1. 小学数学论文或案例分析
小学数学教学论文--在小学数学教学中培养学生的思维能力 培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学中一项重要任务 思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。 值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。 《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。 二 培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。()”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面.
2. 小学数学问题
1: (1500-1200)÷1200=25%
2: 1500÷1200-1=25%
3. 小学数学课堂如何提问及案例分析
小学数学教学中怎样有效的提问
一、提出背景
课堂提问是教师教学的重要手段和教学活动的有机组合部分,是“有效教学的核心”,课堂提问是实现师生互动的重要手段,是实现师生之间沟通和理解,培养学生独立人格和创新精神的重要途径;是开启学生智慧之门的钥匙,是信息输出与反馈的纽带,是教师组织、引领和实施教学过程中不可缺少的教学行为。
然而,由于诸多原因,目前的小学数学课堂教学中,提问作用发挥的远远不够,提问的有效性差的问题显得相当突出。提问随意,缺少针对性和启发性;提问封闭,不能很好地促进学生思考问题的针对性与完善性;提问脱离,欠缺站在孩子角度设计问题经验;提问单向,提问只是教师的专利,孩子只处于被动回答状态,没有留给孩子足够思考、有效质疑的空间;没有充分考虑提问的整合及弹性。总之,数学课堂教学中存在低效提问、无效提问的现象,这在一定程度上制约了数学课堂教学效益的提高。怎样优化教师的课堂提问,启迪学生思维,在教学中我有几点粗浅的体会。
二、有效提问的基石——精心预设问题
课堂有效提问的基石在于事先预设一个适宜的问题。课前精心的预设,能让教师更好地驾驭课堂。而一个适宜的问题往往能让学生在愉悦的环境中轻松掌握重点,突破难点。那么如何设计一个适宜的问题呢?
1、问在学生兴趣点上
根据学生好奇、好胜的心理特点,教师要把握教学目标,依据教材,构思既有知识情趣,又能引导学生深入思考的问题。从而引起学生的学习兴趣,激发学生的积极思维。如一位老师在教学“圆的认识”中,巧妙地设立了三个问题:“你们见过的自行车轮是什么形状的”、“有正方形、三角形的车轮吗?为什么?”“那么椭圆形的行不行?”随着这几个新奇问题的思考、讨论,学生思维逐步接近圆的本质,思维状态积极兴奋。
2、问在学生最近发展区
《学记》中说:“善问者如攻坚木”、“先其易者、后其节目”。也就是说我们要充分了解、熟悉、预估学生的学习水平。设计的问题要与学生的智力和知识水平相适应。如果问题过难,学生望而生畏,就会挫伤学生思考的积极性;如果问题过易,学生不动脑筋就能轻易解答,也就无法提高学生的思维能力。现代教学论研究认为:提问最好问在学生的“最近发展区”。
“最近发展区”的问题,具有一定的思考性和挑战性,将学生思维推向“心求通而不能,口欲言而不达”的愤悱境界,在学生大脑中形成一个个兴奋中心,促使学生最大限度地调动相关旧知来积极探究。对于难度较大的问题,可将其分解,依据“最近发展区”理论,创设阶梯式问题情境,形成一定坡度,由易到难,由简到繁,层层推进,导引学生思维一步步延伸、扩展。
3、问在学生有疑难处
教师应认真研究教材,把握住教材的重点,尤其是难点处。对于教材的难点,教师要认真思考设计什么样的问题、设计几个问题,才能更好帮助学生突破难点。如李老师在教学《倍数和因数》一课时,难点之一是让学生掌握找一个数的因数的方法,李老师先放手让学生学习找一个数的因数,然后启迪思考:“怎样找才能做到不重复不遗漏?做到有序呢?”接着让学生讨论、交流、促成了学生对找一个数的因数的方法进行优化处理、提升,并培养了学生方法表达的完整性、有效性。
三、有效提问的关键——遵守提问的原则
1、遵守提问的启发性原则,激发学生积极思维
孔子云:“不愤不启,不悱不发”。要想使我们的课堂提问进入这种境界,就必须用好、用足启发性原则。使我们提出的问题要有一定的探索性、有一定的思索空间,只有这样才能激发学生探究知识本质的愿望,更好地发展学生的思维。 我们要相信学生的生活中积累是厚实的,学生的想象力是不可估量。富有启发性的问题,能促使使学生开动脑筋、积极思考、大胆想象。产生一种“欲罢不能,跃跃欲试”之态。让思维的火花、智慧的灵感充斥课堂中。
2、遵守因材施教原则,尊重学生个体差异
孔子早在两千年前就提出“因材施教”的思想,新课程的核心理念:“为了每一位学生的发展”。这些都要求我们在课堂提问中,要面向全体,因人而异,尊重学生的个体差异。设问要“量身定做”、提问要“量才而问”。在刚才这节课中,难度较大的问题李老师选择由优等生回答,一般的让中等生回答,较容易的让学习有困难的学生回答。这样,每一个问题对于回答的学生来说都属于跳一跳才能摘到的苹果。实践证明,这样因人施问对培养各层次学生的学习兴趣,尤其对破除中差等生对提问的畏惧心理有很好的效果。
3、遵守及时评价原则,享受成功的喜悦
在我们的课堂教学中,经常看到有的教师在学生回答问题之后,就让其“坐下”并立即转入下一项活动;有的甚至不“请”其坐,站也不是,坐也不是,使学生处于尴尬境地。学生回答的到底对不对,好不好,教师自己知道。学生回答后,教师一定要对其作出适当的评价。对回答正确而且有独到见解的学生,教师不应吝啬自己的“大拇指”,应给予必要的甚至放大的赞扬。如在李老师刚才的
4. 一个小学数学教学中的案例分析
这个x年(x月x日开始)应该是指生肖的吧,教材中并没有涉及到这一教学内容,版那么在准备时权就应该把这些干扰条件全部去除。
但如果是课上才发现这个问题的话,当第一个学生回答(我发现1999年是兔年,是从2月16日 开始的),教师应该先肯定这个学生的回答(因为他的回答本身没有错),然后教师可以问:“还有没有其他的发现?”如果第二个学生仍旧回答(我发现2001年是蛇年,是从1月24日开始的。),那么这个时候教师就可以说:“两位同学都是发现了年历表上和生肖有关的信息,那么除了这些,你们还有没有别的发现?”我想如果是自己班的学生的话应该能听懂你的意思。
关于怎样创设情境,如果是家常课的话,我想先提问:关于“年、月、日”你已经了解了哪些知识?从学生的回答中了解他们已经掌握了哪些知识,还有哪些需要着重讲解的。
如果是公开课的话,这节课的引入部分,本身没什么问题啊,只是你准备的学具有一些干扰(生肖),而且因为你的这个问题有一定的开放性,所以学生的回答必定是五花八门的,这个时候就是考验教师在课堂上是否能“收放自如”。
呵呵,随便说说!
5. 要100道小学数学五年级的解决问题
1:体育用品有90个乒乓球,如果每两个装一盒,能正好装完吗?如果每五个装一盒,能正好装完吗?为什么?
90#2=45盒
90#5=18盒
答:如果每两个装一盒,能正好装完如果每五个装一盒,也能正好装完.因为90能整除五.
2:体育店有57个皮球,每三个装在一个盒子里,能正好装完吗?
57#3+19盒
答:能正好装完.
3:甲,乙两个人打打一份10000字的文件,甲每分打115个字,乙每分钟打135个字,几分钟可以打完?
10000#(115+135)=40分
答:40分钟可以打完.
4:五年级同学植树,13或14人一组都正好分完,五年级参加植树的同学至少有多少人?
13X14=192人
答:五年级参加植树的人至少有192人.
下面几道题目虽然属于应用题,但跟方程有关.我都是用方程解答的.
5:两辆汽车从一个地方相背而行.一车每小时行31千米,一车每小时行44千米.经过多少分钟后两车相距300千米?
方程:
解:两车X时后相遇.
31X+44X=300
75X=300
X=4
4小时=240分钟
答:经过240分钟后两车相距300千米.
6:两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工.甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?
解:设X天后挖通隧道
3X+4X=119
7X=119
X=17
答:经过17天挖通隧道.
7:学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?
解:设舞蹈队有X人
6X+X=140
7X=140
X=20人
答:舞蹈队有20人.
从这里开始不是方程题了.
8:兄弟两个人同时从家里到体育馆,路长1300米.哥哥每分步行80米,弟弟骑自行车以每分180米的速度到体育馆后立刻返回,途中与哥哥相遇,这时哥哥走了几分钟?
1300X2=2600米 2600#(180+80)
=2600#260
=10分
答:这时哥哥走了10分钟.
9::六一儿童节,王老师买了360块饼干,480块糖,400个水果,制作精美小礼包,分给小朋友作为礼物,至多可做几个小礼包?
360+480+400=1240个
答:至多可做1240个小礼包.
10:淘气买了40个气球,请同学来家比吹气球.为了能把气球平分,淘气应该请几个同学来比吹气球?淘气不参加.
40#2=20人 40#4=10人 40#5=8人
40#8=5人 40#@0=4人 40#20=2人
答:请同学的方法有6种,分别是:20人,10人,5人,8人,4人,2人.
11:一块梯形的玉米地,上底15米,下底24米,高18米.每平方米平均种玉米9株,这块地一共可种多少株玉米?
(15+24)X18#2=351平方米
351X9=3195株
答:这块地可种玉米3159株.
12:某班学生人数在100人以内,列队时,每排5人,4人,3人都刚好多一人,这班有多少人?
5X4X3=60人 60+1=61人
答:这班有61人.
13:王月有一盒巧克力糖,每次7粒,5粒,3粒的数都余1粒,这盒巧克力糖至少有多少粒?
7X5X3=105粒 105+1=106粒
答:这盒巧克力糖至少有106粒.
14:晨光小区有一段长15米,宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖,请你算一算:需要几块这样的方砖?如果每块方砖3元,那么铺这段甬道需要多少元?
15米=150分米 1.2米=12分米 30厘米=3分米
150X12=1800平方分米 3X3=9平方分米
1800#9=200块 200X3=600元
答:需要200块这样的方砖,需要600元.
15:有两块面积相等的平行四边形实验田,一块底边长70米,高45米,另一块底边长90米,高是多少米?
70X45=3150平方米 3150#90=35米
答:高是35米.
16:一批钢管叠成一堆,最下层有10根,每上1层少放1根,最上1层放了5根.这批钢管有多少根?
10-5+1=6层 (10+5)X6#2
=15X6#2
=90#2
=45根
答:这批钢管有45根.
1.东高村要修建一个长方体的蓄水池,计划能蓄水720吨.已知水池的长是18米,宽是8米,深至少是多少米?(1立方米的水重1吨.)(用方程解答)
2.一个长方体游泳池,长50米,宽25米,池内原来水深1.2米.如果用水泵向外排水,每分钟排水2.5立方米,需要多少小时排完?
3.一个长方体的汽油桶,底面积是16平方分米,高是6分米,如果1升汽油中0.74千克,这个有同可以装多少千克汽油?
4.用2100个棱长1厘米的正方体堆成一个长方体,它的高是1分米,长和宽都大于高.它的长和宽各是多少厘米?
第一题:
深至少是X米,
18*8X=720
144X=720
X=5
答:深至少是5米.
第二题:
50*25*1.2=1500(立方米)
1500/25=600(分钟)
600分钟=10小时
答:需要10小时.
第三题:
16*6=96立方米=96升
96*0.74=71.04千克
答:这个油桶可以装71.04千克.
第四题:
1分米=10厘米
2100/10=210(厘米)
210/70=3(厘米)或者 210/30=70(厘米)
答:长为70厘米;宽为3厘米;或者长为30;宽为7厘米.
第5题:
有一个正方体,边长为2厘米,求这个正方体的表面积?
答案:2*2*6=24(平方厘米)
第6题:
有一个长方体,长2厘米,高2厘米,宽1厘米,求表面积?
答案:(2*2+2*1+2*1)*2=16(平方厘米)
第7题:一块长方体的木板,长2米,宽5米,厚8米,它的表面积是多少平方米?体积是多少立方米?
答案:表面积:(2*5+2*8+5*8)*2=132(平方米)
体积:2*5*8=80(立方米)
第8道:一个正方体油桶的棱长0.8米,它的容积是多少升?做这个油桶至收用铁皮多少平方分米?
0.8*0.8*0.8=0.512(平方米)=512(升)
0.8*0.8*6=3.084(平方米)=348(平方分米)
第9道:有三根木棒,分别长12厘米,44厘米,56厘米.要把他们都截成同样长的小棒,不许剩余,每根小棒最长能有多少厘米?
答案:这里求的是12,44,56,的最大的公约数!你自己算吧!
第10题:一个无盖的正方体鱼缸,棱长50厘米,至少需要多大玻璃?
答案:50*50*5=12500(平方厘米)
第11题:一包糖果,分8个人或10个人,都能正好分完,这包糖果至少有多少块?
答案:这里是求8和10的最小公倍数.
第12题:有一箱牛奶,分5个人或分7个人,都剩一瓶牛奶,这箱牛奶至少有多少瓶?
答案:这里求的是5和7的最小公倍数在+上1
第13题:长方形地长40米、宽45米,和另一块底为75米的平行四边形的面积相等,这块平行四边形地的高多少米?
答案:40*45=1800(平方米)
1800/75=24(米)
第14题:三角形的面积是3.4平方米,和它等地等高的平行四边形面积是多少?
答案:3.4*2=6.8(平方米)
第15题:一个长方体水池长8.5米,宽4米,深1.5米,这个水池占底面积是多少平方米?
答案:8.5*4=34(平方米)
第16题:一个长方体木箱,长12分米,宽8分米,高6.5分米,如果在它的围标涂上油漆,涂油漆的面积有多少平方分米?
答案:12*8+(12*6.5+8*6.5)*2=356(平方分米)
第17题:梯形的上底是5米,下底12米,高8米,它的面积是多少?
答案:(5+12)*8=68(平方米)
第18题:做长方体的箱子,长0.8米,宽.6米,高0.4米.做这个箱子至少要多少材料?
答案:(0.9*0.6+0.6*0.4+0.9*0.4)*2=228(平方米)
第19题:正方体纸盒棱长0.6米,做一个纸盒至少要用多少材料?
答案:0.6*0.6*6=2.16(平方米)
第20题:小明里学校有1000米,他每分钟走100米,要多少小时才能回到学校?
答案:1000/100=10(分钟)=1/6小时21. 两个数的最大公因数是30,他们的最小公倍数是180,已知其中一个数为180,求另一数?
答案:30
22.从运动场的一端到另一端全长96米,原来从一端起到另一端每隔4米插一面小红旗,现在要改成每隔6米插一面小红旗,求不拔出来的小红旗有多少面?
答案:因为运动场全长96 每隔4米 有1面红旗 可知一共有96除4=24面 又因为改成每6米一面 3成4=12 2成6=12 所以每四面红旗拔掉2根24除2=12面
23.有25个桃子,75个橘子,分给若干名小朋友,要求每人分得的桃子,橘子数相等,那么最多可非给多少个小朋友?每个小朋友分得桃子多少个?橘子多少个?
答案:(25,75)=25个(25是25和75的最大公约数)
25/25=1个
75/25=3个
最多可分给25个小朋友,每个小朋友分得桃子1个,橘子3个.
24.兰兰的父母在外地工作,她住在奶奶家.妈妈每6天开看她一次,爸爸路远,每9天才能来看她一次.请你想一想,至少多少天爸爸,妈妈能同时来看她?两个月内他们全家能团聚几次?
答案:(6,9)=18天(18是6和9的最小公倍数)
60/18=3次.6天
至少18天爸爸,妈妈能同时来看她,两个月内他们全家能团聚3次
25.路车每6分钟发一次车,15路每8分钟发一次车,9路车每12分钟发一次车,现在三个路的公共汽车同时从起点出发,至少在过多少分钟三个路的车又同时发车.
答案:6=2*3
8=2*2*2
12=2*3*2
3*2*2*2=24
26.长72分米,宽48分米为最大公因数是24分米裁成面积最大的正方形桌布边长为2米4分米
答案:(72÷24)×(48÷24)=3×2=6
可以裁6块.
27.阿姨今天给月季和君子兰同时浇了水,月季每4天浇一次水,君子兰每6天浇一次水 ,至少多少天以后给这两种花同时浇水?
答案;求4和6的最小公倍数,等于24天
28. 有饼30块,橙36个,分给若干个儿童,每人所得的相等,最多可分给儿童多少人?
答案:求30和36的最大公约数,等于6
29.上米50公斤,中米60公斤,下米90公斤,分别装成重量相等的若干袋,各种米恰好装完,每袋的重量最多是多少公斤?
答案:求50.60和90的最大公约数,等于10
30.用24朵红花.36朵黄花和48朵紫花作成花束,要使花束里有同样多的花.这些花最多能做多少花束?
答案:求24.36和48的最大公约数,等于12
31.有一个长方体,宽是高的3倍,宽与高的长度和等于长.现将它横切一刀,再竖切一刀,得到了4个小长方体,表面积增加了200平方厘米.原来长方体的体积是多少?
答案:设高为a,宽为3a,长为4a
那么横切之后,表面积增加2*3a*4a
竖切之后,表面积增加2*a*3a
24a^2+6a^2=200
a=(20/3)^0.5
体积v=12a^3=160/3*(15)^0.5
32.一只无盖的长方形鱼缸,长 0.4米,宽 0.25米,深 0.3米,做这只鱼缸至少要用玻璃多少平方米?
答案:0.4×0.25+2×0.25×0.3+0.4×0.3
=0.1+0.15+0.24
=0.49㎡
33.用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米?
答案:36÷12=3㎝
6×3×3
=54平方厘米
6. 小学数学课教学案例
《乘法的初步认识》案例分析
一、案例描述
1、创设情境,激趣引入
(1)谈活:你们喜欢摆图吗?你最喜欢摆什么?(学生争先恐后地回答)
生1:我最喜欢摆房子。
生2:我最喜欢摆汽车。
……
2、动手操作,自主探究
(1)动手操作
①在规定的时间内,摆出相同的图形,看谁摆得多又快。
②说一说,你摆的是什么?给你摆得图形取一个名字。
A、指名说(我摆的叫房子图,我摆的叫电视机,我摆的叫“×”图……)
B、同桌互说
③数一数,你摆一个图形用了几根小棒?那摆这么多图形,一共用了几根小棒?
④算一算,你是怎样列出算式?
学生1:7+7+7+7+7
学生2:4+4+4+4+4+4
学生3:3+3+3+3+3+3+3+3+3+3+3+3+3+3+3(师写时说:我都听糊涂了。生答:有15个3。师及时说:这样说我就清楚了。老师写并请下面的同学帮着数,有些学生就叽里咕噜地说:太长了,真麻烦!)
⑤这些算式,有什么特点?(学生经过认真观察,仔细思考后都争着回答)
生1:加数都一样。(分别请学生说出这条算式的加数)
生2:都是加法。
生3:都有好几个加号。
⑥谈话:这么长,还有比这条3+3……算式更长的算式吗?(有一位学生说出了30个2相加,这时,老师用很惊讶的神态望着他,使他感到很满足、很自豪)如果有100个3相加,你感觉怎么样?(太长了,太麻烦了,一个黑板都写不下)谁有好办法,使这么长的算式变得简短些?
3、自主探究
(1)独立思考后,小组交流。(顿时学生摩拳擦掌,踊跃参与,有的沉思,有的讨论,经过多次探索,热烈地合作交流,在一片兴奋的欢呼声中,学生开始汇报)
(2)汇报:
小组1:用合并加数3+3=6、6+6+6+6+6+6+6+3(下面学生说:还是太长了)
小组2:3+3+3=9,9+9+9+9+9
小组3:15个3相加
小组4:用乘法15×3
师说:同学们想出了这么多的方法,真了不起,但感觉合并加数的方法还是太麻烦,而且我们以前学过加法,你们想知道数学家想出了个更简便的表示法?(学生齐声说:想)
(3)师出示:15×3并说:看到这算式,你想说什么?
学生1:真的很简便!
学生2:这个“×”是什么?
学生3:15哪里来,3哪里来?
学生4:这个算式怎么读?
(根据学生的提问,请学生帮忙,逐一回答)
(4)从学生的提问和回答中引出乘法算式的读法、表示意思、乘号和乘法。
(5)揭示课题:今天我们就学习这种表示求几个相同加数的和的简便写法——乘法。
4、体验运用
(1)找:师:接下来,老师带你们去游乐园一趟,那里就有用乘法来解决的问题,看谁找得多?
(2)写:针对问题写出相应的乘法算式和加法算式。
(3)说:什么样的问题可以用乘法来解决?
5、谈收获:……
6、生活拓展:生活中还有很多很多可以用乘法解决的问题,大家课后去找找,看谁找得多。
二、案例分析
本节课是让学生初步体会乘法的含义,认识乘号,会写,会读乘法算式。教学设计,有以下几个特点:
(一)合理地组织、运用教材
在课的开始,根据学生的年龄特点,以“摆小棒”的活动来激发了学生的学习兴趣,调动了学生学习的积极性。再通过“列算式求一共用了多少根小棒”使新旧知识的联系更加地紧密,使学生的学习状态自然地从旧知识的巩固转移到新知识的学习中去。最后把课前插图当作给学生体验用知识的资源,学生会觉得轻松又兴趣盎然。
(二)注重“数学与生活的密切联系”。
“乘法的初步认识”这一学习内容,是学生刚刚接触的学习内容,对于低年级学生的理解能力而言,是一个比较抽象的知识。因此,只有让学生通过实际操作,获得大量的感性认识,才能逐步形成“乘法”的概念。根据本节课的特点,整节课的教学,都能紧紧围绕学生已有的学习经验“借助直观、展示过程、启迪思维”这一教学模式进行课堂教学。在学生初步形成“乘法”的概念的教学后,为了让学生进一步理解“乘法”,我带学生到公园去应用知识,解决问题,让学生真正知道:只有求几个相同加数的和时才能用乘法,并从中获知:数学就在我们身边,产生对数学的亲切之感。。
(三)注重学生的个人体悟,自主产生求知欲望
学生是学习的主人,整个数学活动都要以学生为主体,教师只是引导者、合作者。本节课的教学,很好地体现了学生的主体地位,学生在学习的过程中,既能独立自主地学习数学知识,又能合理地引导学生进行合作探究。在初步形成“乘法”的概念前,让学生通过“列加法算式”体悟遇到这种情况用加法真的很麻烦,学生有了这种体悟后,引导他们去想更好办法,就有了很大激情、动力。当他们知道自己的办法还是不大完美时,就有了知道数学家的办法的强烈欲望。而且会不知不觉产生对数学家、对数学知识的强烈求知。再引导学生通过小组的合作探究,找出知识的共同特征,并带他们到生活中去用乘法,从而初步形成了“乘法”的概念,并体悟学习乘法的意义。
总之,在数学课堂教学要真正体现“以学生的发展为本”的教学理念,就必须转变教学观念,创造性地运用教材,创造性地设计学习活动,从而有效促进基于学生的生活实践或学习探究活动的预设生成中,让学习主体的认知结构、自主探究、创新能力与个性发展等方面持续地、动态地生成于开放合作,积极互动的课堂学习环境中,如叶澜教授所言:“把课堂还给学生,让课堂充满生命活力。”这节课接近尾声时,让孩子们说一说公园中哪些问题可以用乘法算式来计算?孩子们从生活经验和已有的知识七嘴八舌地说开了。这样孩子们的思维又得到了发展。整个过程,学生亲身感受到的并不是老师在传授知识,而是他们自己体验、探讨出来的。
7. 小学数学调研案例
小学数学四年级上《确定位置(一)》教学案例
2009-11-06 21:30:41 来源:未知 【大 中 小】 评论: 条
摘要: 【 教材分析 】 1. 教材编写特点 : 本单元的主要教学内容及课时安排 : 教学内容 课时安排 确定位置(一) 3 确定位置(二) : 练习八 1 确定位置(一)是探索确定位置的方法,确定位置(二)是根据方向和距离确定物体的位置。 本节课涉及在具体情境中用数-
【教材分析】
1.教材编写特点:
本单元的主要教学内容及课时安排:
教学内容
课时安排
确定位置(一)
3
确定位置(二):
练习八
1
确定位置(一)是探索确定位置的方法,确定位置(二)是根据方向和距离确定物体的位置。
本节课涉及在具体情境中用数对确定位置,历属于小学阶段空间与图形中“图形与位置”的教学范畴。在《全日制义务教育数学课程标准解读(实验稿)》中第一学段中的 目标是:会用上、下、左、右、前、后描述物体的相对位置;在东、南、西、北和东北、西北、东南、西南中,给定一个方向(东、南、西或北)辨认其余七个方向,并能用这些词语描绘物体所在的方向;会看简单的路线图,并作出大致的定性描述。
第二学段的要求是在具体情境中,能用数对来表示位置,并能在方格纸上用数对确定位置的点与点的位置关系,即用有序数对做定量描述。
其后续学习内容为第三学段,图形与坐标中认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标;能在方格纸上建立适当的直角坐标系,描述物体的位置;在同一直角坐标系中,感受图形变换后点的坐标的变化;灵活运用不同的方式确定物体的位置。
由上,我们认为这一节课主要需要解决两件事情:第一,根据实际情境感受建立平面坐标系的必要性和重要性,并试着建立合适的坐标系,以便获得确定点的位置的方法。一种是平面直角坐标系的方法,一种是平面极坐标系的方法(即用距离和角度的方法);第二,在已经建立好的平面直角(或平面极)坐标系中,能根据给出的数对,画出数对对应的点。不论是两个有序的同量称的数(如,(3,4),这里的3与4是同一个单位下的数,比如3米,或者3格),还是(3,40°)都应该是在事先有坐标系的前提下,才能确定唯一一个点。
在整个小学阶段,毫无疑问,重点应该是第二件事情,难点是第一件事情。这样就整体把握了小学阶段“确定位置”的全部内容。
因此本节课着重于体现确定点的位置,一定要在具体情境中渗透坐标系的建立,确立其原点,即观察者的眼睛,确立从哪儿开始看,以及看的方向,为以后正式学习平面直角坐标系奠定基础。
2、本节课教学内容的数学核心思想:
如何在平面上确定位置(坐标系选定后,需要两个参数)。无论是几排几列,距离和方向或者其他坐标都是用两个参数来确定位置,因为平面是二维的。
“实物——点阵——方格——坐标”的逐渐抽象过程是重要的坐标系的相对性;原点的不同造成坐标的不同。
数形结合思想:也就是坐标系方法的提升。也就是用代数的方法(在小学阶段主要是算术)研究图形的思想,这是笛卡尔解析几何思想的精髓,过去都是用基本图形研究更复杂一些的图形,即从几何到几何.
对应:在给定的平面坐标系中,每一个点有唯一的坐标(x,y);另外,对于给定的有序数对(x,y)有唯一确定的点与之对应,这就是一一对应思想在这里问题中的具体体现;
序的结构:自然数可以表示一个列队中每个元素的排队顺序,第4个是在第3个的后面,,这是自然数作为“序数”的特征;那么,在给定的平面直角坐标系中,怎么理解(3,4)和(4,3)不一样呢?其实,类比地看,就是把平面上所有的整格点(整数为坐标的点),也可以象直线上的整数点一样排列,只不过要用到两条线,要用到两个数。这样我们就像理解3和4是不一样的,也能接受(3,4)与(4,3)是不一样的两个点。在实际教学中,要通过问题解决使学生感受这种“序”关系,理解(3,4)与(4,3)的差异。
其中,数形结合思想、对应可以在许多学习内容中体现。序的结构最为抽象,学生不易深刻理解,只能感受。
当然,在一节课同时体现以上几个方面是很困难的,那么我们就需要每节课思考在什么地方体现什么核心思想。第一节课可以借助具体情境的创设,使学生产生用数对确定位置必须依赖于方格或点阵,即在平面(两维空间)上确定位置必须要有两个参数及坐标原点,从而达到在学生头脑中建立平面直角坐标系的雏形的作用,继而培养学生空间观念、推理能力,以及更好地认识与把握我们生存的现实空间。据此,我们设计了确定位置这节课的学科思路,这就是通过教室座位图的具体情况直接引用数对确定位置的方法,通过创设用数对表示一个人在空教室中的位置的情境,使学生体会在二维的平面上确定位置必须在选下(确定)的坐标系上,即给定一个原点,给定横轴和纵轴时,通过2个参数,才能确定一个点在平面中的位置。这样做既符合学生的认知水平,也体现了数学上坐标方法的精神实质,为以后正式学习平面直角坐标系奠定了基础。
【学生分析】
1、学生已有的知识基础
在第一学段中学生经历了用上、下、左、右、前、后及其余七个方向描述物体的相对位置;会看简单的路线图的粗犷的定性描述等知识的学习。通过课前调研可以看出学生对于自己前、后、左、右的同学均能快速准确说出其姓名,但对于东南、东北、西南、西北分别是哪位同学判断和指认困难较大,因此在学习确定位置(二)时会产生较大阻力,必须要提前对此部分知识进行必要的强化复习。但本课学习的用数对方法确定位置对于此部分的前射影响不大。
2、已有的生活经验和学习该内容的经验
在学校的学习生活中我们一般都用第几组第几个来描述自己所在的位置,所以学生对该知识来说很熟悉,而且在访谈的5位学生对于自己在教室的位置均能快速准确说出,而且通过调研,学生在教室中的组与行的确认一致,这就为学习感悟坐标系具备良好的生活经验基础。
3、学习该内容的可能的困难
虽然学生对于用数对确定物体位置的方法有一定的生活和学习经验,但通过调研可以看出,学生画出自己的位置的方法并不一致,其中2位学生用点阵的方法,而另一位用画格子的方法,还有2位学生不会画,这样就要在学生自己体会坐标的由来过程中部分学生会产生困难。教学应设计一定的方法如学生讨论,两人共同完成等手段帮助部分学生突破此难点。
4、学习的兴趣、学习方式和学法分析
学生对于熟悉的生活情境比较感兴趣,但是对于直角坐标系的认识是模糊的,因此教学中注意让学生感受平平面图形的抽象过程,体会数学抽象与生活。
5、再思考
根据学情调查,我设计了确定位置(一)的教学思路,就是通过教室座位图的具体情况直接引出用数对确定位置的方法。通过创设用数对表示一个人在教室中的位置的情境,使学生体会在二维的平面上确定位置必须在选定(确定)的坐标系上,即给定一个原点,给定横轴和纵轴时,通过2个参数,才能确定一个点在平面中的位置。这样做既符合学生的认知水平,也体现了数学上坐标方法的精神实质,为以后正式学习平面直角坐标系奠定了基础,同时达到发展学生的空间观念的目的。
附:学生调研方案
调查时间:2007年3月
调查对象:北京市海淀区第二实验小学三(2)班学生36人
调查题目、目的及结果分析:
1、(1)说一说大门、游乐园、天鹅湖分别在花房的什么方向。
(2)花房的东北方向是猴山,西北方向是鸟房,分别画出它们的位置。
(3)进大门经过花房到天鹅湖要走多少米?进大门经过花房到游乐园要走多少米?
目的:调研学生对已有知识基础(前、后、左、右,东、南、西、北,东南、东北、西南、西北)等方面的掌握情况,以及解决问题的基本技能的情况。
本测试对本校三年级2班的36位学生进行,其中22位学生全对,占被测总数的61.1%,其中5位学生落了题目属于习惯问题;还有6人对于游乐场、天鹅湖的位置判断错误,另外把猴山与鸟房写错方向的有3人,他们对于东南、东北、西南、西北等方向的确认困难与调研结果一致;还有3人计算进大门经过花房到天鹅湖要走多少米?进大门经过花房到游乐园要走多少米?产生错误,属于应用能力较差。
2、访谈题目: 说一说你的座位前、后、左、右以及东南、东北、西南、西北分别是哪位同学。
目的:调研学生对所学知识的掌握及应用经验
被访谈的5位学生对于自己前、后、左、右的同学均能快速准确说出其姓名,但对于东南、东北、西南、西北分别是哪位同学判断和指认困难较大,因此在学习确定位置(二)时会产生较大阻力,必须要提前对此部分知识进行必要的强化复习。但本课学习的用数对方法确定位置对于此部分的前射影响不大.
3、访谈题目: 用描述性的语言,说说自己在班里的位置并用简单的方法写下来。
目的:调研学生对要学的知识(数对)确定位置的经验和用数对表示位置将遇到的问题。
(1)被访谈的5位学生对于自己在教室的位置均能快速准确说出,而且通过调研,学生在教室中的组与行的确认一致,这就为学习感悟坐标系具备良好的生活经验基础,课堂教学可以开门见山地进入新课,可以节约时间。
(2)被访谈的5位学生画出自己的位置的方法并不一致,其中2位用点阵的方法,而另一位用划格子的方法,还有2位学生不会画,这样就要在学生自己体会坐标的由来过程中部分学生会产生困难。教学应设计一定的方法如学生讨论,两人共同完成等手段帮助部分学生突破此难点。
【学习目标】
1.结合具体生活情境,体验确定位置的必要性和重要性,探索确定位置的方法。初步感知直角坐标系雏形(思想和方法),掌握在方格纸上用有序“数对”确定点在平面中的位置的方法。
2.经历观察空间的物体,并能用适当的数学知识描述观察的空间对象的数学化过程,提高学生运用数学符号表示生活现象的认识水平,通过位置的确定发展学生的空间观念。发展空间观念
3.让学生体验数学的简洁美,感受丰富的确定位置的现实背景,体会数学的价值和数学与实际生活的密切联系。
【教学活动】
活动
内容
活动的组织与实施
设计意图
时间
分配
教师活动
学生活动
创设情境生活引入
师:同学们我们做个游戏吧,击鼓传花。要求铃声停,红花落在谁手上,大家请他表演节目。
1、先请8个孩子上前面站一排。
2、再请8个孩子上前面站两排。
师:为什么同样是XX同学演节目,位置却发生变化了呢?
师小结:同学们说的不错,只有一排同学时,我们介绍XX的位置只要介绍从左往右数他在第几个就行了。但如果两排或更多排时,就要介绍清楚他在第几排第几个了。
师:那么同学们知道自己在教室的位置吗?能介绍一下班长的位置吗?
板书:第几个,第2排第几个
生:刚才只是站一排,所以只告诉大家他在第几个就行了,但现在站两排了,所以就要说他在第几排第几个了。
生起立介绍:我在第几组第几个。
生进行介绍。
游戏不仅激兴趣,还内含着从一维到两维空间的类比过渡,之后采取开门见山的方法入课,让学生介绍自己的位置,使学生的生活经验作为重要的课程学习资源,使学生感受到确定位置的现实背景,体会数学就在身边。
1分钟
探索方法引出数对
师:看来大家都知道自己在教室的位置,用什么简便的办法来表示同学们在教室的位置呢?我们比比看谁写的简单、正确。
师组织反馈
师:请你介绍自己的写法并说说这样写的道理。
师:我们看这几种方法虽然不同,有没有共同的特点?
师:为什么一定要用2个数字确定位置呢?
师小结:同学们的想法真不错,用两个数字表示同学在教室的位置,你们的想法已经接近数学家的想法了,他们也用两个数字确定位置板书(3,5),这种方法叫数对。读作数对(3,5)。
学生独立完成。
生介绍自己写的情况。
生指出。
生1:我在第二组第五个,我觉得这样写清楚、明白。
生2:我写的组三第1;组三表示第三组,第1表示第一个,我觉得这样能简单。
生3:我的方法是七1;七表示第七组,1表示第一个……
生:他们都是用两个数字确定位置的。
生:因为只有知道第几组第几个,才能确定位置。
让学生在具体的情境中用简洁的方法写出自己在教室中的位置,这就为学生提供自主探究的空间。同学互相判断的学习设计,是为了进一步确认学生是否理解了数对表示一个平面中点的位置的方法,同时也使一开始没有理解的学生有再次学习的机会,使更多的学生学会数对表示的基本方法,实现教学目标中的基本要求。
13分钟
师:请同学用数对写下自己的位置。
师:我们作个小游戏:看谁反应快!一个同学用数对说出好友的位置,其他同学判断是谁。
师:小青同学现在也在上数学课,让我们一块儿走进她们班去看一看。(出示主题图)
学生独立完成并汇报
学生说数对,其他学生判断。
生:打开书P79,认真看图,完成练习。
全班反馈。
合作
交流
渗透
坐标
师:这是一间教室的平面图,你能用数对表示小红同学的位置吗?
师:请你想办法,把小红的位置用数对表示出来。
自己想一想,两个人互相说说,在图上画一画。
教师巡视。
师组织小组交流
师:我们看这两个组的汇报,用假设的方法标出班级同学的排列情况,说的都有道理,点子和格子看起来比较简洁。但同样的一间教室为什么小红的数对位置却不相同,怎么办?
师小结:我们要做一个规定,规定这间教室的列与行。
出示课件:教室中人员的点阵图(42名学生,7列6行,小红的位置描红)
师:谁说说小红在这间教室中的位置。有不同意见吗?
师:我们统一了这间教室的列与行,为什麽小红的数对位置还不一样呢?
请你们上来指着说说你是怎麽看的?
师小结:看来我们在一个具体环境中确定物体的位置一定要先做规定,确定一个点起始位置,第二,确定几列与几行以及方向。一般情况下人们习惯从左往右确定列,从下往上确定行。
师出示课件:这样我们就能准确地说出小
生:不能,因为教室没有桌椅,没有小组。
学生小组交流,在纸上画图。(有几种情况:点阵排列;画出表格)
各组交流。
学生汇报各组的情况,
组1:用点阵形式表示。
组2:用方格形式表示。
生:因为同学们画的列和行不一样,所以数对不同,必须要统一有多少组多少行。
生1:小红的位置是(5,4)。
生2:小红的位置是(5, 3)。
生上前指图说明。
生:两种说法都对,数对(5,4)把门的组作为第一组,数对(5, 3)把另一边
创设只有一位学生的教室平面图,并用数对表示这位学生位置的问题情境,使学生对数对确定位置所依赖的2个参数的产生或者说来源进行探究。通过学生的思考、交流、尝试,使得学生真正感知直角坐标系的内涵。为中学学习平面直角坐标系打下基础。数学思考的形成借助于一定的数学问题情境,通过探究性的实践活动,让学生在活动中逐步领悟。
18分钟
拓展提高寻找规律
小红在这间教室中的位置了。
师:刚才我们研究了用数对表示位置,大家掌握得很好,下面我可要考考大家了。
出示方格图:
师:请你标出(3,5)与(5,3)所在的位置,他们表示同一个学生吗? 3和5分别表示什么?
师小结:我明白了,数对表示的方法是先列后行(板书列 行),是有顺序的。当一列与一行相交时就出现一个数对,也就是一个位置才确定下来了否则数对中的一个数字只表示一行或一列不能确定一个点。
师:请你在方格纸上标出5个点的数对,比一比谁写的最快。
师:观察所写的数对你有什么发现?如果再这样写下去数对会是什麽?会在第几行第几列?
师小结:看来用数对确定位置真奇妙。
作为第一组,所以都对。
生1不是一个同学,(3,5)表示第三组第五个;(5,3)表示第五组第三个。
生2(3,5)中 3表示第三组,5表示第五个。(5,3)中 3表示第三个,5表示第五组。
生1:我们发现每组同学的位置数对中第一个数都一样。而且连接这些点就画出了一条横线。
生2:每行同学的数对第二个数都一样连接这些点就画出了一条竖线。
生3:我们发现连接数对(1,1)、(2,2)、(3,3),(4,4)、(5,5)、(6,6)正好是这班同学的对角线……
学生的水平不一,在纸上标出5点的数对,聪明的学生会发现各点排列的规律,从而发现数对的规律,而弱一些的学生再次进行了练习。这就很好地将数与形进行统一。这样设计旨在注重发展学生观察、抽象的能力。突出学生在课堂上的能动性、创造性。
8. 什么是小学数学应用题的教学案例
什么是小学数学应用题的教学案例
小学数学应用题教学案例分析
在小学数学教学中,应用题的教学占有重要地位。如何教好这部分知识,下面谈谈我的一些做法和体会。
一、培养学生的审题习惯
细致地审题,弄明白题意,是准确解答应用题的先决条件。因此,在教学中可先让学生根据解题要求找出题中直接条件和间接条件,构建起条件与问题之间的联系,确定数量关系。为了便于分析问题中的已知量与未知量之间的相依关系,审题时可要求学生边读题边思考,用不同的符号划出条件和问题或用线段图把已知条件和所求问题表示出来。
为了培养儿童细致审题的习惯,我常把一些容易混淆的题目同时出现,让学生分析计算。例如:①图书室的科技书与故事书共3000册,科技书的册数是故事书的2/3,有科技书多少册?
②图书室有故事书3000册,科技书册数是故事书的2/3,有科技书多少册?
题①中3000册为共有数,题②中3000册是一种的,因此计算方法不相同。经常进行此类练习,就容易养成认真审题的习惯。
二、教给学生分析应用题常用的推理方法
在解题过程中,学生往往习惯于模仿教师和例题的解答方法,机械地去完成。因此,教给学生分析应用题的推理方法,帮助学生明确解题思路至关重要。分析法和综合法是常用的分析方法。所谓分析法,就是从应用题中欲求的问题出发进行分析,首先考虑,为了解题需要哪些条件,而这些条件哪些是已知的,哪些是未知的,直到未知条件都能在题目中找到为止。例如:甲车一次运煤300千克,乙车比甲车多运50千克,两车一次共运煤多少千克?
指导学生口述,要求两车一次共运煤多少千克?根据题意必须知道哪两个条件(甲车运的和乙车运的)?题中列出的条件哪个是已知的(甲车运的),哪个是未知的(乙车运的),应先求什么(乙车运的300+50=350)?然后再求什么(两车一共用煤多少千克,300+350=650)?
综合法是从应用题的已知条件出发,通过分析推导出题中要求的问题。如上例,引导学生这样想:知道甲车运煤300千克,乙车比甲车多用50千克,可以求出乙车运煤重量(300+50=350),有了这个条件就能求出两车一共运煤多少千克?(300+350=650)。通过上面题的两种解法可以看出,不论是用分析法还是用综合法,都要把应用题的已知条件和所求 问题结合起来考虑,所求问题是思考方向,已知条件是解题的依据。
三、对易混淆的问题进行对比分析
对一些有联系而又容易混淆的应用题可引导学生进行对比分析,例如:求一个数的几分之几与已知一个数的几分之几是多少,求这个数的应用题,学生往往容易混淆。一是他们分不清是用乘法还是用除法;二是分不清计算时需不需要加括号。因此,可安排下列一组题进行对比教学。
①果园里有梨树240棵,苹果树占梨树的1/3,有苹果树多少棵?
②果园里有梨树240棵,占苹果树的1/3,有苹果树多少棵?
③果园里有梨树240棵,苹果树比梨树少1/3,有苹果树多少棵?
④果园里有梨树240棵,比苹果树少1/3,有苹果树多少棵?
⑤果园里有梨树240棵,苹果树比梨树多1/3,有苹果棵多少棵?
⑥果园里有梨树240棵,比苹果树多1/3,有苹果树多少棵?
两数相比较,以后面的数为标准数,前面的数为比较数,即与谁相比谁为标准数(通常设标准数为1)。已知一个数,求它的几分之几是多少与已知一个数的几分几之是多少,求这个数。这两类应用题的相同点是:都知道比较数占标准数的几分之几;不同点是:前者是已知标准数求比较数,后者是已知比较数求标准数。题①、③、⑤都是苹果树与梨树相比较,梨树的棵数为标准数,苹果树的棵数为比较数,梨树的棵数已经知道,因此,它们属于前类用乘法。题②、④、⑥都是梨树与苹果树相比较,苹果树的棵数为标准数,梨树的棵树为比较数,苹果树的棵数为标准数,梨树的棵数为比较数,苹果树的棵数题目中都不知道,因此,它属于后类用除法。题①、②中比较数占标准数的几分之几已经知道,计算时不用“括号”,题③、④、⑤、⑥中比较数占标准数的几分之几不知道,需由1加几分之几和1减几分之几求得,因此计算时需加“括号”。
四、要引导学生自编应用题
让学生了解应用题的结构,重视自编应用题的教学,是提高解题能力的重要环节。在低年级进行简单应用题教学时,就让学生了解一道应用题总题由已知条件和所求问题两部分组成,因此,可进行填空练习。
如:(1)学校举行运动会有女运动员153人,男运动员比女运动员多37人,?(补问题)
(2)学校举行运动会,有女运动员153人,,一共有多少人?(补合适条件)
在高年级要引导学生自编应用题,通过自编,使学生认识和掌握各类应用题的结构特点。如:
1、按指定算式编题:如按算式240×1/3=?编一道应用题。
2、把一种应用题改编成另一种形式的应用题:如我班有45名学生,女生占2/5,女生有多少人?把它改编成一道已知一个数的几分之几是多少,求这个数的应用题。
3、指定题目类型编题,如编道反比例应用题。
指导学生自编应用题,应让学生结合实际,编写他们自己所熟悉的事物。