⑴ 小学六年级数学奥林匹克竞赛题
.计算:
784070+78407.1+7840.72+784.073+78.407=( )
2.计算:
=( )
3.去年某校参加各种体育兴趣小组的同学中,女生占总数的 ,今年全校的学生与去年一样。为迎接2008年奥运会,全校今年参加各种体育兴趣小组的学生增加了20%,其中女生占总数的 ,那么女生参加各种体育兴趣小组的人数比去年增加( )%。
4.大、小两个正方形,已知它们的边长之差为12厘米,面积之差为984平方厘米,那么它们的面积之和为( )平方厘米。
5.有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为,则被除数是( )。
6.已知某足球教练与两位足球队员的年龄之和为100岁,12年后教练的年龄是这两位队员年龄之和,那么教练今年的年龄是( ) 岁。
7.某班有30多个同学,在一次满分为100分的数学考试中,小明得分是一个整数分,如果将小明的成绩的十位数与个位数互换,而班上其余同学的成绩不变,则全班的平均分恰好比原来的平均分少了2分,那么小明这次考试得了( )分。
8.有一项工程,甲单独做需36天完成,乙单独做需30天完成,丙单独做需48天完成,现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天,那么丙休息了( )天。
9.某停车场中共有三轮农用车、四轮中巴车和六轮大卡车44辆,各种轮子共有171个,已知四轮中巴车比六轮大卡车的2倍少一辆,那么这个停车场中共有( )辆三轮农用车。
10.一船从甲港顺水而下行到乙港,马上又从乙港逆水行回甲港,共用了8小时,已知顺水每小时比逆水多行20千米,又知前4小时比后4小时多行60千米,那么,甲、乙两港相距( )千米。
11.袋子里红球与白球数量之比是19∶13,放入若干红球后,红球与白球数量之比变为5∶3;再放入若干白球后,红球与白球数量之比变为13∶11;已知放入的红球比白球少80只,那么原先袋子里共有( )只球。
12.某市为合理用电,鼓励各用户安装“峰谷”电表,该市原电价为每度0.53元,改装新电表后,每天晚上10点至次日早上8点为“低谷”,每度收取0.28元,其余时间为“高峰”,每度收取0.56元,为改装新电表每个用户需收取100元改装费,假定某用户每月用200度电,两个不同时段的耗电量各为100度,那么改装电表12个月后,该用户可节约( )元。
1998年小学数学奥林匹克竞赛试卷
1.已知等式 ×(19.98-□× )×(0.75+ )=0,那么式中□所表示的数是( )。
2.下面是一个乘法算式,每个□内填一个数字,那么这个算式中的乘积应该是( )。
1□
× □□
□5□
□□□
□8□□
3.上图中,大正方形的边长为10厘米,连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连(如图),那么图中阴影部分的面积总和等于( )平方厘米。
4.由1,2,3,4四个数字组成的没有重复数字的四位数共有24个,将它们从小到大排列起来,第18个数等于( )。
5.已知两数互质,它们的和被5除余1,它们的积是2924,那么它们的差是( )。
6.如图,正方形ACEF的边界上有6个点A,B,C,D,E,F,其中B,D分别在边AC,CE上,那么,以这6个点中的三个点为顶点组成的不同的三角形的个数是( )。
7.在从1到1998的自然数中,能被37整除,但不能被2整除,也不能被3整除的数的个数等于( )。
8.小赵的电话号码是一个五位数,它由五个不同的数字组成,小张说:“它是84261。”小王说:“它是26048。”小李说:“它是49280。”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字,现在你们每人都猜对了位置不相邻的2个数字。”这个电话号码是( )。
9.某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加( )元。
10.甲、乙两列火车的速度比是5∶4。乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A、B两站距离的比是3∶4,那么A、B两站之间的距离为( )千米。
11.大小猴子共35只,它们一起去采摘水蜜桃。猴王不在的时候,一个大猴子一小时可采摘15千克,一个小猴子一小时可采摘11千克;猴王在场监督的时候,每个猴子不论大小每小时都可以多采摘12千克。一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃,那么在这个猴群中,共有小猴子( )个。
12.某次数学竞赛设一、二等奖,已知:(1)甲、乙两校获奖人数的比为6∶5;(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的60%;(3)甲、乙两校获二等奖的人数之比为5∶6;那么甲校获二等奖的人数占该校获奖总人数的百分数等于( )。
⑵ 小学数学奥林匹克竞赛解题方法大全这本书在哪买
中心书店
⑶ 第一届华博士小学数学奥林匹克竞赛试题(三年级)
分析如下,原题略:
1、(奇数位依次减3,偶数为一直为2)
2、(150×3-48)内÷2
3、(9行9列,容9×9=81)
4、(B=9,C=8)
5、(纵向2刀,横向1刀)
6、(35÷4=8…3,4个数只能为8、9、9、9,排列有8999,9899,9989,9998四种)
7、(就以行看,每行2个,3×2=6)
8、(28+26+26=80)
9、(9÷1×(6+7)×(8-2)
10、(6+6÷3=8,先借1瓶,喝完再还,共9瓶)
11、(左右两边等于正方形边长,左向上展开,右向下展开,都是8+6=14,所以总的周长为14+14=28)
在这串数中 到第40位时的总和是( )。
规律为199重复,40÷3=13…1,和为13×(1+9+9)+1=248
好累!楼主应加分!
⑷ 小学数学奥林匹克竞赛试题与答案
1.一个三位数除以9余7,除以5余2,除以4余3。这样的三位数共有________个。
2.每千克价分别为2元、3元、2元4角、4元的桔子、苹果、香蕉、柿子四种水果共买了83千克,用去228元。已知买桔子用去的前与买苹果用去的钱一样多,买柿子用去的钱是买香蕉所用的钱的2倍。那么桔子买了________千克,苹果买了________千克,香蕉买了________千克,柿子买了________千克。
3.税法规定,一次性劳务收入若低于800原,免交所得税。若超过800元,需教所得税,具体标准为:800~2000的部分按10%计,2000~5000元部分按15%计,5000~10000元部分安20%计。某人一次劳务收入上税1300元,他在这次劳务中税后的净收入为________元。
4.八进制加法是逢八进一,例如:13+6=21,77+4=103。在下面的八进制加法竖式中,a、b、c、d、e、f这六个数恰好由1、2、3、4、5、6这六个数组成,那么满足题中条件的加法式子共有________个。
5.下图的正六边形是由24个边长为1的小等边三角形组成的。在以格点为顶点、面积与阴影部分相同的三角形中,边长都不是1的三角形共有________个。
6.1到2000这2000个数中,最大可取出________个数,使得这些数中任意三个数的和都不能被7整除。
7.某商品成本为每个80原,如果按每个100卖,可卖出1000个。当这种商品每个涨价1元,销售量就减少20个。为了赚取最多的利润,售价应定为每个________元。
8.一只小虫从A处爬到B处。如果它的速度每分增加1米,可提前15分到达。如果它的速度每分再增加2米,则又可提前15分到达。A处到B处之间的路程是________米。
9.甲瓶中酒精浓度为70%,乙瓶中酒精的浓度为60%,两瓶酒精混合后的浓度为66%。如果两瓶酒精各用去5升后再混合,则混合后的浓度为66.25%。问:原来甲、乙两瓶酒精分别有________升与________升。
10.用1、2、3、4、5、6、7、8、9这9个数字排成一个最小的能被11整除的九位数,这个九位数是________。
11.把1~625这625个自然数按顺时针方向依次排列成一个圆圈。从1开始顺时针方向擦去1,保留2,再擦去3、4,保留5,擦去6,保留7,再擦去8、9,保留10……这样擦去一个数,保留一个数,擦去两个数,保留一个数;再擦去一个数,保留下一个数,擦去两个数,保留一个数……一直转圈擦下去,最后剩下的数是________。
12、一根钢条截下全长的1/8,再接上15米,结果比原来的长度多1/2,求钢条原来的长度?(接头不计算)
13、食堂有大小两堆煤,一共重24吨。大堆煤中用去1/4后,还比小堆煤多4吨。这两堆煤原来各有多少吨?
⑸ 中国数学奥林匹克全国决赛
看了这个你就知道区别了
一、什么是“奥数”?
1、“奥数”究竟学些什么?
奥数”究竟是什么?它和我们平时学的数学课有什么区别和联系?我想大多数的家长和老师都不一定很清楚,可能就觉得只有那些思路比较新、怪,难度比较大的所谓“难题”、“偏题”才是“奥数”。其实不然。
奥数仍然是属于数学这一门学科,我想这是毫无疑问的。奥数中当然也有和我们平时所学的课堂上的数学相联系的部分,是课堂内容的深化和提高;但是奥数中更多的是和课堂上的数学看起来不沾边的内容,那么这部分内容究竟是什么,又来自于哪里呢?
数学的范围是极其广泛的,世界上最权威的分类法大概把数学分成了几十个大类,一百多个小类。我们从小学高年级的一元一次方程开始算起,一直到高中毕业,在七、八年的时间里,所涉及的数学类别也就是平面几何、三角函数、线性方程(组)、解析几何、立体几何、集合论、不等式、数列等等。作为数学教育,当然应该以这些内容为主,因为它们是数学的核心方法和领域,但是这些内容就是连初等数学的范畴也没有完全覆盖。
那好了,什么是奥数?其实就是我们平常数学课上所不讲、也没有时间去讲的一些数学分支的基础内容,比如图论、组合数学、数论,以及重要的数学思想,比如构造思想、特殊化思想、化归思想等等。这些内容的选择是很科学的,因为这些领域的基本方法和简单应用是不需要专门的数学工具的,而且带有很强的趣味性和游戏性。这些方法对于培养学生的数学兴趣,拓展它们的思维和知识面自然是很有帮助的。
顺便说一句,其实奥数里面,特别是中低年级奥数中,有很多内容是来自于中国古代数学专著的方法和思想,比如“盈亏问题”,比如“鸡兔同笼”,还比如高年级或中学奥数中要介绍的“中国剩余定理”等等。我认为这些方法看似简单,但是其中的确凝聚了中国古代数学家的超凡智慧,并且与西方的数学方程思想很不一样,独辟蹊径,自成一派。我想这也是中华优秀文化遗产的一部分,学习它自然是很有裨益的。
我们在“奥数”的教学实践中,并不是一味的去追求难,追求怪,也一直是本着“打实基础,灵活运用”的目的在操作,主要拓展学生的思维,加深它们对一些数学中看似不起眼的常识、小结论的认识,比如乘法分配律可以用来解决对角线垂直的任意四边形面积问题,再比如等比数列求和与循环小数化分数的方法间其实存在着本质的联系,并且里面还涉及到了一点“构造”的思想等等,于平凡处见不平凡,化腐朽为神奇,让学生在“我怎么没想到”的感叹声中不断加深对数学的认识,在不知不觉中进步。
2、“奥数”适合什么样的学生学习?
在我看来,奥数主要是针对课堂上的数学学得相对比较扎实,学有余力且又对于数学有着一定兴趣的学生。
但同时也要看到,适合学奥数的学生之间也是有差别的,奥数学习也是必须要分层次、分难度,根据不同的学生安排不同的内容和难度,因人因地因时而宜的。我觉得难度的选择,最好是以学生上课能听懂,课下花点功夫就能基本掌握为准。另一方面,我也很不赞成本末倒置的做法,如果平时数学课上的内容暂时还都没有学得比较好的话,那么还是要以平时课堂的数学内容为主,要不然花时花力花钱还于事无补。
3、“奥数”不等于“提前学”
我看到网上有一篇名叫《小学奥数热过了头》的文章,作者是上海数学特级教师周继光老师。在周老师看来,奥数好像就变成了是“提前学”的代名词。他在该文章中这样说道:最近笔者在书城的奥数“书海”中随意买了一本《冲刺金牌——全国小学数学奥林匹克竞赛最新优秀试题精选与题解》,它几乎囊括了全国各地2000-2002年的小学数学竞赛题。我从中找出38道有关几何图形的试题,全部做了一遍,发现竟有30道题要用到初二以上的知识,如勾股定理、根式运算、比例线段、等积变换等才能解决。另有七道题也要用到初预、初一的有关知识才能解决。只有一道题可用小学数学知识解决。书中的代数试题也有类似情况。试想一下,把这些题目让一般的小学生去啃,不是为难他们吗?如此不恰当的超前训练不仅对学生的思维发展不利,而且会使绝大部分学生从此惧怕数学而远离数学,甚至厌恶数学。沉重的心理压力将会阻碍学生身心健康发展,对此不少老师与家长深为忧虑。
周老师以上这段话,我不敢苟同。首先,同底等高(或等底同高)的三角形面积相等这一点是小学四年级的内容,所谓的“等积变换”其实在小学奥数里也就是这么点内容,最多再深入一步,等高的三角形面积之比等于底之比,至于旋转变换、反射变换等都是没有的。比例也是小学的内容,当然上海小学的内容可能比别处少一些,因为它有个初中预科班,其实就相当于一般的小学六年级。全国小学数学竞赛是不能因为上海的特殊情况而减少大纲内容的,如果周老师非把这部分内容也认为是初中的话,那这个问题就真的说不清楚了;其次,线段的比例自然也是小学的内容,只要不是涉及到相似三角形或平行线分线段成比例定理即可,就我的教学实践来看,全国小学数学竞赛的几何题目基本上只要利用三角形面积的简单变换就能解决,顶多加上一点简单的一元一次方程或者字母表示数,这也都是小学五年级的内容。 至于勾股定理,一般只涉及到勾三股四弦五,并不要去真的计算什么平方,即使计算也都是好数字,什么根式运算是压根就不会出现的。笔者曾经精选几道竞赛题写过一篇文章《剖析小学几何》,其中就介绍了华杯赛中的一些难题,也只要用到小学的知识,只不过灵活多了。
“提前学”好不好?我也认为不好,没有必要。那么奥数里究竟有没有提前学的数学知识?有。不过占的比例很少,大部分奥数的内容我在本文的第一部分交待了,它和正统的数学课堂讲的内容是没有交集的,平时的数学课会讲抽屉原理吗?会讲哥底斯堡七桥问题吗?会讲中国古代的“鸡兔同笼”,“盈亏问题”吗?不讲。同时,我们在教学实践中,一直是避免把初中的内容来讲;什么绝对值、实数、代数式(当然最基本的平方差、完全平方六年级下学期还是要教的)、严密的几何论证等等都是不讲的。六年级涉及到的一些证明问题,也都是一些染色问题、抽屉原则等等,并没有提前涉及中学的几何代数证明。
下面说说方程,就我和学生的接触来看,大部分学生在小学学习字母表示数,一元一次方程的时候并没有真正理解什么是方程的思维方式。通过奥数的学习,他们认识上得到了提高,培养了良好的方程思维,也明白了列方程和解方程是完全可以分开的两个数学思维活动过程。当然,小学奥数对方程的要求要比小学课本上稍多一些,六年级上学期要求一元一次方程的灵活运用,下学期要求简单的二元一次方程组的求解,但是我们绝不会涉及到一元二次方程的求解和根式运算。
因此,奥数并不是“提前学”,更不是有些人说的“数学中的杂技”,它就是课堂外的数学,和课堂内的数学是主干与支干的关系,既是课堂的提高和深化,又是拓展视野的数学园地。所谓“提前学”带给学生们的种种负担与不良影响并不适用于“奥数”,至少是不适用于“奥数”中的绝大部分内容。
至于全国决赛的资格,一般都是你所在学校选拔优秀学生参加地方上的预赛,然后再继续考试选拔最终代表本省/市参加全国决赛
⑹ 小学六年级数学奥林匹克竞赛题的答案(要有步骤)
1.设784070=a,则
原式=a+[(a+1)/10]+[(a+2)/100]+[(a+3)/1000]
+(a/10000)=
(10000a+1000a+1000+100a+200+10a+30+a)/1000
0=
(11111a+1230)/10000
将a=784070代入,得
原式=871180.3
2.1、2、3、4在千位的数分别有6个
因为18=6*3
所以这个数是千位为3的最大数,即3421
3.条件不足,无法计算
4.设小正方形边长为a厘米,则
(a+12)^2-a^2=984
24a+144=984
a=35
35+12=47(厘米)
35^2+47^2=3434(平方厘米)
5.设除数为a,则
13+17+17a+13+a=
18a=2070
a=115
被除数为:115*17+13=1968
6.设教练今年年龄为a岁,则
因为12年后教练年龄为两队员年龄和
所以两队员今年年龄和为:a+12-24=a-12(岁)
所以有:a+a-12=100
a=56
7.设小明得分十位数为a,个位数为b,全班x人,
则
原分数为(10a+b)分
改后分数为(10b+a)分
分差为10a+b-10b-a=9a-9b(分)
所以有:9a-9b=2x
9(a-b)=2x
因为2不为9的倍数
所以x为9的倍数
因为x是三十多
所以x只能为36
所以9(a-b)=72
a-b=8
因为a、b均为一位数,且b不为0(若为b=0,则
10b+a不为十位数)
所以只有a=9,b=1
所以小明考了91分。
8.设甲乙合作x天,丙工作y天,则
设总工作量为单位“1”,则
甲工作效率为:1/36
乙工作效率为:1/30
丙工作效率为:1/48
甲乙合作工作效率:(1/36)+(1/30)=11/180
有 (11/180)x+(1/48)y=1
44x+15y=720
y=(720-44x)/15
因为720-44x是15的倍数,720又是15的倍数,且
44不是5的倍数(y为整数)
所以x为15的倍数
因为y不小于0
所以x=15
所以y=(720-44*15)/15=4
15-4=11(天)
所以丙休息了11天。
9.设六轮车x辆,则四轮车为(2x-1)辆,三轮
车为(45-3x)辆[44-2x+1-x],则
3(45-3x)+6x+4(2x-1)=171
5x=40
x=8
四轮车有: 8*2-1=15(辆)
三轮车有:44-15-8=21(辆)
10.设船顺水从甲港到乙港花t小时,船速为v千
米/小时,水速为a千米/小时,则
v+a-20=v-a
a=10
因为前4小时比后4小时多行60千米
假若刚好到乙港,相差应为20*4=80(千米)大
于60千米
所以前4小时一定已到乙港,并在返回的路上,
则
顺流行了: t(v+10)千米
前4小时内返回了: (4-t)(v-10)千米
后4小时行了: 4(v-10)千米
则有
t(v+10)+(4-t)(v-10)-4(v-10)=60
tv+10t+4v+10t-tv-40-4v+40=60
20t=60
t=3
所以又有 3(v+10)=5(v-10)
v=40
40*3=120(千米)
⑺ 小学五年级数学奥林匹克竞赛题
增加的面积是一个小正方形(边长2分米)和两个小长方形(宽是2分米,长是原正方形的边长)
则:
20-2*2=16分米——两个长方形面积和
16/2=8分米——一个长方形面积
8/2=4分米——长方形的长(即原正方形的边长)
4*4=16平方分米
⑻ 六年级数学奥林匹克竞赛题----------急需 悬赏20
学校把414本书分给三个班,是1 2 3 班
2和3班得到书的本数的比是5比7
1和2班得到书的本数的比是2比3
每个班各得回到书多少答本?
答案:1班90本
2班135本
3班189本
解题的过程
2X5=10 3X5=15 3X7=21 10+15+21=46
414X46分之10=90 414X46分之15=135 414X46分之21=189