1.教师撰写教学案例,是教师不断反思、改进自己教学的一种方法,能促使教回师更为深刻地认答识到自己工作中的重点和难点,这个过程就是教师自我教育和成长的过程。
2.教师撰写教学案例的过程是将来自外部的教育理论与指导自己教学实践的内在教学理论相互转化的过程,可以为新教师和在职教师的教学提供比较丰富的实际情境,有利于教学中理论联系实际,培养分析问题和解决问题的能力。
3.教学案例是教师教学行为的真实、典型记录,也是教师教学理念和教学思想的真实体现,因此是教育教学研究的宝贵资源,是教师之间交流的重要媒介。
② 哪有人教版小学数学1至6年级全套教案
教学来案例、教学设计、教学自实录、教学叙事的区别:①教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。②教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。③教学案例与叙事研究的联系与区别:从“情景故事”的意义上讲,教育叙事研究报告也是一种“教育案例”,但“教学案例”特指有典型意义的、包含疑难问题的、多角度描述的经过研究并加上作者反思(或自我点评)的教学叙事;教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。
③ 有没有人有苏教版小学数学1-6年级教案
1.案例是一个抄实际情境的描述,在这个情境中,包含有一个或多个疑难问题,同时也可能包含有解决这些的方法。
2.“教学案例描述的是教学实践。它以丰富的叙述形式,向人们展示了一些包含有教师和学生的典型行为、思想、感情在内的故事。”
3.教学案例是指包含有某些决策或疑难问题的教学情境故事,这些故事反映了典型的教学思考力水平及其保持、下降或达成等现象。这类案例的搜集必须事先实地作业,并从教学任务分析的目标出发,有意识地择取有关信息,在这里研究者自身的洞察力是关键。
4.教学案例是指“由教师撰写,或由研究人员与教师共同撰写的叙述性的教学实践记录。”
④ 小学数学人教版3年级至6年级教案电子版
第五单元 两位数乘两位数
整十、整百数乘整十数的口算乘法58及练习十四(第1—6题) 教学目标:
1.使学生经历整十、整百数乘整十数的口算乘法的过程,能比较正确熟练地进行口算。
2学会运用整十、整百数乘整十数的口算乘法解决简单的实际问题。 3.培养学生的观察能力,口头表达能力和演绎推理能力 教学重、难点: 引导学生发现整十、整百数乘整十数的口算乘法的规律,正确进行口算 教学准备:实物投影仪。 教学过程: 师生活动 一、 复习 1、听算: 20×5 30×6 4×70 100×5 3×200 3×200 500×3 1000×6 23×2 12×3
7×11 5×60 50×4 22×3 15×3 2、指名任选一道题说说口算方法。
3、抢答: (1) 3个十是( )? 30是( )个十? (2) 300是( )个百? 60是( )个十? (3) 9个十是( )? 3个30是( )?
小结:以上的练习同学们回答的都很好,今天,我们能否用这些知识做铺垫,来学习新知识呢?板书:口算乘法 二、、创设情境,提出问题: 1、、出示情景图:引导学生观察,邮递员叔叔每天工作的情况。同学们从图中发现什么信息?你能根据图中所提供的信息提出用乘法计算的问题吗? 1、使学生能结合具体情境,在积极参与和讨论合作学习的过程中进行乘法的估算,会说明估算的思路。
2、能运用所学知识解决日常生活中简单的实际问题。
叉点上,引出问题:“棋盘上一共有多少个交叉点?”
请学生说一说用什么方法解决这个问题,从而列出算式19×19。
二、探讨计算方法
1.各组讨论:怎样计算19×19。
请把想出的计算方法写在纸上。
2.组织交流。
各组展示本组的算法。不容易说清楚的,就写在黑板上。
3.师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如:估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求。
(3)重点评议笔算。
用检查竖式每一步计算的方式,再现笔算过程。在此基础上,夸赞学生:能用刚学过的两位数乘两位数的知识解决今天的新问题。并且,能正确解决乘的过程中的进位问题。你们真棒!
三、练习
1.尝试练习。
用竖式计算第65页“做一做”中的4道题。可以让几个组的学生做前2道,另几个组的学生做后2道题。
完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。
2.完成练习十六第1题。
独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。
3.解决问题。
请学生独立完成练习十六第3、4题。
完成后,请学生向全班说一说,解决问题的过程和结果。
4.游戏。
贴出写有算式的南瓜卡片。用语言描述菜园里收南瓜的情境,请同学们帮助菜农收南瓜。
让学生自由选择卡片,算对的就收获了这个南瓜。
完成后,先检查是不是算对了,再比一比哪组学生收获的南瓜多。奖励优胜组。
四、总结
1.请学生讨论笔算乘法时要注意什么问题,并交流。
2.教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题.
整理和复习
教学目标
1、回顾两位数乘两位数的口算、估算、笔算的方法,培养学生的基本归纳、整理能力。2、培养学生从不同角度考虑问题,体现解决问题的多样化。
教学过程
一、呈现故事,提出问题
1、老师讲“哥伦布竖鸡蛋”的故事
猜一猜,听完这个故事用了多少时间?(1分52秒)
这么短的时间却能作那么多的事情,所以我们要好好珍惜时间。听了这个故事你还有什么感想?
2、这个小故事在书上68页,想一想,这篇文章大概有多少字?
学生讨论,汇报
二、归纳知识
1、小组内交流自己整理知识的方法和方式,并进行整理
2、小组代表汇报,大家进行评判。
三、巩固拓展
1、基本练习
练习十七 1比一比看谁算的又对又快
2笔算练习 注意方法和书写
2、尝试编题并解决问题
请学生寻找生活中可以用口算、估算、笔算乘法解决问题的例子,由小老师亲自请学生回答。
第六单元 面积
面积和面积单位
教学目标:
1.理解面积的意义。
2.认识常用的面积单位平方厘米、平方分米、平方米,初步形成这些单位实际大小的观念。
3.学习选用观察、重叠、数面积单位,以及估测等方法比较面积的大小。
教学过程:
一、导入概念
1.让学生猜教师身高,师生交流,由此引出长度单位:厘米、米以及分米。
2.激活关于长度单位实际长短的观念:谁来比划一下这些单位有多长。
3.指出:用它们可以测量物体的长度。
4.引入:我们已经认识了长度和长度单位,今天在这基础上学习新的本领。
二、建立概念
1.得出面积的意义。
(1)认识物体的表面有大小。
①我们的课本都有漂亮的彩色封面,我们的课桌都有平坦光滑的桌面。这些都是物体表面的一部分。用手摸一摸课本封面和课桌面,比一比它们的大小。
②课桌面和黑板面哪个大?
③课本封面、课桌面和黑板面的大小相差比较大,靠观察就能看出。(板书:观察比较)
(2)认识平面封闭图形的大小。
出示两组图形(见下图),这些都是平面封闭图形,怎样比较它们的大小?
由学生的操作活动,引出重叠比较与数方格比较的方法。(板书:重叠比较,数方格比较)
(3)概括面积的意义。
问:物体表面或平面封闭图形的大小叫做什么呢?看看书上是怎么说的?(板书课题的前半部分:面积)
(4)运用“面积”这个术语,叙说比较常见物体大小的结果。
2.认识面积单位。
(1)设疑。
①出示两个长宽各异的长方形(即课本第71页下面的两个长方形,其实际大小分别是7×2平方厘米和5×3平方厘米),让学生体会用观察、重叠的方法难以比较它们的大小。
②请学具来帮忙。给出三种学具(边长1厘米的正方形、正三角形和直径1厘米的圆)让学生选择。
③比较三种方式,得出数正方形个数最合理的方法。
解决设疑中提出的问题,通过数正方形个数得出大小之分。
(2)认识统一比较标准的必要性。
①进一步激疑,出示一个正方形,通过重叠确信它的面积比前面出示的两个长方形大,正方形翻出反面的格子,只有9格,激起疑问。
②启发学生说出解决方法。
(3)带着问题自学课本。 ①常用的面积单位有哪些?②说说每个面积单位的大小。
(4)汇报学习收获,得出三个常用面积单位的规定,并形成常用面积实际大小的观念。
①各自比一比,哪个手指甲的面积最接近1平方厘米? ②同桌两人互相比划1平方分米的大小。
③在黑板上贴出一张1平方米的纸,先估计能放下几本练习本?翻出反面(已画好练习本大小的格子),数一数实际能放下几本。
三、巩固概念
1.完成课本第74页“做一做”。 2.完成课本练习十八第1、2题。 3.请你参加图案设计大赛(即课本第75页的数学游戏)。
启发:你能拼摆出更多、更新颖、更有趣的图形吗?展示学生的作品,启迪思路。
学生动手操作(或回家完成)。
四、本课小结(略)
长度单位和面积单位的比较
教学目标:通过长度单位和面积单位的比较,使学生更清楚地认识面积单位,初步明确1厘米、1分米、1米是长度单位,都可以用来度量物体的长度。1平方厘米、1平方分米、1平方米都是面积单位,都可以用来度量物体的面积。
教学难点 明确分清长度单位和面积单位。
教学过程
一、步步深入,比较异同
1、比较1厘米和1平方厘米
(1)学生估计1厘米有多长?1平方厘米的面积多大?
(2)教师出示:长是1厘米的线段图,面积是1平方厘米的平面图形。看它们图形有什么异同?
(3)教师出示:学生用和铅芯和面积是6平方厘米的正方形纸片,要知道它们的大小分别用什么单位来测量?
(4)学生动手测出铅芯的长度和纸片的大小。(在这个过程中教师及时进行指导。)
2、比较1分米和1平方分米
(1)估计1分米的长度,1平方分米的大小。(学生交流时,教师要及时进行指导,使学生的估计接近正确。)
(2)估计铅笔盒的面有多大?长、宽各是多少?
(3)学生动手进行测量铅笔盒的面有多大,长、宽各是多少?看自己的估计情况。(教师进行指导怎样才能减少误差。)
3、比较1米和1平方米
(1)前面我们学习了1厘米和1平方厘米、1分米和1平方分米。那么,我们可以用1米和1平方米来干什么呢?(学生可能回答用1米来测量黑板的长,教室地面的长、宽各是多少?用1平方米来测量黑板的面积是多少?教室地面的面积是多少?……)
(2)教师根据学生的回答,让学生估计黑板的长、宽、面积各是多少?并向学生说明教室的地面的面积大约是60平方米……。
4、通过讨论,解决问题 通过以上学习,同学们讨论1厘米、1分米、1米和1平方厘米、1平方分米、1平方米有什么异同?学生交流讨论情况,教师及时进行指导。
5、教师总结: 1厘米、1分米、1米是长度单位,都可以用来度量物体的长度。1平方厘米、1平方分米、1平方米都是面积单位,都可以用来度量物体的面积。这就是我们今天学习的主要内容——长度单位和面积单位的比较(板书课题)。
二、巩固反馈,深化认识
1、书P75 1 、2 小组合作完成 汇报
2、书P75 3 先自由说,再指名回答。
三、小结
四、拓展练习
数学游戏:
请你参加图案设计大赛,每个图案是5平方厘米。
长方形和正方形的面积计算
教学目标:
1、引导学生自己去发现长方形面积计算的公式,使学生初步理解长方形面积的计算方法,会运用公式正确的进行计算。
2、通过长方形的面积计算引导学生推导出正方形的面积计算公式。
3、初步培养学生提出问题、分析问题、解决问题的能力。
4、交给学习方法,发挥学生的主体性。
教学过程:
一、创设情景,导入新课
同学们,上节课我们学习了有关面积的知识,常用的面积单位有哪些?
二、自主探索,领悟方法
1、巧设问题,激发兴趣
我们教室地面的面积大约是多少呢?学生可能进行猜测,用面积单位来测量,教师指出:这么大的地面用面积单位来测量太麻烦,所以,我们就要研究长方形的面积怎样计算。(板书课题)
2、动手操作,研究方法
(教师准备三种不同的长方形,每组只选择一种进行研究。
一种:一个长3厘米、宽4厘米的长方形
二种:一个长4厘米、宽2厘米的长方形
三种:一个长5厘米、宽3厘米的长方形
(1)学生以组为单位进行研究,想办法求出各自图形的面积。
(2)学生以组为单位进行汇报交流,说出自己的方法。(可能出现的情况:用1平方厘米来测量或只测量长和宽,相乘即是面积。在这个过程中 教师适时地进行点拨、指导,后一种方法比较简单。 (3)师生交流,提炼方法。长方形的面积与它的什么有关系呢?独立思考后交流。(教师指导:长方形的长摆了5排,说明是5厘米;宽摆了3排,说明是3厘米,那么,面积15平方厘米等于什么?长方形的面积=长×宽。 (4)学生思考:求长方形的面积事实上是求什么呢? 3、那么同学们想一想我们教室地面的面积怎样计算呢?(例题)学生独立完成,校对
三、知识的迁移
1、教师借此机会教学正方形的面积计算。我们知道正方形是一个特殊的长方形,有长方形的特点,所以正方形的面积计算也可以和长方形的面积计算方法相同。
2、出示例题 学生试做,汇报答案
四、联系生活,解决问题
我们用的数学书的面积大约有多少?先请你估计一下,再算一算。学生独立完成,汇报
五、小结。今天你有什么收获?
面积单位间的进率
教学目标:
(一)知识教学点
1、使学生进一步熟悉面积单位的大小。
2、掌握面积单位间的进率。
(二)能力训练点
1、培养学生观察比较分析问题的能力,逐步养成积极思考的学习习惯。
2、能准确地进行常用面积单位之间的改写。
(三)德育渗透点
引导学生探索知识间的内在联系,激发学生学习兴趣。
教学重点:掌握面积单位间的进率,会进行常用面积单位之间的改写。
教学难点:面积单位间进率的推导过程。
教具、学具准备:教师要准备好面积是1平方分米的正方形白纸一张,一面画出边长是1厘米的正方形小格,学生每两人准备一张边长1分米的正方形和边长1厘米的正方形100多个。
教学过程
一、猜测引入:
师:我们已经学习了面积单位,常用的面积单位有哪些?
(学生回答,同时依次在屏幕上出现表示1平方厘米、1平方分米、1平方米的正方形)。
师:每相邻两个面积单位间的进率是多少呢?请同学们猜测一下。(分四人小组,猜测,然后反馈) 生1:我们认为每相邻两个面积单位之间的进率是10。
生2:我们认为是100。 ……
师:看来各小组讨论,得出意见难以一致,下面我们就来动手动脑,探究一下“面积单位间的进率”请同学们把学具袋拿出来。
二、探究新知
(一)推导1平方分米=100平方厘米
师:请同学们拿出红色的正方形,它的边长是1分米,谁来说一说它的面积是多少?
生:边长是1分米的正方形面积是1×1=1(平方分米).
师:如果这个正方形的面积用平方厘米做单位,是多少平方厘米呢?请同学们开动脑筋,发挥四人小组合作的力量,动手做一做实验(学生动手操作,教师巡视)。
师:请各小组汇报实验的结果。
生1:我们用1平方厘米的小正方形摆在红色的正方形上,横排每排摆10个,竖排每排摆10个,一共可以摆10×10=100个,所以这个红色正方形的面积是100平方厘米。
师:你们是用推导长方形面积公式用的“摆”的方法,主意不错!还有别的想法吗?
生2:我觉得这种方法太慢了。
师:有什么好的办法,请你告诉大家。
生2:我们用直尺去量红色正方形的边,边长正好是10厘米,所以它的面积就是10×10=100(平方厘米)。
师:果然方便了不少,你们真聪明,大家同意他们的意见吗?
生3:我们还有更快的。
师:哦?说出来大家听听。
生3:老师告诉了我们这个红色正方形边长是1分米,1分米=10厘米,这个红色正方形面积是10×10=100(平方厘米)。
师:这种方法真妙!
师:刚才大家想的方法都很好,有的用摆,有的用量,还有的直接将分米换算成厘米来计算。同学们真聪明。但不管用什么方法,这个边长是1分米的正方形面积如果用平方厘米做单位都是
……
生:100平方厘米。
师:同一个正方形,我们用平方分米作单位是1平方分米,用平方厘米作单位是100平方厘米,那么1平方分米等于多少平方厘米呢。
生:1平方分米=100平方厘米。
(二)知识迁移
1、1平方米=100平方分米
师:从上面的实验过程中,我们知道了1平方米=100平方分米,那么同学再想一想:边长1米的正方形,它的面积是多少平方米?如果以分米作单位,它的面积又是多少平方分米?教师出示边长1米的正方形,并按照例题的要求提问两个问题:
(1)边长1米的正方形纸,它的面积是多少平方米?
(2)如果把它划分成边长是1分米的小正方形,可以划分多少个?它的面积是多少平方分米?你们知道了什么?引导学生讨论,自行解决,进行汇报。
通过讨论使学生知道了1平方米=100平方分米。(板书)
那么每相邻的两个面积单位间的进率是多少呢?
1平方分米=100平方厘米; 1平方米=100平方分米。
每相邻的两个面积单位间的进率是100。
2、区分面积单位与长度单位间的进率,进一步强化面积单位间的进率。
长度单位:两个长度单位间进率是10。
面积单位:两个面积单位间进率是100。
3、反馈练习:
(1)练习填空:(出示投影片)
1米=( )分米 1分米=( )厘米
1平方米=( )平方分米 1平方分米=( )平方厘米
(2)83页做一做题目。
8平方分米=( )平方厘米 5平方米=( )平方分米
300平方厘米=( )平方分米
订正时请学生说出想法。
(3)改错:7平方分米=70平方厘米 1800平方米=18平方分米
三、全课小结
教学反思:
公顷、平方千米
教学目标:
了解面积单位公顷、平方千米。
教学过程:
一、激发学生学习兴趣,引出课题
同学们,我们一起来看看体育场的图片,你们有什么感想?
(体育场太大了)
那还能用我们前面学过的面积单位进行测量了?
这就是我们今天要学的比平方米更大的面积单位:公顷和平方千米。(出示课题)
二、新授
1、通常我们在测量土地面积时,要用到更大的面积单位,公顷和平方千米。
它们到底有多大呢?
这节课我们就来了解一下。
2、带领学生到操场进行实际测量,量出边长是10米的正方形土地,用标杆及绳子把这100平方米围起来,或让学生手拉手,围站在正方形土地的四周看一看。教师向学生说明,100块这样大的土地就是1公顷。
3、边长是100米的正方形的面积是10000平方米,就等于1公顷。
打个比方,我们的教师面积大约是50平方米,那200个教室的面积就是1公顷。
10000平方米=1公顷
3、边长是1千米的正方形的面积是1平方千米。相当于100公顷。
也就是说如果一个足球场的面积是7000平方米,那就有140个足球场。
1平方千米=100公顷
三、练习
练习二十 2
四、小结
教学反思:
⑤ 小学数学概念1至6年级
1到6年级数学公式
1
.每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2.
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3.
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4.
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5.
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6
加数+加数=和
和-一个加数=另一个加数
7
被减数-减数=差
被减数-差=减数
差+减数=被减数
8
因数×因数=积
积÷一个因数=另一个因数
9
被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1.
正方形
c周长
s面积
a边长
周长=边长×4
c=4a
面积=边长×边长
s=a×a
2.
正方体
v:体积
a:棱长
表面积=棱长×棱长×6
s表=a×a×6
体积=棱长×棱长×棱长
v=a×a×a
3.
长方形
c周长
s面积
a边长
周长=(长+宽)×2
c=2(a+b)
面积=长×宽
s=ab
4
.长方体
v:体积
s:面积
a:长
b:
宽
h:高
(1)表面积=(长×宽+长×高+宽×高)×2
s=2(ab+ah+bh)
(2)体积=长×宽×高
v=abh
5
.三角形
s面积
a底
h高
面积=底×高÷2
s=ah÷2
三角形高=面积
×2÷底
三角形底=面积
×2÷高
6.
平行四边形
s面积
a底
h高
面积=底×高
s=ah
7.
梯形
s面积
a上底
b下底
h高
面积=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圆形
s面积
c周长
∏
d=直径
r=半径
(1)周长=直径×∏=2×∏×半径
c=∏d=2∏r
(2)面积=半径×半径×∏
9.
圆柱体
v:体积
h:高
s;底面积
r:底面半径
c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10.
圆锥体
v:体积
h:高
s;底面积
r:底面半径
体积=底面积×高÷3
和差问题的公式;
总数÷总份数=平均数
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者
和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或
小数+差=大数)
植树问题
:
1.
非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2
封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
:
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
:
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
⑥ 1到6年级小学数学教案
一、仔细推敲,认真辨析。(对的在括号内打“√”,错的打“×”,共4分)
1、因为28 = 4×7,所以4和7都是28的质因数。 ………………… ( )
2、长方体、正方体和圆柱的体积都可用V = Sh来计算。………………( )
3、如果4a=3b,那么a :b = 4 :3。…………………………………… ( )
4、2008年的第一季度有91天。………………………………………… ( )
二、反复比较,慎重选择。(把正确答案的序号填在括号内,共6分)
1、在 、 、 、 、 中,能化成有限小数的有( )个。
(1)2 (2)3 (3)4
2、下面图形中,对称轴最少的是( )。
(1)正方形 (2)长方形 (3)等边三角形
3、观察下面算式,与49×26的积最接近的是( )。
(1)50×30 (2)50×20 (3)50×26
4、已知一个三角形的两个角是锐角,这个三角形( )。
(1)是锐角三角形 (2)是直角三角形
(3)是钝角三角形 (4)不能确定是什么三角形
5、用98粒种子做发芽试验,结果全部发芽,发芽率为( )。
(1)98% (2)2% (3)100%
6、通过“整数和小数”的复习,你认为下列说法不正确的是( )。
(1)比2小的自然数有1和0 (2)4.895保留两位小数是4.90
(3)两个合数,一定不是互质数 (4)☆÷△=9……6,△最小是7
三、仔细读题,认真填空。(共24分)
1、丹阳市二00五年工农业总产值总额是八十九亿七千零五十万元,这个数写作 元,省略“亿”后面的尾数约是 亿元。
2、3时15分= 时 4.05公顷= 公顷 平方米
3、 6 :( )= = 18 ÷ 30 = ( )% = ( )成
4、 的分数单位是 ,至少去掉 个这样的单位正好是整数。
5、想一想,你做一次眼保健操大约 分钟;估一估,将“1元”的硬币投掷若干次,“1元”字面朝上的次数约占( )%。
6、一项工程,甲独做10天完成,乙独做12天完成,两队合做5天,可完成这项工程的 。
7、6和 是互质数,6和 的最小公倍数是30。
8、 : 的比值是 ,写成最简单的整数比是 。
9、华地百货某种空调原价2500元,现八折出售,现在每台只要 元。
10、一个圆锥形沙堆,测得它的底面直径是4米,高1.5米。这个沙堆的体积是 立方米。
11、下图是永久化肥厂2005年化肥产量统计图。看图填空:
(1)这是一幅 统计图。
(2)下半年比上半年多生产 吨。
(3)平均每季度生产化肥 吨。
(4)你还看出哪些信息?(至少写2条)
①
②
四、看清题目,细心计算。(共26分)
1、直接写出得数。(每题1分,共10分)
×14= 6.3÷0.9= 0.006×100= 2004—299=
306—(206 + 78)= ( — )×12= 1.25×9×8=
5÷7 + 5= 7× ÷7× = + +……+ =
18个
2、求未知数x的值。(每题2分,共4分)
(1)12 : =x : (2) x + x=42
3、用递等式计算。(每题3分,共12分)
(1)8402 + 672÷28×17 (2)18÷1.8—0.8×5
(3) ÷[ ÷(1— )] (4)[( — )÷ ]÷
五、探索与操作。(共8分)
1、在下面的长方形中画一个最大的圆,并求出它的面积。(单位:厘米)
5
2、下面是一个长方形。请你想象一下,以一条长边为轴旋转一周,可以形成一个 。并计算出它的体积。(单位:厘米)
4
六、灵活运用,解决问题。(第1—4题每题5分,其余每题6分,共32分)
1、学校计划投资200万元建造活动大楼,实际投资180万元,实际投资节约了百分之几?
2、小明看一本210页的故事书,前8天平均每天看15页。剩下的在9天内看完,平均每天必须看多少页?
3、森林家具城里一种办公桌椅每套450元,椅子的价格是桌子的 。办公桌子和办公椅子的价格各是多少元?
4、一列火车从甲地开往乙地,当行了全程的70%时,超过中点500千米。甲乙两地相距多少千米?
5、一个注满汽油的油桶,底面直径8分米,高15分米。做一个这样的油桶至少需要铁皮多少平方分米?如果每升汽油重0.75千克,这桶汽油重多少千克?
6、一个由3个大人和4个小孩组成的家庭准备到某地旅游。甲旅行社的收费标准是:如果买4张全票,则其余人按半价优惠。乙旅行社的收费标准是:家庭旅游算团体票,按原价的 的优惠。这两家旅行社的旅游线路标准均为每人400元。你认为这个家庭应该选择哪家旅行社旅游比较合算?为什么?(计算后加以说明)
⑦ 小学数学1到6年级全部重点
小学生数学复习考试全图
这些知识归结了小学全部数学重点。这些知识可能在每次考试中以不同形式(填空、选择、判断、连线、解答应用题等)出现,也是学生将来进入初中、高中的基础,所以一定要牢固掌握。
一、 小学生数学法则知识归类
(一)笔算两位数加法,要记三条:
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条:
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则:
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序去处;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法:
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;末位不管有几个0都不读。
(五)四位数写法:
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条:
1、相同数位对齐;
2、从个位减起;
3、位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则:
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则:
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则:
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则:
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,再试除前三位数;
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则:
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个0都只读一个“零”。
(十二)多位数的读法法则:
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个“零”。
(十三)小数大小的比较:
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则:
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数简洁的计算法则:
计算小数乘法,先按照简洁的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则:
除数是整数的小数除法,按照整数除法的法则却除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则:
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤:
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(十九)列方程解应用题的一般步骤:
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;检验、写出答案。
(二十)同分母分数加减的法则:
同分母分数相加减,分母不变,只把分子相加减。
(二十一)同分母带分数加减的法则:
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则:
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(二十三)分数乘以整数的计算法则:
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则:
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(二十五)一个数除以分数的计算法则:
一个数除以,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法:
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、 小学教学口诀定义归类
1、 什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、 什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、 加法各部分之间的关系:
一个加数=和-另一个加数
4、 减法各部分之间的关系:
差数=被减数-差,被减数=差数+差
5、 乘法各部分之间的关系:
一个因数=积÷另一个因数
6、 除法各部分之间的关系:
除数=被除数÷商,被除数=商×除数
7、 角:
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角叫直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90°的角叫锐角。
(7)什么是钝角?
大于90°而小于180°的角叫做钝角。
(8)什么是周角?
一条射线绕它的闪电战旋转一周所在的角叫周角,一个周角是360°。
8、
(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、 三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?
每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
在等腰三角形里,相等的两个边叫等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫做等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?
什么叫三角形的底?从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形的内角和是180°。
10、 四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平行四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平行的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平行的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、 什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、 什么是四舍五入法?
求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。
这种求近似数的方法,叫做四舍五入法。
13、 加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、 什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、 什么是被减数?
什么是减数?什么叫差?在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、 加法各部分之间的关系:
和=加数+加数,加数=和-另一加数
17、 减法各部分之间的关系:
差=被减数-减数,减数=被减数-差,被减数=减数+差
18、 乘法:
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、 除法:
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中已知的一个因数叫除数。
(4)什么是商?
在除法中求出的未知因数叫商。
20、 乘法各部分之间的关系:
积=因数×因数,一个因数=积÷另一个因数。
21、(1)除法各部分之间的关系:
商=被除数÷除数,除数=被除数÷商,被除数=商×除数。
(2)有余数的除法各部分之间的关系:
被除数=商×除数+余数。
22、 什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、 什么是单名数?
只带有一个单位名称的数叫单名数。
24、 什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、 什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26、 什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、 什么是而有限小数?
小数部分的位数是有限的小数叫有限小数。
28、 什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、 什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、 什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、 什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、 什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、 什么是方程?
含有未知数的等式叫方程。
34、 什么是解方程?
求方程解的过程叫解方程。
35、 什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数。b就叫a的约数(或a的因数)。
36、 什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、 什么是偶数?
能被2整除的数叫偶数。
38、 什么是奇数?
不能被2整除的数叫奇数。
39、 什么样的数能被5整除?
个位上是“0”或是“5”的数能被5整除。
40、 什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、 什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、 什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、 什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、 什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、 什么是公约数?
什么叫最大公约数?几个数公有的约数叫公约数,其中最大的一个叫最大公约数。
46、 什么是互质数?
公约数只有1的两个数叫互质数。
47、 什么是公倍数?
什么叫最小公倍数?几个数公有的倍数叫这几个数的公倍数,其中最小的一个叫这几个数的最小公倍数。
48、 分数:
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是分数线?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位“1”平均分成若干份,表示其中的一份叫分数单位。
49、 怎么比较分数大小?
(1)分母相同两个分数,
分子大的分数比较大。
(2)分子相同的两个分数,
分母小的分数较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
50、 比:
(1)什么是比?
两个数相除又叫两个数的比。
(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
51、 长方体和正方体:
(1)什么是棱?
两个面相交的边叫棱。
(2)什么是顶点?
三条棱相交的点叫顶点。
(3)什么是长方体的长、宽、高?
相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。
(4)什么是正方体(立方体)?
长宽高都相等的长方体叫正方体(立方体)。
(5)什么是长方体的表面积?
长方体六个面的总面积叫长方体的表面积。
(6)什么是物体的体积?
物体所占空间的大小叫做物体的体积。
52、 圆
(1)什么是圆心?
圆中心的点叫圆心。
(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心,并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是弧?
在圆上两点之间的部分叫弧。
(8)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
53、 什么是百分数?
表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。
54、 比例:
(1)什么是比例?
表示两个比相等的式子叫比例。
(2)什么是比例的项?
组成比例的四个数叫比例的项。
(3)什么是比例外项?
两端的两项叫比例外项。
(4)什么是比例内项?
中间的两项叫比例内项。
(5)什么是比例的基本性质?
在比例中两个外项的积等于两个内项的积。
(6)什么是解比例?
求比例中的未知项叫解比例。
(7)什么是正比例关系?
两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。
(8)什么是反比例关系?
两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。
55、 圆柱:
(1)什么是圆柱底面?
圆柱的上下两个面叫圆柱的底面。
(2)什么是圆柱的侧面?
圆柱的曲面叫圆柱的侧面。
(3)什么是圆柱的高?
圆柱两个底面的距离叫圆柱的高。
三、 小学数学量的计算单位及进率归类
(1)长度计量单位及进率:千米(公里)、米、分米、厘米、毫米
1千米=1公里,
1千米=1000米,
1米=10分米,
1分米=10厘米,
1厘米=10毫米
(2)面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷,
1平方千米=1000000平方米
1公顷=10000平方米,
1平方米=100平方分米,
1平方分米=100平方厘米
(3)体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米,
1立方分米=1000立方厘米,
1升=1000毫升
1立方分米=1升,
1立方厘米=1毫升
(4)质量单位及进率:吨、千克、公斤、克
1吨=1000千克,
1千克=1公斤,
1千克=1000克
(5)时间单位及进率:世纪、年、月、日、小时、分、秒
1世纪=100年,
1年=12个月
(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天),
1天=24小时,
1小时=60分,
1分=60秒
四、 常用计算公式表
(1)长方形面积=长×宽,计算公式:S=a×b
(2)正方形面积=边长×边长,计算公式:S=a×a
(3)长方形周长=(长+宽)×2,计算公式:C=(a+b)×2
(4)正方形周长=边长×4,计算公式:C=4a
(5)平行四边形面积=底×高,计算公式:S=ah
(6)三角形面积=底×高÷2,计算公式:S=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式:S=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式:V=abh
(9)圆的面积=圆周率×半径平方,计算公式:S=πr2
(10)正方体体积=棱长×棱长×棱长,计算公式:V=a3
(11)长方体和正方体的体积都可以写成:底面积×高,计算公式:V=sh
(12)圆柱的体积=底面积×高,计算公式:V=sh
(13)圆锥的体积=底面积×高÷3,计算公式:V=s×h÷3
等底等高的圆柱体积是圆锥体积的3倍。
⑧ 求人教版小学数学1到6年级的 电子档教师用书、课件、教案
目标正确就是来指制定的教学目标自既要符合课程标准的要求,又要符合学生的实际情况。教学目标是设计教学过程的依据,是课堂教学的总的指导思想,是上课的出发点,也是进行课堂教学的终极回宿。如何制定出一个具体明确又切实可行的教学目标呢?首先要认真钻研教材,结合数学课程目标和教学内容,制定出本节课的教学计划:要使学生把握哪些知识、形成什么样的技能技巧、达到什么样的熟练程度、会用哪些方法解题等,这就是双基目标。其次是考虑通过这些知识的教学,应该培养学生哪些思维能力,这是思维能力的目标。再次是想一想通过这些知识的教学,对学生进行哪些思想教育,培养哪些良好的道德品质,这是渗透思想教育的要求。最后是考虑哪些地方可以对学生进行创新教育,怎样培养学生的创新意识和创造能力,这是创新教育的要求,这也是课堂教学最重要的目标。