『壹』 小学五年级上册数学题
1、正方形、长方形、平行四边形和梯形都是特殊四边形。( )
2、圆柱体积是圆锥体积的3倍,这两者一定是等底等高。( )
3、比例尺就是前项是1的比。( )
4、1千克的金属比1千克的棉花重。( )
5、1/100和1%都是分母为100的分数,它们表示的意义相同。( )
6、圆锥的体积比圆柱体积小2/3。( )
7、两条射线可以组成一个角。( )
8、 把一个长方形木框拉成平行四边形后,四个角的内角和不变。( )
9、任何长方体,只有相对的两个面才完全相等。( )
10、周长相等的两个长方形,它们的面积也一定相等。( )
11、一个体积为1立方分米的物体,它的底面积一定是1平方分米。( )
12、一个体积为1立方分米的正方体,它的底面积一定是1平方分米。( )
13、工作效率和工作时间成反比例。( )
14、比的前项增加10%,要使比值不变,后项应乘1.1。( )
15、5千克盐溶解在100千克水中,盐水的含盐率是5%。( )
16、比例尺大的,实际距离也大。( )
17、如果一个正方形的周长和一个圆的周长相等,那么这个正方形和圆的面积比是∏∶4。( )
18、分数值越小,分数单位就越小。( )
19、7米的1/8与8米的1/7一样长。 ( )
20、不相交的两条直线叫做平行线。( )
21、小王加工99个零件,合格99个,这批零件的合格率是99%。( )
22、5名工人5小时加工了5个零件,则1名工人1小时加工1个零件。( )
23、在一个数的末尾添上两个0,原数就扩大100倍。( )
24、每年都有365天。( )
25、圆柱的底面积扩大3倍,体积扩大3倍。( )
26、12/15不能化成有限小数。( )
27、能被3整除的数一定能被9整除。( )
28、a、b和c是三个自然数(且不等于0),在a=b×c中
A、b一定是a的约数 ( )
B、c一定是a和b的最大公约数. ( )
C、a一定是a和b的最小公倍数. ( )
D、a一定是b和c的公倍数. ( )
29、两个锐角之和一定是钝角。( )
30、在比例中,如果两个内项互为倒数,那么两个外项也互为倒数。( )
31、“光明”牛奶包装盒上有“净含量:250亳升”的字样,这个250毫升是指包装盒的容积。( )
32、x+y=ky(k一定)则x、y不成比例。( )
33、行同一段路,甲用5小时,乙用4小时,甲乙速度的比是5:4。( )
34、大于90°的角都是钝角。 ( )
35、只要能被2除尽的数就是偶数。 ( )
『贰』 小学数学五年级上册重难点
第一单元:小数乘法。
1、小数乘整数------重点:理解小数乘整数的算理。
2、小数乘小数------重点:小数乘小数的计算方法。
3、积的近似数------重点:会用“四舍五入”法取积是小数的近似数。难点:根据实际情况取近似值。
4、连乘、乘加、乘减------重点:小数连乘、乘加、乘减的运算顺序。难点:引导学生理解解决问题中出现的解题思路。
5、整数乘法运算定律推广到小数------重点:理解整数乘法的运算定律在小数乘法中同样适用。
第二单元:小数除法。
1、小数除以整数------重点:小数除以整数的计算方法。难点:让学生理解商的小数点是如何确定的。
2、一个数除以小数------重点:掌握除数是小数除法的计算方法。
3、商的近似数------重点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。
4、循环小数------重点:理解循环小数的意义,会用简便方法读写循环小数。难点:怎样判断除得的商是循环小数。
5、解决问题------重点:训练学生解决问题的思路,让学生掌握分析问题的基本步骤。
第四单元:简易方程。
1、用字母表示数------重点:会用字母表示数、运算定律及计算公式。
2、用含有字母的式子表示数量及数量关系------重点:用含有字母的式子表示数量。
3、方程的意义------重点:初步理解方程的意义。
4、解方程------重点:利用天平平衡的道理理解解比较简单的方程的方法。
5、稍复杂的方程(一)------重点:学生自主探索通过列方程解决较复杂应用题的方法。
6、稍复杂的方程(二)------重点:分析数量关系。难点:列方程和解方程。
7、稍复杂的方程(三)------重点:正确设未知数,找出等量关系列方程并解决问题。
第六单元:统计与可能性。
1、可能性------重点:理解掌握可能性的意义,用分数表示可能性。
2、中位数------重点:理解中位数的意义,掌握求中位数的方法,能根据数据的具体情况及所要分析的问题选择适当的统计量。
3、铺一铺------重点:认识密铺,知道哪些图形可以密铺。
第七单元:数学广角。
1、数学广角(一)------重点:学会通过各种途径查找资料,并能对搜集的信息进行分析,发现生活中数字编码所反应的信息。
2、数学广角(二)------重点:使学生能利用规律根据实际需要设计编码,运用所学的知识给全校学生编码,给班级图书编号。
『叁』 小学五年级上册数学公式大全
▲乘法定律:乘法交换律:a×b = b×a 乘法结合律:a×b×c = a×(b×c) 乘法分配律:a×c + b×c=c×(a + b) a×c - b×c=c×(a - b) ▲除法性质:a÷b÷c = a÷(b×c)
▲减法性质:a –b - c = a - (b + c)
▲解方程定律:
◇加数 +加数= 和 ; 加数= 和–另一个加数.◇被减数–减数= 差; 被减数=差+减数; 减数=被减数–差.◇因数×因数= 积; 因数= 积÷另一个因数.◇被除数÷除数= 商; 被除数=商×除数; 除数=被除数÷商
◆行程问题:路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间.
◆相遇问题:
相遇路程=(甲速度+乙速度)×相遇时间; 相遇时间=相遇路程÷(甲速度+乙速度); 甲速度=相遇路程÷相遇时间–乙速度; 乙速度=相遇路程÷相遇时间–甲速度.
◆工程问题:
工作总量=工作效率×工作时间; 工作时间=工作总量÷工作效率; 工作效率=工作总量÷工作时间; 工作总量=计划工作效率×计划工作时间; 工作总量=实际工作效率×实际工作时间; 实际工作时间=工作总量÷实际工作效率; 实际工作效率=工作总量÷实际工作时间;
◆买卖问题:总金额=单价×数量; 数量=总金额÷单价;
单价=总金额÷数量.
-----公式定义
三
角形的面积=底×高÷2.公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度.长方体的体积=长×宽×高 公式:V=abh 长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
一定要采纳哟!
『肆』 小学五年级数学上册公式及概念(只要五年级上册的)
五年级上册数学概念公式
第一单元:小数乘法
1、小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。如:1.2×5表示5个1.2是多少。
2、一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。如:1.2×0.5表示求1.2的十分之五是多少。
3、小数乘法的计算方法:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。乘得的积的小数位数不够,要在前面用0补足,再点上小数点。
4、一个数(0除外)乘1,积等于原来的数。
一个数(0除外)乘大于1的数,积比原来的数大。
一个数(0除外)乘小于1的数,积比原来的数小。
5、整数乘法的交换律、结合律和分配率,对于小数乘法也适用。
第二单元:小数除法
1、小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6,求另一个因数是多少。
2、小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。如果除到末尾仍有余数,要添0再继续除。
3、被除数比除数大的,商大于1。被除数比除数小的,商小于1。
4、计算除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,数位不够的要添0补足。再按照除数是整数的小数除法进行计算。
5、一个数(0除外)除以1,商等于原来的数。
一个数(0除外)除以大于1的数,商比原来的数小。
一个数(0除外)除以小于1的数,商比原来的数大。
6、A除以B=A÷B;A除B=B÷A;A去除B=B÷A;A被B除=A÷B。
7、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
8、小数部分的位数是有限的小数,叫做有限小数。小数部分是无限的小数叫做无限小数。循环小数就是无限小数中的一种。
有限小数
小数 循环小数
无限小数
无限不循环小数
10、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。
11、写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位上面各记一个循环点。循环点最多只点两个。
12、取近似数有三种方法:1、四舍五入法;2、去尾法;3、进一法。在解决实际问题时,要根据实际情况
『伍』 小学五年级数学上册公式及概念
五年级上册数学概念公式
第一单元:小数乘法
1、小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。如:1.2×5表示5个1.2是多少。
2、一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。如:1.2×0.5表示求1.2的十分之五是多少。
3、小数乘法的计算方法:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。乘得的积的小数位数不够,要在前面用0补足,再点上小数点。
4、一个数(0除外)乘1,积等于原来的数。
一个数(0除外)乘大于1的数,积比原来的数大。
一个数(0除外)乘小于1的数,积比原来的数小。
5、整数乘法的交换律、结合律和分配率,对于小数乘法也适用。
第二单元:小数除法
1、小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6,求另一个因数是多少。
2、小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。如果除到末尾仍有余数,要添0再继续除。
3、被除数比除数大的,商大于1。被除数比除数小的,商小于1。
4、计算除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,数位不够的要添0补足。再按照除数是整数的小数除法进行计算。
5、一个数(0除外)除以1,商等于原来的数。
一个数(0除外)除以大于1的数,商比原来的数小。
一个数(0除外)除以小于1的数,商比原来的数大。
6、A除以B=A÷B;A除B=B÷A;A去除B=B÷A;A被B除=A÷B。
7、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
8、小数部分的位数是有限的小数,叫做有限小数。小数部分是无限的小数叫做无限小数。循环小数就是无限小数中的一种。
有限小数
小数 循环小数
无限小数
无限不循环小数
10、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。
11、写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位上面各记一个循环点。循环点最多只点两个。
12、取近似数有三种方法:1、四舍五入法;2、去尾法;3、进一法。在解决实际问题时,要根据实际情况取商的近似值。
第四单元:简易方程
1、在含有字母的式子里,乘号可以记做“· ”,也可以省略不写。
(1)数字与字母相乘,省略乘号,要将数字写在字母的前面。
(2)字母与字母相乘,直接省略乘号。
(3)括号与数字相乘,要将数字写在括号的前面,再省略乘号。
2、长方形的周长=(长+宽)×2 C长=2(a+b)
长方形的面积=长×宽 S长=ab
正方形的周长=边长×4 C正=4a
方形的面积=边长×边长 S正=a2
3、表示相等关系的式子叫做等式。
4、含有未知数的等式是方程。
5、方程一定是等式,等式不一定是方程。
6、等式两边同时加上、减去、乘或除以同一个数(0除外),所得结果仍然是等式。
方程左右两边同时加上(或减去)相同的数,方程左右两边依然相等。
方程左右两边同时乘以(或除以“0”除外)相同的数,方程左右两边依然相等。
7、使方程左右两边相等的未知数的值叫做方程的解。
求方程的解的过程,叫做解方程。
解方程的根据是天平平和的道理,还可以根据方程各部分之间的关系。
8、解方程时常用的关系式:
一个加数=和-另一个加数
被减数=差+减数
减数=被减数-差
一个因数=积÷另一个因数
被除数=商×除数
除数=被除数÷商
注意:解完方程,要养成检验的好习惯。
9、三个或五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍或5倍。
10、列方程解应用题的思路:
A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的数量关系
C、设未知数,一般是把所求的数用X表示。
D、根据数量关系列出方程
E、解方程
F、检验
G、作答。
第五单元:多边形的面积
1.长方形:周长=(长+宽)×2 C长=2(a+b)面积=长×宽 S长=a b
正方形:周长=边长×4 C正=4a 面积=边长×边长 S正=a
2、平行四边形有无数条高。三角形有三条高。梯形有无数条高。
3、平行四边形面积公式的推导过程:
把平行四边形沿一条高剪下,通过移拼,可以拼成一个长方形。拼成长方形的长与平形四边形的底相等,长方形的宽与平形四边形的高相等,拼成长方形的面积与平形四边形面积相等,因为长方形面积长乘以宽,所以平行四边形底乘以高。如果用 S表示平形四边形的面积,用a、h分别表示平形四边形的底和高,面积公式可以写成:S=ah
平行四边形的面积=底×高 S平=ah
平行四边形的底=面积÷高 a平=S÷h
平行四边形的高=面积÷底 h平=S÷a
4、三角形面积公式的推导过程:
把两个完全一样的三角形可以拼成一个平行四边形,拼成平行四边形的底与三角形的底相等,平行四边形的高与三角形的高相等,每个三角形的面积是拼成平形四边形面积的一半,因为平形四边形的面积等于底乘以高,所以三角形面积等于底乘以高除以2。如果用S表示三角形的面积,用a和h分别表示三角形的底和高,面积公式可以写成:S=ah÷2。
三角形的面积=底×高÷2 S三=ah÷2
三角形的底=面积×2÷高 a三=S×2÷h
三角形的高=面积×2÷底 h三=S×2÷a
5、梯形面积公式的推导过程:
把两个完全一样的梯形可以拼成一个平形四边形,拼成平形四边形的底等于梯形的上底加下底的和,平行四边形的高与梯形的高相等,每个梯形的面积是拼成平形四边形面积的一半,因为平形四边形面积等于底乘以高,所以梯形等于(上底+下底)×高÷2. 如果用 S表示梯形的面积,用a、b和h分别表示梯形的上底和高,面积公式可以写成S=(a+b)h÷2
梯形的面积=(上底+下底)×高÷2 S梯=(a+b)h÷2
梯形的高=面积×2÷(上底+下底) h梯=S×2÷(a+b)
上底+下底=面积×2÷高 a+b=S×2÷h
梯形的上底=面积×2÷高-下底 a梯 =S×2÷h-b
梯形的下底=面积×2÷高-上底 b梯 =S×2÷h-a
『陆』 人教版小学数学五年级上册知识点有哪些
小学五年级数学上册复习教学知识点归纳总结
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.
如:1.5×0.8就是求1.5的十分之八是多少.
1.5×1.8就是求1.5的1.8倍是多少.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小.
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.
6、(P11)小数四则运算顺序跟整数是一样的.
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.
注意:如果被除数的位数不够,在被除数的末尾用0补足.
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.
循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.
加号、减号除号以及数与数之间的乘号不能省略.
17、a×a可以写作a•a或a ,a 读作a的平方. 2a表示a+a
18、方程:含有未知数的等式称为方程.
使方程左右两边相等的未知数的值,叫做方程的解.
求方程的解的过程叫做解方程.
19、解方程原理:天平平衡.
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式.
22、方程的检验过程:方程左边=……
23、方程的解是一个数;
解方程式一个计算过程.=方程右边
所以,X=…是方程的解.
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】
字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
【上底=面积×2÷高-下底,下底=面积×2÷高-上底;
高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移
25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高.
因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转
27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行.
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍.
29、长方形框架拉成平行四边形,周长不变,面积变小.
30、组合图形:转化成已学的简单图形,通过加、减进行计算.
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适.
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码.
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
35、身份证码: 18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女.