Ⅰ 小学生数学小论文(急...)
关于“0”
0,可以说是人类复最早接触的数了。我制们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
Ⅱ 有没有关于小学数学专业的毕业论文
小学数学教学论文--在小学数学教学中培养学生的思维能力 培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学中一项重要任务 思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。 值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。 《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。 二 培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。 (一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。 (二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。 (三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。 三 设计好练习题对于培养学生思维能力起着重要的促进作用 培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。 (一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。()”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。
Ⅲ 小学数学小论文
让学生对数学充满兴趣
我们每个人从事各种活动,都是由一定的动机、兴趣所引起的,有了动机、兴趣才能去从事各种活动,从而达到一定的目的。学习兴趣是学生学习的强化剂,在学生的认识过程与学习活动中起着巨大的推动和内驱作用。我国古代教育心理学家说过:“知之者不如好知者,好知者不如乐知者。”就非常形象、生动地说明了兴趣在学习中的作用,古往今来,许多发明家之所以能取得令人瞩目的成绩,更是与他们浓厚的学习兴趣和强烈的求知欲望有关。
传统的数学课堂把丰富复杂、动态变化的教学过程简约化归为“明算理,重练习”的特殊认识活动,导致数学课堂变得机械、沉闷和程序化,缺乏生机与乐趣,缺乏对智慧的挑战。学生学习起来觉得枯燥、乏味,没有激情。那么怎样才能使课堂气氛活跃,使学生拥有浓厚的学习兴趣呢?我觉得可以从以下几个方面着手:
一、用新颖有趣的教法诱发学习兴趣
苏霍姆林斯基说过:“兴趣并不在于认识一眼就能看见的东西,而在于认识深藏的奥秘”。小学生好奇心强,求知欲强烈,容易被新奇的事物吸引。这就要先在学生面前揭示出一种新的东西,激发起他们的惊奇感。这种情感越能抓住学生的心,他们就越迫切地想要知道、思考和理解。这就需要我们要善于用新颖的教学方法引起他们对于学习内容的好奇感,从而神情专注、兴趣盎然地投入到学习活动中来。例如果在教学“乘法的初步认识”时,我是这样导入的,我说:“今天老师要和小朋友们开展计算比赛,比一比谁算的又对又快,接着我出示了如下题目:3+3+3,7+7+7+7+7,8+8+8+8……+8(100个8)。看了题目以后,小朋友们马上投入到紧张的计算比赛中去,正在兴致勃勃的把数字一个一个的加,我却立即说出了得数。小朋友们一个个你看看我,我看看你觉得很奇怪。这时我说:”其实,老师做加法的本领并不比你们强,只是我掌握了一种新的运算方法,掌握了这种方法以后,算几个相同加数的加法时,速度就会快多了。这种运算叫乘法,你们想学吗?“正是这一举措,展示了乘法这一教学内容的内在魅力和巨大作用,无疑把学生紧紧地吸引住了,从而诱发了学生急切学习乘法的需要和强烈的学习兴趣。
二、用数学本身的内在力量唤起学习兴趣
布鲁纳说过:“最好的学习动机莫过于学生对所学材料本身具有内在的兴趣。”数学知识严密的逻辑性和系统性,各种数学材料之间的有机联系,解决数学问题时思路的开阔和敏捷,数学思维的各种特殊而巧妙的形式……构成了数学这门学科的潜在的吸引力。所以在数学教学中,要努力把数学这种内在力量显示出来,使学生看到一个“快乐的数学王国”,使学生潜移默化的对数学产生深刻的兴趣。如在教学“20以内个数的认识”时,我出了这样一道题:同学们排队做操,小华的前面有5个同学,后面有8个同学,这一队一共有多少同学?让学生解答,结果学生们不假思索的告诉我:5+8=13(个)。看着学生们一个个神气的神态,我并没有急于表态,而是讲了一个故事:兔妈妈带小兔们到草地上去做游戏。天黑了,兔妈妈让小兔们把队伍整理好准备回家。她认认真真的数了数,大吃一惊:“不好,丢了一只小兔”。她又仔仔细细数了一次,小兔却一只都没少。为什么14只兔子变成了13只呢?这时学生们顿有所悟,边笑边喊:“兔妈妈把自己都忘了数了。”也正是此时,学生们马上意识到刚才那道题存在的错误。纷纷表示怎么把小华给忘了。如此妙趣横生的数学内容,当然深深的吸引了学生。此外,还可以组织一题多变,一题多解,一题多问,一题多算,一题多编等活动,显示出数学特有的内在力量,唤起学生对之产生深刻的兴趣。
三、用数学的应用价值调动学习兴趣
数学是一门应用非常广泛的学科。小学数学中的许多知识,也都直接或间接的应用于人们的生活领域和生产实际。因此,在教学中,对教学内容要讲来源,讲用处,通过联系实际,解决学习、生活中的问题,让学生感到生活中处处有数学,这样学起来自然有亲切感、真实感,从而激发学生学习数学的积极动机,产生学习兴趣。如教学“11-20”各数的认识,可设计让学生很快翻书找到指定页码的练习;应用题的练习,要尽量设计解决生活实际中遇到的一些具体问题,又如在教学“认识人民币”时,我设计了这样一个活动:在教室里布置了一家超市,里面摆了好多商品,琳琅满目,选一位小朋友扮演售货员,其他小朋友先仔细观察这些商品的价格,一方面使学生进一步认识了人民币,使课内的数学知识得以巩固。另一方面也让学生真正认识到数学就在我们生活中间。既看得见也摸得着,不再觉得数学是脱离实际的海市蜃楼。而且培养了学生分析问题和解决问题的能力,调动学生学习数学的兴趣。
四、用学习的成功感增添学习兴趣
心理学家盖兹说过:“没有什么东西比成功更能增强满足的感觉;也没有什么东西让每个学生都体验到成功的喜悦,更能激发学生的求知欲望。”学生对于数学的兴趣是在自身的活动中形成和发展的。当学生通过努力获得某种成功时,就会表现出强烈的学习兴趣。教师的责任在于相机鼓励、诱导点拨、帮助学生学习获得成功。当学生想独立的去探索某个新知时,要十分注意情绪鼓舞:“你一定能自己解决这个问题”、“你一定能行!”等。当学生的学习停留于一定的水平时,要注意设“跳板”引渡,使他们成功的到达知识的彼岸。当学生的学习活动遇到困难,特别是后进生泄气自卑时,要特别注意给予及时的点拨诱导,使他们“跳一下也能摘到果子吃”。这样,各种不同水平的学生就会在探究中获得成功的喜悦,满足感油然而生,进一步增添了对数学知识的学习兴趣。
五、用数学课外活动发展学习兴趣
学生在学到一定的数学知识,并激发了学习兴趣后,就会不满足于课堂内所学的
知识。这时,教师应组织各种数学课外活动,为其创造一个非常自由的、宽松的、生动活泼的学习环境。使枯燥的数学知识更加趣味化,实践化。例如,在低年级组织全班性的数学表演会,通过讲数学故事、猜数学谜语、做数学游戏等活动,发展学习兴趣;在中、高年级可以结合教材内容,介绍国内外数学家的故事、现代科学技术的发展、数学小常识,出数学墙报等活动。这样不仅能扩大学生的视野,拓宽知识,而且可以通过多种形式启发学生学习的兴趣,最大限度地调动学生学习的积极性和主动性,使学生的学习兴趣不断地得到发展。
总之,要使课堂气氛活跃焕发生机,就要从培养学生的学习兴趣入手,科学的设计学习活动,使学生不仅爱学、会学,而且学得积极主动,学得活泼,实现从“要我学”到“我要学”的转变,让数学成为孩子们自觉追求的东西。
Ⅳ 关于小学数学的教育的论文
在教学时试图通过“提问——思考——发现”的方式调动学生学习的积极性和创造性,营造学生高参与的课堂氛围。但从课堂实施效果来看,喜忧参半!
一、 快节奏的课堂教学是引导学生高参与的基础
我相信,一个人在一支慢吞吞的队伍里排队等候自己感兴趣的东西,他的心理感受只可能用“焦急、厌倦、沮丧”来形容。在我们的教学中,由于受“希望学生尽快掌握所学知识”的心理影响,教师往往更乐意将知识嚼得碎碎的喂给学生,期望学生都能体会到获得知识的欣喜,所以突破难点时总爱唠叨几句,练习中总愿意等最慢的一个学生也把题目做完,哪怕减缓上课节奏都在所不惜,美其名曰:以学生为本,却不知这正是消磨学生学习积极性的症结所在。美国“启发策略研究所”的研究表明:当老师在整堂课里快节奏地讲解授课内容时,学生们通常更能全身心地投入。
教学是门永远带有遗憾地艺术。我们的课堂中应该以快节奏方式来维持一定的学生参与度,当我们感到学生参与程度在下降、学习活力在减弱、注意力在转移时,应尽快向下推进课程,让学生们感到课在不断地推进,总觉得有事要做、有问题要思考。老师讲解、问题解释和学生练习、答写只要有约一半的学生明白、完成就尽快变化,哪怕对反应相对迟缓的学生来说,我们也不能减慢速度去适应他们,而是用希望的力量和同伴高涨地学习积极性激励他们赶上教学的节奏。
Ⅳ 求一篇小学数学小论文(不过500字)
小学低年级数学教学中激发学生学习兴趣
用形象生动的语言来激发学习兴趣。数学的教学内容较抽象、枯燥、无味,它没有形象生动的语言及生动的故事情节,不易引起学生对数学的学习兴趣。因此,在教学生认数和记数时,我采用具体形象的事物和一些有趣的故事来激发学生的兴趣。如:为了让学生记住数字1—9的字形,我教学生背诵顺口溜:“1象粉笔,2象鸭子,3象耳朵,4象小旗,5象钩子,6象口哨,7象银锄,8象葫芦,9象蝌蚪。”以此来帮助学生记住字形。通过这样的教学,赋予数学内容以一定的感情色彩,将数学的知识渗透到童话的故事中去,从而激发了学生对数学的学习兴趣。
利用直观教具、操作学具、电化教学手段来激发学习兴趣。低年级的学生抽象思维能力较差,可是他们好动、好奇心强,对新奇动人的事物比较敏感。在教学过程中,我采用直观教具、电化教学及操作学具来激发学生的学习兴趣。如教“求一个数比另一个数多(少)几的应用题”时,让学生先摆10个三角形,然后在下面摆6个圆形,并向学生说明摆的时候要从左边起,把圆形和三角形一个对着一个地摆。教师问:“哪一行摆得多?看看第一行里的三角形哪一部分和圆同样多?请你们用手指画一画,同桌互相检查一下,看看画得对不对?再画出三角形比圆多的部分。”接着问:“同样多的有几个?三角形比圆多几个?”再启发学生想,三角形比圆多,三角形可以看成是哪部分组成的?多的部分是几个三角形?从而使学生直观地看出三角形多,圆少,三角形可以分成两部分:一部分是和圆同样多的部分,一部分是比圆多的部分,从而体会到多的数能分成两部分,为学习新知识做好铺垫。
利用数学游戏来激发学生的学习兴趣。我在教小学低年级的学生时,选择一些符合教学内容的游戏来激发学生的学习兴趣,使学生能在轻松、愉快的气氛中巩固学到的数学知识。如复习“小数的减法”时,可让学生做“争当模范营业员”的游戏,教师一手拿着人民币,一手举着所购买的物品的价格卡,让学生算出要找回的钱,并写在练习本上,五次后评出模范营业员,这样促使学生进一步巩固学到的知识。
采用启发式教学来调动学生学习的积极性。低年级学生自我控制的能力较差,注意力不能持久。根据这一特点,我在教学过程中及时、巧妙地提出一些富有启发性的问题,让学生进行思考回答,从而集中注意力。同时,对学生准确回答的问题加以肯定,对不懂回答问题的学生给予启发引导并加以鼓励,从而调动了他们的学习积极性。
采用灵活多变的教学方式来激发兴趣。低年级学生容易产生“喜新厌旧”的情绪,在教学中我采用灵活多样的形式、方法进行教学,给学生以新异感,让学生对数学产生浓厚的兴趣。如:通过讲故事、设问或复习旧知识引入新课,用电化教学、直观教具、数学游戏、课堂提问、练习形式多样化……等方法,使学生不会产生厌烦感,从而提高对数学的学习兴趣,并保证数学教学的顺利进行。
Ⅵ 小学数学教学方面的论文,求一篇3000字左右的小学数学论文
解题策略
——探索→猜测→检验→探索→猜测→检验→……
2002年推出的小学数学新课程标准与原大纲相比,有很多新的内容,其中“培养创新意识和实践能力”、鼓励“猜测”和“探索”,可以说是“新课标”中的灵魂”。“新课标” 虽然仅在“培养学生的计算能力”中提到“重视学生检验的习惯”,但我认为,作为数学检验习惯和数学检验能力的培养,理应贯穿数学教学内容的全部,理应贯穿数学教学的始终。而且如果把探索、猜测和检验有机结合起来,将构成一种非常重要的数学解题策略。这种解题策略可公式化为:探索→猜测→检验→探索→猜测→检验→……,这种解题策略是“培养创新意识和实践能力”的重要途径。
解题策略中的“猜测”当然不是毫无依据的瞎猜,而是在探索(至少是初步探索)基础上有一定根据的猜测。既然是猜测,就不一定正确,就有必要进行检验。通过检验,又必然出现两种可能:猜测正确和猜测有误。如果猜测正确(经得起检验),则问题获得解决;倘若猜测有误,就应分析探索猜错的原因,探索改善的途径,并进一步作出新的较为合理的猜测。对新的猜测当然又必须进行新的检验,如此循环往复,直至求出问题的正确答案。这就是“探索→猜测→检验→探索→猜测→检验→……”的解题策略。
试看下面的例子:
一个笼子里有鸡兔两物,数一数有28个头,有100个足,问鸡兔各几只?
这种“鸡兔同笼”的问题,一般都是用“假设法”求解的,但“假设法”的思路(逻辑思维)难以被一般的小学生理解,如果我们运用“探索→猜测→检验→探索→猜测→检验→……”这一解题策略。那么我们可以得到小学低年级学生也能理解和掌握的下列解答。
探索:因为100÷4=25,所以0<兔的只数<25。
猜测:取0~25的中间数13作为兔的只数,则鸡的只数为28-13=15(只)
检验1:总足数=4×13+2×15=82
探索:因为82<100,所以13<兔只数<25。
猜测2:取13~25的中间数19作为兔只数,则鸡的只数为28-19=9(只)
检验2:总足数=4×19+2×9=94。
探索:因为94<100,所以19<兔只数<25。
猜测3:取19~25的中间数22作为兔的只数,则鸡的只数为28-22=6(只)
检验3:总足数=4×22+2×6=100,正好符合题意。
所以笼中有兔22只,有鸡6只。
上述解答虽然看似麻烦费时,但富含探索意识。其中的不断合理猜测与检验,并对检验结果进行校正,从而逐步逼近,直至找到正确答案的过程,符合人类探索、发现、发明、创造的认识过程,体现了“失败乃成功之母”的认识特点,对学生具有极高的教育价值,真正能使学生的创新意识和探索能力得到有效培养。选取中间数的方法,蕴涵了“中值”、“优选”等重要的数学思想方法,这对学生进一步学习数学是大有裨益的。通过这种解题锻炼,直接使学生掌握了探索→猜测→检验→探索→猜测→检验→……这一在实践中(在数学中当然也不例外)解决问题的重要策略,这将有效地培养学生运用数学从事实践工作的能力。
如果对第一次猜测导致的误差执果溯因,进行分析并稍作逻辑推理,则可快捷获得正确答案。
事实上通过探索和第一次猜测(13只兔、15只鸡)并检验,得知足数82比实际少了100-82=18。导致这一误差的原因虽然是猜测的兔子只数少于实际兔子只数。在总头数28不变的情况下,每增加1只兔,这时相应地减少1只鸡(或者理解为把1只鸡换成1只兔),总足数便增加2,要增加18只足,就需要增加18÷2=9(只)兔,因此,兔的只数应为13+9=22(只),从而鸡的只数为28-22=6(只),经检验,结论正确。
后一解法较前一解法多一点逻辑思维的含量,显然也是一种优秀的解题方法(策略),如果说前一种解法适合小学低年级的学生,那么后一种解法完全适合小学高年级学生的认知特点和水平。
在小学数学教学中,根据学生的认知特点和知识水平并结合学生生活实际,精心设计一些探索性和开放性的问题,引导学生运用“探索→猜测→检验→探索→猜测→检验→……”这一解题策略求解,将有利于对学生创新意识,探索意识和实践能力的培养。
Ⅶ 小学数学小论文范文
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
Ⅷ 需要一篇小学数学小论文
让学生对数学充满兴趣
我们每个人从事各种活动,都是由一定的动机、兴趣所引起的,有了动机、兴趣才能去从事各种活动,从而达到一定的目的。学习兴趣是学生学习的强化剂,在学生的认识过程与学习活动中起着巨大的推动和内驱作用。我国古代教育心理学家说过:“知之者不如好知者,好知者不如乐知者。”就非常形象、生动地说明了兴趣在学习中的作用,古往今来,许多发明家之所以能取得令人瞩目的成绩,更是与他们浓厚的学习兴趣和强烈的求知欲望有关。
传统的数学课堂把丰富复杂、动态变化的教学过程简约化归为“明算理,重练习”的特殊认识活动,导致数学课堂变得机械、沉闷和程序化,缺乏生机与乐趣,缺乏对智慧的挑战。学生学习起来觉得枯燥、乏味,没有激情。那么怎样才能使课堂气氛活跃,使学生拥有浓厚的学习兴趣呢?我觉得可以从以下几个方面着手:
一、用新颖有趣的教法诱发学习兴趣
苏霍姆林斯基说过:“兴趣并不在于认识一眼就能看见的东西,而在于认识深藏的奥秘”。小学生好奇心强,求知欲强烈,容易被新奇的事物吸引。这就要先在学生面前揭示出一种新的东西,激发起他们的惊奇感。这种情感越能抓住学生的心,他们就越迫切地想要知道、思考和理解。这就需要我们要善于用新颖的教学方法引起他们对于学习内容的好奇感,从而神情专注、兴趣盎然地投入到学习活动中来。例如果在教学“乘法的初步认识”时,我是这样导入的,我说:“今天老师要和小朋友们开展计算比赛,比一比谁算的又对又快,接着我出示了如下题目:3+3+3,7+7+7+7+7,8+8+8+8……+8(100个8)。看了题目以后,小朋友们马上投入到紧张的计算比赛中去,正在兴致勃勃的把数字一个一个的加,我却立即说出了得数。小朋友们一个个你看看我,我看看你觉得很奇怪。这时我说:”其实,老师做加法的本领并不比你们强,只是我掌握了一种新的运算方法,掌握了这种方法以后,算几个相同加数的加法时,速度就会快多了。这种运算叫乘法,你们想学吗?“正是这一举措,展示了乘法这一教学内容的内在魅力和巨大作用,无疑把学生紧紧地吸引住了,从而诱发了学生急切学习乘法的需要和强烈的学习兴趣。
二、用数学本身的内在力量唤起学习兴趣
布鲁纳说过:“最好的学习动机莫过于学生对所学材料本身具有内在的兴趣。”数学知识严密的逻辑性和系统性,各种数学材料之间的有机联系,解决数学问题时思路的开阔和敏捷,数学思维的各种特殊而巧妙的形式……构成了数学这门学科的潜在的吸引力。所以在数学教学中,要努力把数学这种内在力量显示出来,使学生看到一个“快乐的数学王国”,使学生潜移默化的对数学产生深刻的兴趣。如在教学“20以内个数的认识”时,我出了这样一道题:同学们排队做操,小华的前面有5个同学,后面有8个同学,这一队一共有多少同学?让学生解答,结果学生们不假思索的告诉我:5+8=13(个)。看着学生们一个个神气的神态,我并没有急于表态,而是讲了一个故事:兔妈妈带小兔们到草地上去做游戏。天黑了,兔妈妈让小兔们把队伍整理好准备回家。她认认真真的数了数,大吃一惊:“不好,丢了一只小兔”。她又仔仔细细数了一次,小兔却一只都没少。为什么14只兔子变成了13只呢?这时学生们顿有所悟,边笑边喊:“兔妈妈把自己都忘了数了。”也正是此时,学生们马上意识到刚才那道题存在的错误。纷纷表示怎么把小华给忘了。如此妙趣横生的数学内容,当然深深的吸引了学生。此外,还可以组织一题多变,一题多解,一题多问,一题多算,一题多编等活动,显示出数学特有的内在力量,唤起学生对之产生深刻的兴趣。
三、用数学的应用价值调动学习兴趣
数学是一门应用非常广泛的学科。小学数学中的许多知识,也都直接或间接的应用于人们的生活领域和生产实际。因此,在教学中,对教学内容要讲来源,讲用处,通过联系实际,解决学习、生活中的问题,让学生感到生活中处处有数学,这样学起来自然有亲切感、真实感,从而激发学生学习数学的积极动机,产生学习兴趣。如教学“11-20”各数的认识,可设计让学生很快翻书找到指定页码的练习;应用题的练习,要尽量设计解决生活实际中遇到的一些具体问题,又如在教学“认识人民币”时,我设计了这样一个活动:在教室里布置了一家超市,里面摆了好多商品,琳琅满目,选一位小朋友扮演售货员,其他小朋友先仔细观察这些商品的价格,一方面使学生进一步认识了人民币,使课内的数学知识得以巩固。另一方面也让学生真正认识到数学就在我们生活中间。既看得见也摸得着,不再觉得数学是脱离实际的海市蜃楼。而且培养了学生分析问题和解决问题的能力,调动学生学习数学的兴趣。
四、用学习的成功感增添学习兴趣
心理学家盖兹说过:“没有什么东西比成功更能增强满足的感觉;也没有什么东西让每个学生都体验到成功的喜悦,更能激发学生的求知欲望。”学生对于数学的兴趣是在自身的活动中形成和发展的。当学生通过努力获得某种成功时,就会表现出强烈的学习兴趣。教师的责任在于相机鼓励、诱导点拨、帮助学生学习获得成功。当学生想独立的去探索某个新知时,要十分注意情绪鼓舞:“你一定能自己解决这个问题”、“你一定能行!”等。当学生的学习停留于一定的水平时,要注意设“跳板”引渡,使他们成功的到达知识的彼岸。当学生的学习活动遇到困难,特别是后进生泄气自卑时,要特别注意给予及时的点拨诱导,使他们“跳一下也能摘到果子吃”。这样,各种不同水平的学生就会在探究中获得成功的喜悦,满足感油然而生,进一步增添了对数学知识的学习兴趣。
五、用数学课外活动发展学习兴趣
学生在学到一定的数学知识,并激发了学习兴趣后,就会不满足于课堂内所学的
知识。这时,教师应组织各种数学课外活动,为其创造一个非常自由的、宽松的、生动活泼的学习环境。使枯燥的数学知识更加趣味化,实践化。例如,在低年级组织全班性的数学表演会,通过讲数学故事、猜数学谜语、做数学游戏等活动,发展学习兴趣;在中、高年级可以结合教材内容,介绍国内外数学家的故事、现代科学技术的发展、数学小常识,出数学墙报等活动。这样不仅能扩大学生的视野,拓宽知识,而且可以通过多种形式启发学生学习的兴趣,最大限度地调动学生学习的积极性和主动性,使学生的学习兴趣不断地得到发展。
总之,要使课堂气氛活跃焕发生机,就要从培养学生的学习兴趣入手,科学的设计学习活动,使学生不仅爱学、会学,而且学得积极主动,学得活泼,实现从“要我学”到“我要学”的转变,让数学成为孩子们自觉追求的东西。
Ⅸ 小学数学学生毕业论文
《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。