一、用实际事例或实物、模型引入概念
在进行概念教学时,应密切联系概念的现实原型,引导学生分析日常生活和生产实际中常见的事例,使学生在观察有关的实物、图示、模型中获得对于所研究对象的感性认识。在此基础上逐步认识它的本质属性并提出概念的定义,建立新的概念,这些实际事物,可就地取材,就近举例,以学生所熟悉或比较熟悉的事物为宜。
例如,在引进“正负数”概念时,首先回顾小学学过的数,然后通过温度与海拔高度这两个小学接触过的实例,指出为了区别零上温度与零下温度,海平面以上高度与海平面以下高度等具有相反意义的量,从而引进正负数的概念。又如:“平移”概念,就是通过生活中乘坐的电梯,运输带上传送的行李等图片让学生认识平移的概念的。再如:“圆”的概念就是通过车轮,硬币,光盘等实物直观感受出圆的特征通过画圆的过程抽象出圆的动态定义等等。
由实例引人概念,反映了概念的物质性、现实性,符合学生的认识规律,给学生留下的印象比较深刻、持久。这样教学,学生认识到数学概念是从客观现实中抽象出来的,丰富了学生的感性认识,有利于学生更好地理解数学概念,也有助于学生领会学习概念的目的意义,激发学习的主动性和积极性。
二、在学生原有概念的基础上引入新概念
在概念的属种关系中,种概念的内涵在属概念的定义过程中已经部分地被提示出来,所以只要抓住种概念的本质特性(即种差)进行讲授,便可以使学生建立起新的概念,这便是数学概念引入过程中最普遍和最常用的一种方式――属加种差定义法。用属加种差定义法,要做好两方面的工作:一是找出被定义概念的邻近的属;二是确定种差,即找出被定义概念所反映的事物区别于包含在同一属性中其他概念所反映的事物的本质属性。
例如,在学习了“三角形”概念的基础上引入“等腰三角形”“直角三角形”的概念,就要先找到属概念。我们知道,等腰三角形和直角三角形都包含在三角形里。这就是说,三角形是等腰三角形和直角三角形的属概念,种差就是等腰三角形是有两边相等,直角三角形是有一个角是直角。所以,容易知道,“一个角是直角”是矩形的一个种差,于是,用属加种差可以得到等腰三角形和直角三角形的定义。我们再看几个用“种+类差”定义的例子:
有一个角是直角的平行四边形叫矩形。
有一组邻边相等的平行四边形叫菱形。
对于同一个概念来说,种差往往不是唯一的,因此,用属加种差作出的定义一般也不是唯一的。如在上述等腰三角形的定义中,如果用“两个角相等”作种差,那么等腰三角形定义就是:有两个角相等的三角形叫等腰三角形。
从以上分析可以看出,利用属加种差建立新概念的过程,实际上是一种同化过程。所谓同化,就是把新的知识纳入到原有的认识结构中,从而形成新的认识结构的过程。例如,在学习几何时,按一条线――两条线(平行与垂直)――三条线(三角形)――四条线(四边形)――多于四条线(多边形)――圆这样的结构,且用数量关系、位置关系作支柱,随着知识的增加,新知识不断地纳入到已知的认识结构中去,利用同化的方式不断地获得新的概念,可形成概念的系统,从而使学生深入地了解概念,并掌握得更牢固。
三、用类比的方法引入概念
类比是思维的一种重要形式。运用类比思维进行教学是引入新概念的一种重要方法。例如,分式基本性质的引入,就是通过具体例子引导学生回忆小学数学中分数通分、约分的根据――分数的基本性质,再用类比的方法得出分式的性质的。
我们知道,分数的基本性质是:分数的分子分母都乘以(或除以)同一个不等于零的数,分数的值不变。分式也有类似的性质,就是:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。再如“不等式”的概念可类比“方程”的概念引入,首先,让学生从自己已有的知识出发,对“不等”的含义进行分析(分解),从而得到小于“<或(≤)”、大于“>或(≥)”和不等于“≠”三种情况,并适时指出,“a+b+c≤160,6+3x>30”这些式子都含不等号,像这种用不等号连接的式子,叫做不等式;接着对每种情况下的大量不等式进行分析,这样,在概念学习中就实现了由“方程”到“不等式”的类比过渡。

④ 小学数学中哪些内容是通过类比推理学习的,哪些内容是通过统计推理学习的,哪些内容是通过演绎推理学习的

这个最好自己总结,因为这样自己的印象更深刻!

上360学习网学习吧,我是360学习网的于箱老师!我们的网站上有小学初中高中的所有课程的视频讲解免费看!并且还有试卷可以免费下载!每份试卷的每道题都有视频讲解可以免费看!
做好以下的内容就会进步的!
1 上课用心听,听懂多少就多少
2 作业独立完成, 坚决不抄袭别人的,哪怕做不玩也不要抄袭
3.每天订正好当天不会的和错的题目 问老师问同学都可以
4考前复习平时不会的和错的题目!
如果采纳我的答案为正确答案,网络知道就会显示我们的网址!我们是网络知道开放平台合作伙伴!

⑤ 浅谈类比法在小学数学教学中的几个应用

抓住新旧知识的本质联系,将有关新旧知识进行类比,就能很快地得出新旧知识在某些属性上的相同(相似)的结论。
如,由加法交换律a+b=b+a就可类比乘法交换律a×b=b ×a,学习除法商不变的规律能类比分数的基本性质,学习小数四则运算法则就可类比整数四则运算法则。学习异分母分数加减法就可类比同分母分数加减法。学习质数与合数时,就可类比奇数与偶数,学习求最小公倍数就可类比求最大公约数。学习化简比就可类比最简单的整数比。学习圆锥的体积,就可类比圆柱体积,通过对它们概念、图形和规律的类比,就能加深对它们概念的理解,进而明确它们之间的区别与联系。新旧知识的类比有利于帮助学生架起新、旧知识的桥梁,促进知识的迁移,提高探索能力。
三、公式间的类比
有些公式,我们不必叫学生死记硬背,也不必用题海战术巩固,只要把它们放在一起进行类比,学生就能形象化地记牢了。如梯形面积公式可类比三角形面积公式,平行四边形面积公式可类比矩形面积公式,扇形面积公式可类比三角形公式。这样类比的好处,就是学生根据它们“形”似,能找到解决问题的方法。如:一堆钢材,上端放一根,从第二层起,依次增加一根,如果最后一层是100根,那么这堆钢材有多少根?

⑥ 归纳演译类比在小学生活中有什么用

在小学数学教材中有许多法则、公式等,是按照从特殊到一般的认识规律,通过对特例的观察、分析、实验,从而归纳出一般性结论,即归纳法。
类比在数学知识延伸拓展过程中常借助于比较、联想来启发诱导以寻求思维的变异和发散。在归纳知识系统时又可用来串联不同层次的类似内容,帮助理解和记忆。在解决问题时,无论是对于命题本身或解题方法,都是产生猜测、获得命题的推广或引伸的原动力。因此,归纳法和类比法既是数学学习的重要方法,也是数学发现的有效方法。
归纳和类比都属于合情推理,其结论需要演绎证明。猜想是归纳与类比的成果,它们都包含有猜想的成分,所以猜想本身就是一种合情推理,直截了当一点,合情推理就是猜想。牛顿说过:“没有大胆的猜想,就做不出伟大的发现。”因此,合理地设计富有猜想的教学过程,不仅可以很好地组织教学,而且还可以提高学生学习兴趣,培养学生的创新能力。

一、归纳法

归纳法是通过对同一类事物的特殊对象的研究而得出一般性结论的方法,也就是由特殊到一般的推理方法。
1.归纳法具有发现真理、探索真理的作用
数学中的许多著名定理都是先运用不完全归纳法发现而后给予证明的。
如德国著名数学家哥德巴赫从3+7=10,3+17=20,13+17=30等算式中观察出两个奇素数之和等于一个偶数,他做了进一步的实验,发现
6=3+3,
8=3+5,
10=3+7=5+5,
12=5+7,
14=3+11=7+7,
16=3+13=5+11,
于是,他得出了:任何一个既不是素数也不是素数平方的偶数(即大于4的偶数),是两个奇素数之和。这就是著名的哥德巴赫猜想,尽管到如今这还是一个猜想,但数学家们在证明这个猜想的过程中,已经发现、发明了许许多多的数学定理,为数学的发展乃至社会的发展作出了巨大的贡献。
2.归纳法在小学数学教育中具有十分重要的意义
小学数学中几乎所有的公式、法则和性质都是通过不完全归纳法来认识。因此,教师应该认真学习《数学课程标准》,吃透教材,给学生思维发散的机会,多引导、多启发、多鼓励,给学生足够的时间和空间,让学生在课堂中逐渐掌握归纳法。如在教学“平均分”时,教师可以给出把若干个苹果分给若干个同学的问题,让学生去解决,给学生提供任凭他们想象发挥的时间和空间,然后再归纳出最公平的分法——每人一样多,从而得出平均分的概念。这不仅培养了学生的发散思维,同时,在这一活动中也让学生更为深刻地理解和掌握了“平均分”的概念。教师在讲解概念、法则、性质、公式和例题时,要让学生从不同侧面、不同角度去联想和推广。又如,在教学长方形时,可以让学生充分发挥他们的想象力,画出各种形状不同、放置位置不同的长方形。然后,引导他们归纳得出这些图形的共同特征:(1)它们都是四边形;(2)四个角都是直角;(3)对边相等。这不但培养了学生的发散思维能力,同时还使学生更深刻地认识了长方形。在教学正方形时,学生就不会产生正方形不是长方形的错误。
不完全归纳法作为“合情推理”,小学生是很容易接受并掌握的。所以,不完全归纳法在小学数学教学中比比皆是。学生对定义、运算性质(定律)、数的整除性特征等知识的学习,无一不是通过不完全归纳法来理解、掌握的。这一得天独厚的氛围,对培养小学生的归纳能力带来了极大的便利。所以,在小学数学教学中,不完全归纳法被认为是培养小学生创造性思维能力的一项行之有效的重要方法。教师要抓住这一优势,帮助小学生掌握不完全归纳法。让学生充分发挥他们的想象力,让他们自己提出问题,大胆猜想,突破一般思维定势,敢于猜想。同时,还应该创造条件,多设计一些与上例类似的习题,让学生进行不完全归纳法的练习,才能使学生在学习过程中逐渐学会应用不完全归纳法去发现规律,设定猜想。

二、类比

类比法就是根据不同的两个(或两类)对象之间在某些方面的相似或相同,从而推出它们在其他方面也可能相似或相同的推理方法。它是以比较为基础的一种从特殊到特殊的推理方法。
类比法是由此及彼以及由彼及此的联想方法,著名数学教育家波利亚指出“类比是一个伟大的引路人”,教师在教学中必须善于引导学生去联想、类比,才能充分调动学生的想象力,让他们通过比较去发现、去认识、去掌握知识。培养具有创造能力的人才,就要帮助他们学会归纳和类比。类比具有启迪思维、提供线索、举一反三的作用,对发展思维特别是创造性思维十分有利。和归纳一样,类比在小学数学中也随处可见。如通过类比,从加法、减法的运算性质(或定律)很容易联想到乘法、除法的相应的运算性质(或定律),由除法中各部分之间的关系,容易联想到分数的基本性质等。
同时,类比法是系统掌握新知识、巩固旧知识,使新旧知识融会贯通的有效方法。数学的发展是一个不断地从原有知识向深度和广度推进的过程,所以,各个系统的知识与知识之间必然存在着相似之处,更何况,许多知识的发展就是类比发现的结果。在实际教学中,教师必须有意识地引导学生注意知识之间的比较,如分数与除法的类比,分式与分数的类比,乘法与加法的类比等。从旧知识去发现新知识,这不仅仅能起到事半功倍的效果,还将会大大提高学生的学习兴趣,取得良好的学习效果。
如已知甲校学生数是乙校学生数的百分之四十,甲校女生数是甲校学生数的百分之三十,乙校男生数是乙校学生数的百分之四十二,那么两校女生总数占两校学生总数的百分之几?
【思考】设甲校学生为40,则乙校学生为100,甲校的女生是12,乙校的女生是58,所以两校女生总数占两校学生总数的(12+58)÷(40+100)=50%。
总结此类问题的特点是:已知和所求仅仅与百分比有关,而与具体数无关。于是,我们便可以用特殊值来巧求。掌握了这一类问题的特点,我们就掌握了解决这类问题的途径和方法。那么,在解答下面更难一些的问题时,心中便有数了。
某出版社出版的某种书,今年每册的成本比去年增加百分之十,但仍然保持原售价,因此每本盈利下降了百分之四十。但今年的发行册数比去年增加百分之八十,那么今年发行这种书获得的总盈利比去年增加百分之几?
教师就可以启发、引导学生通过联想、类比来探索结果。
【思考】设去年每本盈利10元,则今年每本盈利6元。又设去年的发行册数为100册,则今年的发行册数是180册。
因此,今年获得的总盈利比去年增加了:(6×180-10×100)÷(10×100)=8%。
连设两个特殊值,使问题得以巧妙地解决,充分体现出类比确实是一个伟大的引路人,类比是发现的基础,是创新的前提。

三、猜想

数学猜想是指根据某些数学现象而作出的预测性判断,以及作出这些判断的思维过程。数学家波利亚指出:“在证明一个数学定理之前,你先得猜想这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合,然后加以类比。你得一次又一次地进行尝试。数学家的创造性工作成果,是论证推理,即证明;但这个证明是通过合情推理,通过猜想而发现的。”因此,在数学教学中必须重视猜想。学生在课堂上积极、主动地探究,需要猜想来引发。没有猜想,就不会有探究。徐利治说:“探索性思维中最关键的环节是提出一个有希望的合理的猜测。”
猜想是探索性思维的方向,具有定位性、开拓性和创造性,是数学发现与数学证明的前兆。
当前新课程改革课堂教学的主要模式是创设情境,提出猜想(通过归纳或类比),验证猜想(一般由合情推理来完成),深化理解,总结提高。
如在教学3的倍数的特征时,可以通过下面的教学过程来进行。
①创设一个情景(如写出一些3的倍数的数);
②观察分析(独立探究——小组合作交流,提出猜想);
③讨论猜想(教师引导全班合作,对猜想进行验证、修正,完善猜想:一个数的各个数位上的数字之和是3的倍数,这个数就是3的倍数);
④探究猜想的成因(突出归纳推理——合情推理的重要意义);
⑤小结(教师给出结论,强调猜想的正确性);
⑥应用;
⑦提高(9的倍数的特征如何?教师引导,寻找3与9的关系,通过类比来引导学生提出猜想);
⑧验证猜想(得到9的倍数的特征是:各个数位上的数字之和是9的倍数);
⑨课堂总结。
学生思维活跃,富于幻想,敢于猜想。但是,受知识、经验的限制,有时会提出一些幼稚可笑甚至错误的想法,这时教师非但不能讽刺打击,给予抹杀,反而应该加以鼓励,给予正确引导。让他们保持思维的积极性,给以他们敢想的勇气。因为这些看似可笑、错误的想法,总是蕴含着孩子们的创造性思维的成果。那些不拘一格的猜想,就是创造性思维的体现。
数学教学活动的实质是数学推理,“合情推理”是小学生特别容易接受的一种推理方式,让学生形成推理的意识和习惯,这对于培养他们追求真理、实事求是的科学态度具有十分重要的意义。鉴于数学的严谨性,必须时适地引导学生对“合情推理”、“猜想”得到的结果给予严格说明(证明)的必要性。因为,只有经过合情推理、严格论证的结论,才具有真理性,谁也无法否认。而凡是偏离这两条原则获得的结论,不管怎样错综复杂、扑朔迷离,终究会被推翻或淘汰。小学生长期在这样的环境的熏陶下,诚实与正直的优秀品质将会慢慢地养成。

⑦ 小学数学解决问题的一般策略有哪些

1.归纳法。就是用联系、运动、发展变化的观点看待问题,把有待解决的问题,通过某种转化过程,归结为一类已经解决或容易解决的问题。其实质就是对问题进行变形,促使矛盾转化。例如:完全归纳法(数学归纳法)与不完全归纳法。

2.假设法。就是先对题目中的已知条件或问题作出某种假设,然后,按照题中的已知条件进行推算,根据数量上出现矛盾,加在适当调整,最后找到正确答案的一种解题思想方法。如“鸡兔同笼”问题。

3.逆推法。采用与事情发生过程相反的顺序思考的解题方法做做逆推法。

4.列举筛选法。解某些数学题时,有时要根据题目的一部分条件,把可能的答案一一列举出来,然后根据另一部分条件检验,筛选出题目的答案。

5.图解法。解数学题时,可以设法把条件、问题以及它们的数量关系用线段图、韦恩图等图形反映上来,使我们能借助图形进行分析、推理,寻找解题途径,这种方法叫图解法。

6.类比法。

“类比”是根据两个或两类事物有些属性相同,推测它们另一些属性也可能相同的推理。在解题中,根据题中所求问题与已知条件相类似的关系,利用类比推理,找类比模型,从而寻找解题途径的方法叫类比法。

7.小学数学中常用逻辑推理法。

(1)分析与综合法

分析法是从需证的结论出发,以一系列已知定义、定理为依据逐步逆溯,从而达到已知条件的推理方法。特别是应用题,几何证明题等。

综合法是从题设条件出发,以一系列已知定义、定理为依据,逐步推演出所需证明的结论的推理方法。

(2)归纳与演绎法

归纳与演绎是相互联系着的,归纳得出的结论,可以用演绎法去验证,演绎的前提是通过归纳得出的。

由特殊性前提引出一般性结论的推理叫做归纳推理。以归纳推理为主要内容的科学研究方法叫做归纳法。一般地,在小学数学课中,运算定律,基本性质,法则等都是运用不完全归纳让学生从头从一般原理到特殊事例的推理叫做演绎推理。以演绎推理的主要内容的科学研究方法叫演绎法。一般地,在小学数学教材中,当以归纳推理的形式得出运算定律,基本性质、法则、公式后,都再以演绎推理的形式进行计算。如三段论(由大前提、小前提、结论构成)

(3) 观察与实验法

(4)联想法

(5)猜想法

(6)对应法

阅读全文

与类比小学数学相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99