⑴ 小学人教版三年级下《年月日》中运用了哪些“数学思想方法”
年、月、日这部分内容是学生对时间单位学习的继续和延伸,由于这几个单位都是比较抽象的时间单位,所以教材在编排上非常注重选择和学生生活密切联系的素材进行教学。教材首先给学生呈现了四幅主题图,展现了一些十分有意义的日子,比如中华人民共和国建国日、北京申奥成功的日子、植树节、儿童节等,利用这些素材使学生感受到数学与生活的联系,同时揭示出将要认识的时间单位。接着教材通过例1给学生呈现了一张年历,着重引导学生观察年历,回答一些相关的问题,在这个过程中,有意识地让学生沟通年、月、日之间的关系。另外教材还特别安排“拳头记忆法”和“歌诀记忆法”帮助学生记忆每月的天数。教材例2给学生分别出示了2004年2月和2005年2月两长月历卡,引导学生观察,发现天数是不同的,这样引出平年和闰年的知识,然后再利用“做一做”中呈现的1993年至2004年的二月份月历卡,通过引导学生观察、思考,说明闰年的判断方法。
http://ja.3e.net/sx7/Lesson_86624.html
⑵ 如何在小学数学教学中渗透数学思想方法
《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》
——小学数学教学中渗透数学思想方法思考与实践
汇报:兆麟小学 农丰小学 兰陵小学
今天由我们三人汇报的题目是:《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》
中国科学院院士、著名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”
数学知识和数学思想方法作为小学数学学习的两条线索,一明一暗,相互支撑,其中数学思想方法提示了数学的本质和发展规律,可以说是数学的精髓。下面我们就谈谈数学思想方法。
一、为什么要在教学中渗透数学思想方法
1、基本数学思想方法对学生的发展具有重要意义
一位教育学家曾指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学煌精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用使学生终身受益。”
数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生思维品质,对数学学科的后继学习,对其他学得的学习,乃至学生的终身发展有十分重要的意义。在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观念,形成良好思维素质的关键。不仅能使学生领悟数学的真谛,懂得数学的价值学会数学地思考和解决问题,还可以把知识的学习与能力的培养、智力的发展有机地统一起来。
2.渗透基本数学思想方法是落实新课标精神的需求
数学课程标准把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。基本思想是数学学习的目标之一,其重要性不言而喻。新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验等直观手段解决这些问题。从而加深学生对数学概念、公式、定理、定律的理解,提高学生数学能力和思维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之在。
二、课教材渗透了哪些数学思想
小学数学中最上位的思想就是演绎和归纳,是数学教学的主线。还有一些常用的数学思想方法:
对应思想、——是指对两个集合元素之间联系的把握。许多数学方法来源于对应思想。比如学生在计算练习时常常有 10 ?
20 ×2 ?
30 ?
40 ?
50 ?
形式出现,这其实就体现了对应的思想。如数轴上的一个点就对应一个数,任何一个数都能在数轴上找到相对应的点,一一对应,呈现完美。
符号化思想、——数学发展到今天,已成为一个符号的世界。英国著名数学家素曾说:“什么是数学?数学就是符号加逻辑。”符号化思想即指人们有意识地、普遍地运用符号化的语言去表述研究的对象。符号化思想在整个小学都有较多的渗透,
例如:阿拉伯数字:1、2、3、5、6、……
+、–、 、 等运算符号;
>、<</SPAN>、=、等表示关系的符号;
( )、[ ] 等括号;
表示数的字母:x、y、z等。
字母表示公式:长方形、正方形的面积S=ab S=a²
字母表示计量单位符号:m\cm\dm\mm\g\km等。
集合思想——把一组对象放在一起作为讨论的范围,这就是集合的思想。如:一年级教材在教孩子认数的时候,用一个圈把一些图画圈在里面,这就是孩子最初所接触到集合雏形,
也是第一次对小学生渗透这种集合思想。在以后后的教学中慢慢体现并集、差集、空集等思想。
极限思想——我国古代就对极限思想的思考,古代杰出的数学家刘徽的“割圆术”就是利用极奶子思想的典型。极限思想是研究变量在无限变化中的变化趋势的思想,运用这一思想,人们的思维可以从有限空间向无限空间,从静态向动态发展,从具体到抽象升华。
统计思想——小学数学中的统计思想主要体现在:简单的数据整理和求平均数,简单的统计表和统计图,学生在会整理、制表、作图的同时要能从数据、图表中发现数学问题和数学信息,得出相关的结论。、
假设思想——是先对题目标中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
比较思想——是数学教学中常见的思想方法之一,也是促进学生思维发展的手段。在数学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快找到解题途径。
类比思想——是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边行面积公式和三角形面积公式。这种思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
转化思想——是一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到。
分类思想——体现对数学对象的分类及其分类的标准如自然数的分类,三角形按边分按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。
数形结合思想——数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的帮助分析数量关系。
代换思想——他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
可逆相思——它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题的方法,有时可以代线段图逆推。如:一辆汽车从甲地开往乙地,第一小时行了1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
化归思想方法——把有可能解决或示解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
变中抓不变的思想方法——在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解,如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
数学模型的思想方法——是对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析等过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
这些数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。下面我们就结合自己对数学思想方法的学习与实践,与大家一起交流。
三、让课堂彰显思想的魅力
首先说说备课:备课时要研读教材、明确目标、设计预案,充分挖掘数学思想方法
如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。因此我们在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中。其实,每册教材都有数学思想方法的渗透,我们每册选取有代表性的单元。
这相对所有教学内容只是冰山一角。为此,我在研读教材时,常常要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等。只有我自己做到胸有成竹,方能给学生渗透相应的数学思想。
2上课:创设情境、建立模型、解释应用,渗透数学思想方法
数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。以下面三种课型为例。
①新授课:探索知识的发生与形成,渗透数学思想方法
如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。
在数学教学中,解题是最基本的活动形式。任何一个问题,从提出直到解决,需要具体的数学知识,但更多的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。
如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵。到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思。如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个。如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题。然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案。以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题。通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用。
因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识。
②练习课:经历知识的巩固与应用,渗透数学思想方法
数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。
“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。
如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5 ④1100÷25=11×(100÷25) ⑤1100÷25=1100÷100×4 ⑥ 1100÷25=1000÷25+100÷25。在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法。方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题。学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握。
新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养。
③复习课:学会知识的整理与复习,强化数学思想方法
复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。
数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。
如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后(如下图),再次引导学生将这些平面图形面积计算。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。
(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法
精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。
在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法? 结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。
(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法
学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。
⑶ 举例说明小学数学一年级教材中渗透哪些数学思想
⑴ 符号思想
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将所有的数据实例集为一体,把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象符号化的过程。用符号来体现的数学语言是世界性语言,是一个人数学素养的综合反映。
⑵ 化归思想
化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解,化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。一般是指不可逆向的“变换”。它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。如求组合图形的面积时先把组合图形割补成学过的简单图形,然后计算出各部分面积的和或差,均能使学生体会化归法的本质。
⑶ 分解思想
分解思想就是先把原问题分解为若干便于解决的子问题,分解出若干便于求解的范围,分解出若干便于层层推进的解题步骤,然后逐个加以解决并达到最后顺利解决原问题的目的的一种思想方法。如在五年级《解决问题的策略》教学中“倒退着想”的解题策略就体现了这种思想。
⑷ 转换思想
转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法,这里的变换是可逆的双向变换。在解决数学问题时,转换是一种非常有用的策略。 对问题进行转换时,既可转换已知条件,也可转换问题的结论;转换可以是等价的,也可以是不等价的,用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解,第三步要将转换后问题的解答反演成问题的解答。如果采用等价关系作转换,可直接求出解而省略反演这一步。
⑸ 分类思想
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按因数的个数分素数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理的分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构
⑹ 归纳思想
数学归纳法是一种数学证明方法,典型地用于确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。有一种用于数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式,这就是著名的结构归纳法
⑺ 类比思想
数学上的类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,它能够解决一些表面上看似复杂困难的问题。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟得自然和简洁,从而可以激发起学生的创造力。
⑻ 假设思想
假设思想是一种常用的推测性的数学思考方法利用这种思想可以解一些填空题、判断题和应用题。有些题目数量关系比较隐蔽,难以建立数量之间的联系,或数量关系抽象,无从下手。可先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使得要解决的问题更形象、具体,从而丰富解题思路。
⑼ 比较思想
人类对一切事物的认识,都是建筑在比较的基础上,或同中辨异,或异中求同。俄国教育家乌申斯基说过:“比较是一切理解和一切思维的基础。”小学生学习数学知识,也同样需要通过对数学材料的比较,理解新知的本质意义,掌握知识间的联系和区别。
在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题的途径。
⑽ 极限思想
事物是从量变到质变,极限方法的实质正是通过量变的无限过程达到质变。现行小学教材中有许多处注意了极限思想的渗透。
⑾ 演绎思想
演绎也是理智的活动,但是和直观不同,它们不是理智的单纯活动,必须先假定了某些真理(或定义)之后,然后再凭借这些定义推出一些结论。
⑿ 模型思想
是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。
培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
⒀ 对应思想
对应指的是一个系统中的某一项在性质、作用、位置上跟另一系统中的某一项相当。对应思想可理解为两个集合元素之间的联系的一种思想方法。在小学数学教学中渗透对应思想,有助于提高学生分析问题和解决问题的能力。
⒁ 集合思想
把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素。通俗地说就是:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
⒂ 数形结合思想
就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义又揭示其几何意义,使问题的数量关系和空间形式巧妙、和谐地结合起来,通过数与形的相互转化来解决数学问题的思想。
⒃ 统计思想
在小学数学中增加统计与概率课程的意义在于形成合理解读数据的能力、提高科学认识客观世界的能力、发展在现实情境中解决实际问题的能力。
⒄ 系统思想
系统思想是由若干想到关联、想到作用的要素(或成分)构成具有特定功能的有机整体。系统思想的方法便是要求人们从系统要素相互关系的观点,从系统与要素之间、要素与要素之间,以及系统与外部环境之间的相互关联和相互作用中考察对象,以得出研究和解决问题的最佳方案。
资源来自网络,择优选择。
⑷ 举例说明数的结合思想、函数思想与变换思想在小学数学教材中的渗透
人教版6年级就有渗透::(其他版本本人不太清楚)数形结合思想:例如数轴就是数形结合函数思想回:正比例答和反比例一章变换思想:举个例子来说,圆柱体的表面积求法,就是先将其转换为平面几何,用简单的公式来求的,化繁为简 也就是几何中的变换思想
⑸ 国培作业小学数学的核心思想是什么如何在教学中体现这些核心素养
8、新课程标准的四大领域是:
数与代数、空间与图形、统计与概率、实践与综合应用。
9、课堂是动态的,教师应密切关注教学预设外的生成问题,要:
了解周围的环境以及学生的认知能力;有预见性;要能灵活处理教学过程中发生的各种问题。
10、 新课程标准的四大领域是什么?
答:新课程标准的四大领域是:数与代数、空间与图形、统计与概率、实践与综合应用。
11、 您认为数学是什么?
答:数学是一种工具和技术,语言和文化,更是一种思想方法,它具有丰富和深邃的文化内涵。数学与社会实践、自然现象紧密相联。数学不再是课本中的加减乘除。它可以打开学生的视野,穿越时间的隧道,把过去、现在、将来的有关知识浓缩在一起,供学生采集,让学生分享人类的文化精神财富。
12) 作为一名数学教师您认为应具备的数学素养有哪些?
答:(一)职业道德素养。即:热爱教育事业;热爱学生;热爱学校;热爱所教学科。(二)文化科学素养。即:数学专业知识;教育基本理论;教育科研的基础知识;相关学科知识。(三)业务能力素养。即:全面深入地了解学生的能力;进行思想品德教育的能力;钻研课程标准与教科书的能力;课堂教学能力;组织数学课外活动的能力;教研与科研的能力。(四)教育心理素养。即:应具备良好的身体和心理素质。
13) 你认为好的课时教学目标是什么样的?
答:一个好的课时教学目标应该要符合三维目标的标准。在教学中要加强基础知识、基本技能的理解和应用,注重基础知识与基本技能的发展。通过各种数学教学活动培养学生对自然与社会现象的好奇心、求知欲,实事求是的态度,应用数学的意识和用数学思考与交流的能力,克服困难的自信心、意志力,创新精神与实践能力等。
14.) 读教材图示1(点击打开),回答问题:从每幅图中你都读出什么内容?
答:第一幅图中包含了0的认识、书写、0和实数的对比以及0的加减法;第二幅图中包含了0的认识;第三幅图和第四幅图都是0的认识、书写以及和实数的对比。
15、读14题中的教材图示1,回答问题:它们有什么共同点?
答:它们都是从有到无。目的是引导学生认识“当一个物体都没有时,就用0来表示”。
16.) 读14题中的教材图示1,回答问题:根据您的理解,为什么0的认识要安排在1-5的认识之后?
答:因为0表示一个物体也没有,比较抽象,学生不易理解,在学生认识了1、2、3、4、5等一些实数后,再进行教学便于学生理解掌握。
17.) 读14题中的教材图示1,回答问题:您的教龄是多少年?结合您的教学经历,简要说说您在理解教材方面的经验?还有哪些困惑?需要提供什么样的帮助?
答:我的教龄已经有14年了,但是我从事小学数学的教学工作只有8年。在这8年的数学教学工作中,由于各种原因,我从未上过高年级的数学,在这8年的教学过程中,深挖教材。力争把教学目标及重难点找准。弄清楚教材的设计意图,并把教材中每幅图的图意理解透彻,以便培养学生的思维能力。
18、读教材图示2(点击打开),回答问题:从教材中您能读出哪些内容?
答::一个整数乘法算式中,两个乘数是积的因数,积分别是两个乘数的倍数。通过这种形式让学生体会因数与倍数的相互依存关系,并能使学生能够很快的找出一个数的所有因数。
19、 读18题中的教材图示2,回答问题:这部分教材同以前的不同之处是什么?您认为本教材中不用 整除概念引出因数、倍数的原因是什么?
答:我没有上过以前的教材,不过我认为教材的安排用乘法来引出因数和倍数,是想让学生通过探究,更清楚地发现因数和倍数的关系,比较直观,学生很容易掌握。
20.) 读18题中的教材图示2,回答问题:根据教材的变化,您认为在教学设计时应注意些什么?
答:我认为在教学设计时应注意引导学生去观察发现因数和倍数的关系,加强学生对因数和倍数这两个概念的理解,并会用所学的数学知识去解决实际问题。
21.) 读18题中的教材图示2,回答问题:您的教龄是多少年?结合您的教学经历,简要说说您在教材方面的经验?还有哪些困惑?需要提供什么样的帮助?
答:我的教龄已经有14年了,但是我从事小学数学的教学工作只有8年。在这8年的数学教学工作中,由于各种原因,我从未上过高年级的数学,去年终于跟班走,第一次上四年级的数学,平时经常和同事们一起深挖教材。力争把教学目标及重难点找准。弄清楚教材的设计意图,并把教材中每幅图的图意理解透彻。虽然教材图示2中所表达的内容通俗易懂,但老师在教学时一定要说明倍数与因数的关系。
22.) 您认为教材的练习设计的量是否够用?
答:我觉得教材的练习设计的量不但不够用,而且也还不够精,感觉教材上的好多练习都没有起实质性的作用。
23.) 除了教材之外,您是否要补充练习,补充练习的来源一般是什么呢?
答:要,练习的来源是实际生活,这就要求我们老师多加投入精力,平时多多收集素材。
24.) 你在练习的设计上有什么困惑?
答:难易程度不好把握。
25、探究性学习是新课程倡导的主要教学方式之一,结合您的教学实际谈一谈,开展探究性学习有哪些实际价值?
答:首先,开展探究性学习能让学生自主地学习,提高学生学习的积极性,从而开发学生的思维。其次,通过学生充分探究、思辨的过程,可以提升数学思考能力。培养他们的创新精神,动手能力和解决问题的能力。
26.) 在组织开展探究性学习活动过程中,您一定积累了丰富的经验,请结合一个您经历过的典型课例谈一谈,组织开展探究性学习活动应注意哪些主要因素?
答:探究性学习并不是每一个学习内容都适用,也不是全部的教学活动。教师应结合具体的教学内容,采用多种不同的教学策略和方法,达到课程目标。例如:三年级《初步认识分数》中,在教学认识分数的各部分名称时,就不能采用探究性学习,学生怎么也探究不出分数的各部分名称的,再说也没有探究的必要。但是在《角的认识》中,就可以采用不同的形式让学生自己去感受、探究角是什么样的了。
以上答案只是我个人意见,仅供参考。
⑹ 西师版小学数学教材蕴含的数学思想方法梳理
(1)符号思想
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将所有的数据实例集为一体,把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象符号化的过程。用符号来体现的数学语言是世界性语言,是一个人数学素养的综合反映。
⑵ 化归思想
化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解,化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。一般是指不可逆向的“变换”。它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。如求组合图形的面积时先把组合图形割补成学过的简单图形,然后计算出各部分面积的和或差,均能使学生体会化归法的本质。
⑶ 分解思想
分解思想就是先把原问题分解为若干便于解决的子问题,分解出若干便于求解的范围,分解出若干便于层层推进的解题步骤,然后逐个加以解决并达到最后顺利解决原问题的目的的一种思想方法。如在五年级《解决问题的策略》教学中“倒退着想”的解题策略就体现了这种思想。
⑷ 转换思想
转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法,这里的变换是可逆的双向变换。在解决数学问题时,转换是一种非常有用的策略。 对问题进行转换时,既可转换已知条件,也可转换问题的结论;转换可以是等价的,也可以是不等价的,用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解,第三步要将转换后问题的解答反演成问题的解答。如果采用等价关系作转换,可直接求出解而省略反演这一步。
⑸ 分类思想
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按因数的个数分素数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理的分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构
⑹ 归纳思想
数学归纳法是一种数学证明方法,典型地用于确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。有一种用于数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式,这就是著名的结构归纳法
⑺ 类比思想
数学上的类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,它能够解决一些表面上看似复杂困难的问题。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟得自然和简洁,从而可以激发起学生的创造力。
⑻ 假设思想
假设思想是一种常用的推测性的数学思考方法利用这种思想可以解一些填空题、判断题和应用题。有些题目数量关系比较隐蔽,难以建立数量之间的联系,或数量关系抽象,无从下手。可先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使得要解决的问题更形象、具体,从而丰富解题思路。
⑼ 比较思想
人类对一切事物的认识,都是建筑在比较的基础上,或同中辨异,或异中求同。俄国教育家乌申斯基说过:“比较是一切理解和一切思维的基础。”小学生学习数学知识,也同样需要通过对数学材料的比较,理解新知的本质意义,掌握知识间的联系和区别。
在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题的途径。
⑽ 极限思想
事物是从量变到质变,极限方法的实质正是通过量变的无限过程达到质变。现行小学教材中有许多处注意了极限思想的渗透。
⑾ 演绎思想
演绎也是理智的活动,但是和直观不同,它们不是理智的单纯活动,必须先假定了某些真理(或定义)之后,然后再凭借这些定义推出一些结论。
⑿ 模型思想
是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。
培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
⒀ 对应思想
对应指的是一个系统中的某一项在性质、作用、位置上跟另一系统中的某一项相当。对应思想可理解为两个集合元素之间的联系的一种思想方法。在小学数学教学中渗透对应思想,有助于提高学生分析问题和解决问题的能力。
⒁ 集合思想
把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素。通俗地说就是:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
⒂ 数形结合思想
就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义又揭示其几何意义,使问题的数量关系和空间形式巧妙、和谐地结合起来,通过数与形的相互转化来解决数学问题的思想。
⒃ 统计思想
在小学数学中增加统计与概率课程的意义在于形成合理解读数据的能力、提高科学认识客观世界的能力、发展在现实情境中解决实际问题的能力。
⒄ 系统思想
系统思想是由若干想到关联、想到作用的要素(或成分)构成具有特定功能的有机整体。系统思想的方法便是要求人们从系统要素相互关系的观点,从系统与要素之间、要素与要素之间,以及系统与外部环境之间的相互关联和相互作用中考察对象,以得出研究和解决问题的最佳方案。
⑺ 小学数学广角课是怎样渗透数学思想的
一、“数学广角”的编排意图。
“数学广角”是人教版新课标实验教材伴随着新课程改革新增设的一大教学内容模块,是人教版教材中的一个亮点,也是一种新的尝试。它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。
在小学数学教学阶段有意识地向学生渗透一些基本数学思想方法可以加深学生对数学概念、公式、定律的理解,是提高学生数学能力和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之所在。《数学课程标准》中明确提出了:“让学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”为了有效落实这一总体目标,人教版教材编排中不但加大力度把数学思想渗透在数与代数、量与计量等每一个知识板块中,更以新增设的单元“数学广角”为呈现形式,进一步集中向学生渗透数学思想方法。
二、“数学广角”的内容体系
数学建模思想
《数学课程标准》中指出:“重要的数学概念与数学思想宜逐级递进、螺旋上升。”教材在“数学广角”内容的编排上注意体现了这一要求,系统而有步骤地渗透数学思想方法。
例如在渗透排列和组合的数学思想方法时,实验教材先在二年级上册教材中,安排学生初步接触一点排列与组合知识,让学生通过观察、猜测以及实验的方法可以找出最简单的事物的排列数和组合数。如用两个数字卡片组成两位数的排列数,三个小朋友两两握手的组合数等。而在三年级上册教材中又继续学习排列与组合的内容。但目标定位为在学生已有知识和经验的基础上,继续让学生通过观察、猜测、实验等活动找出事物的排列数和组合数。如两件上装和三件下装有多少种不同的搭配等数学问题。与二年级上册教材相比,三年级教材的内容则更加系统和全面,分别介绍排列以及组合。
综观整个十二册教材中的“数学广角”,从简单的分类思想到较为抽象的运筹思想、对策论以及最后一册更为复杂的抽屉原理,无不体现了思维层次是从低到高,从具体到抽象,逐级递进、螺旋上升,向学生逐步渗透这些数学思想方法,以符合数学认知规律。
它们各个内容之间又存有一定的联系,准确把握各册教材的联结点有助于解读教材。譬如,第七册的运筹问题、第十册的找次品问题以及第十二册的抽屉原理,解决问题时都要考虑“至少”的问题,都在多种解决策略中寻找最佳最优的策略,都要运用推理能力和渗透优化思想。学习“数字编码”的时候,自然地要同“找规律”这一个知识点进行嫁接;解决“封闭方阵中的植树问题”时需要用 “重叠问题”来诠释;植树问题和鸡兔同笼问题都很注重数学模型的构建,一般都得经历“问题模型——构建模型——解释应用模型”的学习过程……
第一学段,数学广角出现了简单的排列组合、简单的推理、集合思想、等量代换等内容,让学生通过观察、操作、实验、猜测、推理与交流等活动,初步感受数学思想方法的奇妙与作用,受到数学思维的训练,逐步形成有顺序、全面思考问题的意识,同时培养他们探索数学问题的兴趣与欲望,发现、欣赏数学美的意识,进而达到《数学课程标准》第一学段的要求:使学生“在解决问题的过程中,能进行简单的、有条理的思考”。
第二学段渗透了优化思想、对策论、解决由植树引发出来的问题、数字编码、假设法、抽屉原理等数学思想方法,一方面继续让学生感悟数学思想方法,感受数学的魅力,培养学生分析、推理的能力,逐步形成探索数学问题的兴趣与欲望,另一方面加强了综合运用知识解决问题和解决问题策略多样化的教学,使学生逐步提高数学思维能力和解决问题的能力。
从教学目标的把握来看,数学广角的教学首先应定位于通过数学活动,让学生感受数学的思想方法,学会运用数学思想方法尝试解决问题,体验解决问题的策略、方法。
因为数学广角是面向全体学生渗透数学思想方法的,意图是让每一个学生受到数学思维训练的同时,逐步形成探索数学问题的兴趣与欲望,发现、欣赏数学美的意识。因此,要防止把数学广角当做奥数培训课进行“英才”教育,它需要更多地、有计划地创设实践活动,让全体学生去观察、研究、尝试,重在活动中对思想方法的感悟。
⑻ 现行小学数学教材中哪些章节中蕴含了哪些数学思想怎样把握数学思想来设计教学举
列:转换思想、空间想象、代数法、