导航:首页 > 小学学科 > 数学说课稿范文小学

数学说课稿范文小学

发布时间:2020-11-24 09:58:21

小学数学说课稿范文

小学数学优秀说课稿

一、设计理念
学生学习的内容要有一个“经历、体验、探索、猜想、证明”的过程
知识技能目标 了解
(认识) 能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出来这一对象。
理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握 能在理解的基础上,把对象运用到新的情境中。
灵活应用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标 经历
(感受) 在特定的数学活动中,获得一些初步的经验。
体验
(体会) 参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
探索 主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。

“数学教学活动必须建立的学生的认知发展水平和以有的知识经验基础之上,教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中,真正理解和掌握基本的数学的知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师数学学习的组织者、引导者和合作者。”这是全日制义务教育《数学课程标准》对数学教学活动提出的基本理念之一。

基于以上理念,我们必须改革课堂教学中教师始终“讲”,而学生被动“听”的局面。要相信学生的能力,把学习的主动权交给学生,充分调动学生的学习积极性。因此,我在本课的教学中设计了探索性教学的课堂纵向结构,即“设疑激情——引导探索——应用提高——交流评价”的基本教学模式。

二、设计思路
1、关于教材
本节课的教学内容是九年义务教育六年制人教版小学数学第()册,第()单元的()。在本学段中,学生将了解一些基本的(),进一步学习()……新的课程标准指出:在这一学段的学习中,应注重学生的();应注重()……。

2、关于教学目标
根据本课的设计理念和教学内容,结合学生的实际情况,我制定了以下教学目标:
(1)………………
(2)………………
(3)…………….
(4)…………………

这一课的重点是:
教学难点是:

3、关于教学流程
为体现本课的教学理念,我自主构建了探索性学习的课堂教学的基本模式,即“设疑激情——引导探索——应用提高——交流评价”
(1)设疑激情:生活化、活动化的问题情境容易引发学生的兴趣和问题意识,使学生产生自主探索和解决问题的积极心态。在导课中出世学生生活的……..引出课题“”
(2)引导探索:当学生产生探索欲望和兴趣之后,教师所要考虑的应是如何提供适当的条件,引导学生通过观察、操作、思考和交流去探索知识,从中体会数学的思想和方法,并且强调学生()的能力,教师只是引导、参与学习,留给学生学习数学的生动场景。在新课教学中,我组织学生通过观察、思考、交流,理解()的特征及(),并通过自主操作、交流,掌握()。
(3)应用提高:学习数学知识并非最终目的,重要的是运用这些知识解决生活中的实际问题,从中体会到数学在生活中的价值,体验到学习数学的乐趣,获得学习数学的兴趣和信心,懂得在生活中遇到与数学有关的问题时,会运用所学数学知识去解决这些问题的途径,逐步培养自主探索和独立思考的能力。
这一环节中,我让学生找生活中……
(4)交流评价:学生通过自主探索性学习,获得了新知识、新经验,无论是认知还是情感,都全方位得到发展,再通过交流评价,引导学生在愉快的交流中再次感受数学的魅力,交换意见与看法。一方面可将每一个成功的经验收获转化成为大家共同的财富;另一方面,学生在评价过程中,要不时对照目标要求,形成自我反馈;在小组交流中认识自我,也学会评价他人的学习。

三、教学过程
(一)、设疑激情 (利用生活情境,引出数学问题)
1、多媒体出示……….
2、引导学生欣赏图画………….
3、引导学生通过仔细观察,发现………….. (这里主要是与本课有关的问题)
4、汇报:………..
5、引出课题“”

(二)、引导探索
1、认识……
(1)、………..
(2)、…………
(3)、………….
(4)、……………..
(5)、……………..
2、
3、
4、

(三)、应用提高
1、
2、
3、
4、

(四)、交流评价:各小组交流一下你有什么收获和感受,你的表现如何?并且告诉大家。
有时间的话挑选一两位学生发言。

Ⅱ 小学数学说课稿的学情分析怎么写(3到6年级)

学情分析:先对学生的学习目的性、学习习惯等主观方面进行分析;再对学生的知识基础、掌握情况等客观方面进行分析;最后进行总体性分析总结。

Ⅲ 小学数学面试说课

呵呵,我曾经做过一次特约评为 考核新老师。
1。放松 说着容易做着难,嗯,最重要
2。微笑 仪态大方
3。根据你讲的内容,尽量少板书,因为种种原因,板书会降低你的魅力。(除非你的粉笔字够硬)
4。备好内容,选好讲切出彩的课。
嗯,一时说不完整,你讲的是什么课,所以无法细说。qq 8238391
欢迎询问 记得给分

Ⅳ 小学数学说课稿

各位老师:大家好!
我说课的内容是苏教版五年级下册第一单元《方程》第一课时的内容。下面从教材分析、学情分析、教学目标分析、教学重难点分析、教法与学法分析、教学设计等几个方面进行说课。
一、教材分析
《方程》是在学生已经学过用字母表示数的基础上展开的,为下面等式的性质和解方程的教学作铺垫,有着承前启后的重要作用。同时,方程作为一种重要的数学思想方法,对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义。
二、学情分析
1.小学生的心理特点
小学生年幼好动,有强烈的好奇心,注意力分散,因此,我采用形象生动、形式多样的教学方法,激发学生的学习兴趣,培养学生的能力。
2.学生的知识结构
学生已经完成了整数、小数的认识及其四则运算的学习,积累了较多的数量关系的知识,是在学会用字母表示数的基础上学习方程知识的。
三、教学目标分析
根据新课程标准的要求、教材编写意图、五年级学生的认知规律和已有的知识结构,制订如下教学目标:
知识目标:理解方程的含义,初步体会等式与方程的关系。
能力目标:通过将现实问题抽象成等式与方程的过程,培养学生“从具体到抽象”“从特殊到一般”的归纳概括能力。
情感目标:创设问题情境,激发学生观察、分析、探求的学习激情,强化学生的参与意识及主体作用。
四、重、难点分析
方程作为一种重要的数学思想方法,是学生进一步学习数学和其他学科的重要基础。因此,本节课的重点确定为:理解方程的含义。
小学生的认知水平还处在感性认识的阶段,要透过现象看本质,并上升到理论的高度还存在着很大困难,所以将理解等式与方程的关系确定为本节课的教学难点。
五、教法与学法分析
1.学法
叶圣陶先生说过:“教是为了不教。”我们不仅要教给学生知识,更要教会学生如何去学。因此,在学法中,让学生通过“感知交流→观察比较→得出概念→分析概念”的探究过程去发现新知,从而达到发展思维,提高能力的目的。
2.教法
建构主义学习理论认为,学习是学生自己进行知识建构的过程。因此,根据教学目标的要求和学生实际,我采用以小组合作观察探究为主,多媒体为辅的教学方式来培养学生自主学习的能力、观察探究的能力以及分析解决问题的能力。
六、教学过程
建构主义理论认为,学生在与学习环境相互作用的过程中,使自身的认知结构在“平衡→不平衡→新的平衡”的循环中得到不断的丰富、提高和发展。在该理论的指导下,我将按创设情境→观察探究→知识运用三个环节来组织教学。
1.创设情境——引入新知
我首先提供了天平平衡的情境图,通过“用等式表示天平两边物体的质量关系”的活动,引出“50+50=100”的等式,激活学生已经积累的关于等式的感性经验。这样,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2.观察探究——形成概念
这部分是教学的重点,我采用以下几个步骤突出这个重点。
【感知交流】我提供了四幅天平图,让学生充分感知和交流,用式子表示天平两边物体的质量关系。通过展示图片,调动学生的学习积极性,同时培养学生自主学习的能力。
【观察比较】接着,我提出这些式子中“哪些是等式”的问题,引导学生通过进一步的观察和比较,认识到列出的式子中,两个式子是等式,还有两个式子不是等式。而这里的等式与前面的等式不同,它们都含有未知数。通过实验探究活动培养学生的观察能力和语言表达能力,充分体现自主、合作、探究的新课程理念。
【得出概念】通过引导学生主动发现方程的特点,并用自己的语言充分地表达,从而得出方程的概念,即 “像x+15=150,2x=200这样含有未知数的等式是方程”。培养学生从具体到抽象,从特殊到一般的归纳概括能力。
【分析概念】这部分是教学的难点,为突破这个难点,在得到方程概念的基础上,我及时组织学生讨论“等式和方程有什么关系”,帮助学生感受等式与方程的联系与区别,体会方程就是一种特殊的等式。这样做有助于培养学生的抽象思维能力和归纳概括能力。
3.知识运用
“试一试”通过列方程表示现实情境中数量间的相等关系,引导学生进一步理解方程的含义,体会方程的思想,并为进一步学习列方程解决实际问题作一些准备。
“练一练”安排了三道题。第一题采用学生抢答的方式,通过判断题中的式子哪些是等式,哪些是方程,引导学生体会等式与方程之间的逻辑联系,加深对方程含义的理解。第二题通过让学生写出一些方程在小组里交流,引导学生将已有的对方程的认识用外显的形式表达出来,促进学生自主地建构方程的模型,内化方程的概念。第三题采用全班交流的方式,根据具体情境中的数量关系列方程,既有利于学生进一步熟悉列方程的思维特点,又有利于学生对方程含义的理解。
4.引导小结
本课的小结采用学生小结的模式,这是让学生学会自己梳理已经学习过的知识,然后我再对学生的小结进行总结。
5.布置作业
为了使所有学生巩固所学知识,我布置了必做题:要求学生每个人写一篇数学日记,即通过这节课的学习,有哪些收获,还有哪些疑问。同时又为学有余力的学生留有自由发展的空间,我布置了探究题。
以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位老师批评指正。谢谢大家!
望采纳,谢谢。

Ⅳ 小学数学说课稿的学情分析怎么写

参考书上有。
主要写本节课是在学生前面学了哪些关联知识的基础上进行的,重点,难点是什么,依学生特点怎样解决等等。

Ⅵ 小学数学说课稿应该怎样写,有哪些地方要注意的

教材分析
教法学法
教学重难点
教学过程
课后小结
布置作业
板书设计
你可以参照一下别人比较成功的教案。例如火星学习网上有不少这方面的教案。你可以下载后看看,并体会其中应该注意的问题。

Ⅶ 小学数学的教案要怎么写

Ⅷ 小学数学说课模板

一、说教材
1.教学内容:我说课的教学内容是( )
2.教学地位:本课是在学习了( )的基础上进行教学的,同时又是后面学习( )的基础。
3.教学目标:
(1)使学生结合具体的情境,探索并发现(或理解并掌握),会运用所学的知识解决简单的实际问题。
(2)使学生主动经历自主探索、合作交流的过程,培养观察、比较、分析、归纳、概括等思维能力。
(3)使学生在探索( )的过程中,体会数学与生活的联系,获得成功的体验,增强学好数学的自信心。
4.教学重点、难点:为了使学生能比较顺利地达到教学目标,我确定了本课的重点和难点,教学重点是( ),教学难点是( )。
二、说教学方法
从学生已有的知识水平和认识规律出发,为了更好的突出本课的教学重点,化解难点,我采用了以下教学方法:
(1)直观演示,操作发现(或观察比较):教师利用直观教具(或多媒体)的演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上探索新知,理解新知,应用新知,从而巩固和深化新知。
(2)巧设疑问,体现两“主”:教师通过设疑,指明学习方向,营造探究新知的氛围,有目的,有计划,有层次地启迪学生的思维,让学生成为学习的主人,使学生在观察、比较、讨论、研究等活动中参与教学全过程,从而达到掌握新知和发展能力的目的。
(3)运用迁移,深化提高:运用知识的迁移规律,培养学生利用旧知识学习新知识的能力,从而使学生主动学习、掌握知识、形成技能。
三、说学法
通过本课的学习,使学生学会观察、比较、归纳、概括出 ( ),让学生主动探索、主动交流、主动提问。
四、说教学过程
本节课我主要设计了四个教学程序:情境导入(或复习导入)、探索新知、实践应用、反馈总结。
(一) 情境导入(或复习导入)
评价:从学生熟悉的生活情境和已有的知识基础出发,找准了新知识的起点,激发起学生的学习兴趣和求知欲。
(二) 探索新知
这一程序主要安排( )个教学环节:
评价:让学生充分经历了操作、观察、比较、想象、推理、反思、归纳、概括等数学活动与数学思考,发现了(),充分的探究活动,既培养了学生的合理的推理能力,又有效促进了学生思维能力的发展。
(三) 实践应用:(评价:练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,有层次、有针对性地设计上述练习,目的是让学生进一步巩固新知的理解。在掌握基础知识的前提下进行拓展练习,可以深化教学内容,培养思维的灵活性)
(四) 反馈总结:今天这节课我们学习的什么内容?你有什么收获?
评价:让学生自己说说本节课的收获,既是对本节课所学知识的回顾与整理,又可以培养学生的概括表达和自我评价的能力。

Ⅸ 小学数学优秀说课稿

《等腰三角形性质定理》说课稿
一, 说教材
本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。
二、 说教学目标
知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。 理解等腰三角形和等边三角形性质定理之间的联系。
过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。
情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。 加强学生数学应用意识。 三、
教学重点与难点
重点:等腰三角形的性质定理。 难点:等腰三角形三线合一性质的运用 四、 说教法与学法
课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。
五、 说教学过程:
学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:
教学过程教学活动设计意图
一、回顾与思考 电脑展示人字型屋顶的图像,提问: 1、 屋顶设计成了何种几何图形? 2、
我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形) 3、它的对称轴是哪一条呢?
由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。
除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。
二、观察与表达1、
观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。
教师用多媒体课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。 2、
得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理:定理1:等腰三角形两底角相等。

定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。
通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。

学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的心理机制不再是仅仅是同化,而是顺应。
三、了解与探究3、探索定理一、(A组口答,B组独立解答) A组:1、等腰直角三角形的两个锐角各等于几度?
2、若等腰三角形顶角为40度,则它的顶角为几度? 3、若等腰三角形底角为40度,则它的底角为几度?
B组:1、若等腰三角形一个内角为40度,则它的其余各角为几度?
2、若等腰三角形一个内角为120度,则它的其余各角为几度? 3、一个内角为60度,则它的其余各角为几度?
(A组口答,B组独立解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。

二、根据性质2填空:
(1)∵AB=AC,AD⊥BC,∴ , 。
(2)∵AB=AC,BD=CD,∴ , 。
A

B D C
(3)∵AB=AC,∠1=∠2,∴ ,
。为了对定理进行进一步探索,设计了以下练习:练习一的整体设计遵循低起点、小分阶、大容量、高密度的原则,其目的是要学生掌握应用等腰三角形性质定理1与三角形内角和定理求角的度数的规律,但教师不是直接将规律灌输给学生,而是让学生在练习过程中自己发现规律,使学生获得从问题中探索共同属性的思维能力。从认知结构看,利用三线合一性质来证明角相等、线段相等或垂直与学生原有认知结构联系较少,需要建构新的认知结构,是一种“顺应”过程,对学生来说有一定困难,因此设计了下面一组填空题,帮助学生进行建构活动。同时,提醒学生注意性质应用应以等腰三角形为前提,为例2的教学作了辅垫,起到分散难点的作用。
四、应用与提高应用举例:如图,某房屋的顶角
∠BAC=120°,过屋顶A的立柱AD⊥BC, 屋椽AB=AC, 求顶架上的∠B, ∠C, ∠CAD的度数。

例1:求证 等腰三角形两底角平分线相等
A

E D

B C
由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤:
①根据命题画出相应的图形,并标出字母 ② 通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。
③探索证法 在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。从已知出发:
a:由AB=AC联想到什么
b:BD、CE是△ABC的角平分线联想到什么
c:由a、b联想到什么
d:由a、b、c联想到什么
e:由d联想到什么

从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?
本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。

“证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。

分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的学生来说,有一定的难度。所以,由教师提出一系列问题,引导学生进行联想。

本题是通过三角形全等来证明两条角平分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,组织学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。
四、应用与提高例2:已知:如图,△
A

O

B D C O’
ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC与D.
求证:BD=CD,AD⊥BC
思考:(1)本题的结论有何特
殊之处?——证明两个结论
(2)你准备如何得出这两个结论?——分别认证或同时证明
(3)哪一种简捷?利用什
么性质?
在此基础上请学生按照例1的思考方法自己寻找解题思路,可以在小组间进行讨论。
变式拓展:
(1) 如图,在例2中若点O是△ABC外一点,AO连线交BC于D,如何求证?
(2) 若点O在BC上呢?
经过例1的学习,学生已有一定推理基础,因此应放手让学生自己去发现证题思路,从而学到新的研究数学学习的方法,并逐渐内化为自己的经验。同时也体现了自主探索、合作交流的学习方式。

在这里有意通过变式让学生经历图形变换过程,并使他们感受到在一定条件下,图形变换不会改变图形的实质,最后将点O移到BC上,使学生体验了从一般到特殊的过程。

想一想:记一块等腰直角三角尺的底边中点为,再从顶点悬挂一个铅锤,把这块三角尺放在房梁上,如果悬线通过点M就能确定房梁是水平的,为什么?通过想一想进一步突出重点与难点,也有利于引导学生运用数学的思维方式去观察、分析现实生活,增强应用数学的意识。

五、心得与体会
通过今天这堂课的研究,我明确了 ,我的收获与感受有
,我还有疑惑之处是
。请学生按这一模式进行小结,培养学生学习——总结——学习——反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。

六、作业
(1)作业本上相应的作业。(2)已知:D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE(1)进一步巩固和提高所学知识(2)及时反馈、查漏补缺(3)体现层次性与开放性

六、 说评价

现代数学教学观念要求学生从“学会”向“会学”转变,本课从定理的发现到定理的应用都有意识地营造一个较为自由的空间,让学生能主动地去观察、猜测、发现、验证,积极地动手、动口、动脑,使学生在学知识的同时形成方法。整个教学过程突出了三个注重:
1、 注重学生参与知识的形成过程,体验应用数学知识解决简单问题的乐趣。 2、 注重师生间、同学间的互动协作、共同提高。
3、 注重知能统一,让学生在获取知识的同时,掌握方法,灵活应用

Ⅹ 小学数学说课稿

“吨的认识”是九年义务教育六年制小学数学教材第六册第三单元“千米和吨说课稿教材简析: 复式条形统计图是苏教版小学数学第九册的内容,是在学生

阅读全文

与数学说课稿范文小学相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99