Ⅰ 小学六年级数学公式大全
一.用字母表示运算定律或性质
加法交换律: a+b=b+a 加法结合律: (a+b)+c=a+(b+c)
乘法交换律: ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac
二.几何图形计算公式
(1)周长:即围绕物体一周的长度。
①长方形周长=(长+宽)×2 C=(a+b)×2 ②正方形周长=边长×4 C=4a
③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr
(2)面积:即物体的表面或封闭图形的大小
①长方形的面积=长×宽 S=ab ②正方形的面积=边长×边长 S=a•a=a2
③平行四边形的面积=底×高 S=ah ④三角形的面积=底×高÷2 S=ah÷2
⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 ⑥圆的面积=圆周率×半径S=πr2
⑦直径d=2r 半径=直径÷2 r= d÷2 ⑧环形面积=外圆面积-内圆面积S环=S外-S内
【相互联系】 平面图形的面积公式是以长方形面积计算公式为基础的。如两个完全相同的三角形、梯形可拼成一个平行四边形。圆拼成长方形的长时1/2C,宽是R.
(3)表面积:立体图形的所有面的面积之和叫做它的表面积
①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2
③圆柱体的侧面积=底面周长×高 S=Ch =2πrh
④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2
注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h
(4)体积:物体所占空间的大小叫体积
①长方体的体积=长×宽×高 V=abh ②正方体的体积=棱长×棱长×棱长 V=a×a×a=a3
③圆柱的体积=底面积×高V=sh=πr2h ④圆锥的体积=底面积×高÷3 V=1/3sh= 1/3πr2h
【相互联系】长方体、正方体和圆柱体的体积公式可统一成:V=sh即底面积×高.。
等体积等底的长、正、圆柱体和圆锥体,圆锥高是长方体、正方体、圆柱体高的3倍。
三.数量关系式
1每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 工效×工时=工作总量 工作总量÷工效=工时 工作总量÷工时=工效
5、 加数+加数=和 和-一个加数=另一个加数
6、 被减数-减数=差 被减数-差=减数 差+减数=被减数
7、 因数×因数=积 积÷一个因数=另一个因数
8、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 被除数=除数×商+余数
注意:0.3÷0.2=1 。。。0.1 除数与被除数同时扩大100倍,商不变,余数也扩大100倍。
9 平均数=总数÷总份数 平均速度=总路程÷总时间
10.相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间 一个人的速度=相遇路程÷相遇时间-另一个人的速度
11.平均速度问题 平均速度=总路程÷(顺流时间+逆流时间)注意: 折(往)返=路程×2
12.浓度问题: 溶质(药)+溶剂(水)=溶液(药水) 溶质(药)÷溶液(药水)=浓度
溶液(药水)×浓度=溶质(药) 溶质(药)÷浓度=溶液(药水)
13.折扣问题: 折扣=现价÷原价 (折扣<1) 现价=原价×折扣 原价=现价÷折扣
利息=本金×年利率×时间(年) =本金×月利率×时间(月)
14比例尺=图上距离÷实际距离 实际距离=图上距离÷比例尺 图上距离=实际距离×比例尺
税后利息=本金×利率×时间×(1-5%)
15追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
易错题:1、周长和面积不相等。 2、圆的面积与半径不成比例。 3、增加和扩大、缩小与减少的区别 4、地砖块数与面积的计算。 5、时间的进率60,平方米与公顷的进率是10000 6、一种立体图形转化为另一种立体图形,体积不变。 7、填空、应用题要注意单位的统一(易错);要求保留时,无要求用什么法,要结合实际用“四舍五入”还是“进一法”。 8、计算表面积时结合实际求哪些面。 9、 车轮、压路机前进的距离就是周长×转数。 10、数的改写用小数点表示,再添单位;精确到(保留时)看下一位并用“四舍五入”法表示,再添单位。 11、等底等高的三角形是平行四边形面积的一半;等底等高的圆柱体积是圆锥的3倍。 12、路程一定,速度和时间成反比。如A、B同走一段路时间比是5:4,A、B的速度比是4:5。(工作总量类似)。 13、看到高和垂线想到直角(符号)。 14、两点之间直线最短,点线之间垂线段最短;绕一点旋转就是以这点为顶点,作与这个点相关的两条边的垂线,定出另两个点。旋转时逆时针是向左。 15、确定方向要注意观测点。 16、计算时要留意跟整数相差一点的数.如9.9 ;10.1。 17、应用题分析时注意抓共同量或不变量分析。如实际与计划中的总量,男生转入人数时的女生人数;同一面积中换不同边长的地砖。 18、两个圆的面积比是半径比的平方倍;图形面积扩大的倍数是边长扩大的平方倍。
Ⅱ 小学六年级知识大全数学答案
1、 化难为易,方法渗透。教材中三道例题的呈现过程都有一个小朋友提出问题太难,(例5:太乱了,我都数昏了!例6:算起来真麻烦啊!例7:这个问题好复杂呀!)然后由小精灵或另一个小朋友提示怎样找简单的办法,这就是化难为易思想方法的渗透。在教学中,我们可以让学生先尝试解决,遇到困难再进行提示。例如:教学例5时,可以让学生先动手画一画,当他们发现6个点连成的线段很多,不好数的时候,再引导学生从2个点开始,逐渐增加点数,找规律。2、 方法多样,形式不限。解决问题的方法很多,只要是正确的,我们都应给予肯定。比如说例7,我们可以采取课本中列表的方法也可以直接推理,A到会两次,一次与B、C,一次与E、F,所以,A不可能与B、C、E、F同班,那么,A只能与D同班;同样的,B也到会两次,一次与A、C,一次与D、E,所以B不能和A、C、D、E同班,那么,B只能和F同班;这样剩下的C和E就同班了。这个题目还有很多种推理方法,只要他们的方法是正确的采用什么形式都无所谓。3、 面向全体,把握标高。我们在常规课堂上讲这些知识不同与培优,虽说对于一些优生来说,例5就是6个点里选2个点的组合,例6用乘法原理一下就可以做出来了,但我们要注意我们面对的是全体学生,我们的教学重在巩固、发展学生找规律的能力,分步枚举组合的能力和列表推理的能力,至于说排列组合的方法、加法、乘法原理只让学生感悟就行了,可以不作概括。4、抓住机会,弘扬文化。数学广角中很多内容都是一些经典的数学故事或数学问题。《课标》指出:“数学是人类的一种文化……”既然如此,我们就要抓住机会去弘扬、去传承。教材95页的阅读材料《你知道吗?》就是一个很经典的数学问题:“七桥问题”我们可以引导学生阅读,并让知道更多的学生谈谈对它的认识,从而感受前人的睿智,进而激起有兴趣的同学课后继续去研究、去探讨。
Ⅲ 小学六年级数学
比多少米多2/7的是27米
这个题目实际上就是要算
27÷(1+2/7)
=27÷9/7
=27×7/9
=21
就是说比21米多2/7的是27
Ⅳ 小学六年级数学学习心得
从小时候学数数,到现在的数学学习,无不是数学的范畴。现在我向大家介绍一下我学数学的方法。
一、不要怕数学。在我们的生活中,数学是无处不在的:我们买东西,付钱要用数学;看球赛,比分也是数学;勾股定理、黄金分割与优选法在我们生活中的应用更是比比皆是。其实,现代数学的范围已大大扩大了,包括数论、图论、概率、悖论等多方面的内容,而图论、递推关系在计算机中的应用也是非常广泛的。所以,数学与我们的生活有着紧密的联系,可以说:数学是无处不在的。
二、学数学要学习什么。一句话,就是学习它的思维方法。在我们的现阶段,以及我们工作以后,很少能用到具体的数学题,但是,数学的思维方法是指导我们学习、工作的思想,所以,数学的思维方法是非常重要的。举个例子:数论中有一个著名的问题,就是歌德巴赫猜想。许多科学家都表示,用现有的数学方法无法解决这个问题。这样,要想解决歌德巴赫猜想必须用一种新的方法,而这种方法就是我们需要的。这也就是数学的精髓所在。
三、打好基础,吃透课本。课本的题目是比较简单、比较基础的,却也不能忽视,这是因为课本的题目为我们提供了一种简捷的思维方式和比较严密的解题步骤。数学是一门要求严密的科学,需要思维的严谨性,课本就为我们提供了一个范例。这是一个平行四边形,求证它的对边相等。我们想容易想到,连接对角线,用两个三角形全等来证明。这就提供了一个思路:遇到平行线,可以做截这两条平行线的直线,把平行关系转化为角相等的关系。这也用到了一种转化思想。掌握简单题的思路,难题也就能变得简单了。
四、拓展知识,提高能力。现在,计算机非常热门,而计算机编程就能用到图论、递推关系等数学知识,提前了解一下是很有帮助的。我们是21世纪的学生,应当具有宽广的知识面和较强的综合能力。
学习上在课前必须预习老师所要讲解的内容,对于简单的要自己理解掌握,公理、公式和推论要有意识的去记忆,并划出自己不懂得地方;
(2)客商要认真听讲,绝对不能开小差,更要着重听你在预习时感到困惑的地方,并记下经典例题;
(3)课后认真做练习。对自己把握得不好的地方要加大训练,记熟公式。
学习数学的主要方法就是加深理解,在理解之上记忆。
总之,数学是一门基础学科,它的应用是非常广泛的。我一定会用心去学好。
Ⅳ 小学六年制数学知识点归纳
(一)、数和数的运算(20课时)
这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。
1、系统地整理有关数的内容,建立概念体系,加强概念的理解(4课时),包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”等知识点。
2、沟通内容间的联系,促进整体感知(2课时),包括“分数、小数的性质”、“整除的概念比较”。
3、全面概念四则运算和计算方法,提高计算水平(6课时),包括“四则运算的意义和法则”、“四则混合运算”。
4、利用运算定律,掌握简便运算,提高计算效率(5课时),包括“运算定律和简便运算”。
5、精心设计练习,提高综合计算能力(3课时)。
(二)、代数的初步知识(10课时)
本节重点内容应放在掌握简易方程及比和比例的辨析。
1、形成系统知识、加强联系(3课时),包括“字母表示数”、“比和比例”、“正、反比例”等知识点。
2、抓解题训练,提高解方程和解比例的能力(4课时),包括“简易方程”、“解比例”。
3、 辨析概念,加深理解(3课时),包括“比和比例”、“正比例和反比例”。
(三)、应用题(30课时)
这节重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
1、简单应用题的分析与整理(3课时)。
2、复合应用题的分析与整理(6课时)。
3、列方程解应用题的分析与整理(5课时)。
4、分数应用题的分析与整理(10课时)。
5、用比例知识解答应用题的分析与整理(3课时)。
6、应用题的综合训练(3课时)。
(四)、量的计量
本节重点放在名数的改写和实际观念上。
1、整理量的计量知识结构(2课时),包括“长度、面积、体积单位”、“重量与时间单位”。
2、巩固计量单位,强化实际观念(4课时),包括“名数的改写”。
3、综合训练与应用(1课时)。
(五)、几何初步知识(12课时)
本节重点放在对特征的辨析和对公式的应用上。
1、强化概念理解和系统化(2课时),包括“平面图形的特征”、“立体图形的特征”。
2、准确把握图形特征,加强对比分析,揭示知识间的联系与区别(4课时),包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
3、加强对公式的应用,提高掌握计算方法(5课时)。能实现周长、面积、体积的正确计算。
4、整体感知、实际应用(1课时)。
(六)、简单的统计(6课时)
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
1、求平均数的方法(1课时)。
2、加深统计图表的特点和作用的认识(3课时),包括“统计表”、“统计图”。
3、进一步对图表分析和回答问题(2课时),包括填图和根据图表回答问题。
五、复习中应注意的问题
1、对于小学数学毕业总复习内容、过程和时间的计划安排,在实际教学中要根据实际情况作出调整。
2、要注意小学数学知识与中学知识结构上的衔接,要为中学的学习做些铺垫,适当拓展知识点。
3、要把握考纲要求,根据实际需要对计划的复习内容、过程和时间上做出调整。既要全面学到知识,又要掌握复习知识的深浅程度。
小学语文是义务教育阶段的一门基础学科,担负着全面提高学生语文素养的重任。经过六年的学习,大多数学生已具备了一定的语文素养,但是由于学生的个体差异,导致了小学生语文素养的参差不齐。在小学生即将结束小学生活的这段时间里,我们有责任集中精力,抓住时机,系统地引导学生复习小学阶段应掌握的知识,最大限度地提高每个学生的语文素养。
从“标准”入手,明确复习的要求:
学生在毕业时,应基本达到《语文课程标准》的要求。复习时,要根据《语文课程标准》及学生“过程性”的学习情况,有针对性地制定出相关复习要求,各部分的重点要求是:
(一)、基础知识
1、汉语拼音。
能读准声母、韵母、声调和整体认读音节;能准确地拼读音节,正确书写声母、韵母和音节;能认识大写字母,并能熟记《汉语拼音字母表》
2、汉字。
认识常用汉字3000个左右,其中2500个会写,要能读准字音,认清字形,了解字义,养成正确的写字习惯;会查字典;能初步辨析字的音、形、义,掌握学过的常用的多音字,注意不写错别字。
3、词语。
能正确地读出和写出学过的词语;能根据词义轻重、范围大小、感情色彩、词语搭配等方面辨析词义,进行归类或顺序排列;学会在具体的语言环境中准确地理解词义;注意积累词语,并能在口头语言和书面语言中正确运用。
4、句子。
熟悉句子的类型;能运用学过的常用词语(包括关联词语)造出思想健康、用词准确、意思完整的句子;能指出句子中的毛病,并加以改正;会区分和运用常用的几种修
Ⅵ 小学六年级数学
没时间看软件,先看看题吧!
27÷3×7 3×6÷9 25÷5×8
45+8-23 63÷7×8 24-8+10
28÷4×7 35+24-12 48÷8×9
9405-2940÷28×21 920-1680÷40÷7 690+47×52-398
203-135÷9 28+120×8 97-12×6+43 26×4-125÷5
148+3328÷64-75 360×24÷32+730 2100-94+48×54
51+(2304-2042)×23 4215+(4361-716)÷81 (247+18)×27÷25
36-720÷(360÷18) 1080÷(63-54)×80 (528+912)×5-6178
8528÷41×38-904 264+318-8280÷69 (174+209)×26- 9000
814-(278+322)÷15 1406+735×9÷45 3168-7828÷38+504
796-5040÷(630÷7) 285+(3000-372)÷36 546×(210-195)÷30
文字题:
38.填空.(口算)
(1)130加上20与5的积,和是( ).
(2)7除280的商减去25,差是( ).
(3)100减去240除以8的商,差是( ).
(4)8与25的积加上70得( ).
39.列综合算式计算.
(1)581减去6个72得多少
(2)46的27倍加上382得多少
(3)1450比69的16倍多多少
(4)785减去1476除以12的商,差是多少
40.列综合算式计算.
(1)1800减去15乘24的积,差是多少
(2)434加上16个36得多少
(3)15乘18的积除以27得多少
(4)602加上14的13倍,所得的和再减去750,差是多少
41.填空.
(1)一个数加上45的和乘以5得300,这个数是( ).
(2)90减去一个数的差除450得10,这个数是( ).
(3)380减去一个数的差再加上150得350,这个数是( ).
(4)25乘以15与一个数的和,积是5000,这个数是( ).
42.列综合算式计算.
(1)17除782的商比150少多少
(2)1030比28乘35的积多多少
(3)1240比740与295的差多多少
(4)18的47倍与1200相差多少
43.列综合算式计算.
(1)26乘以98与59的差,积是多少
(2)3588除以108与48的和,商是多少
(3)765与387的差乘以24,得多少
(4)2319与11311的和除以235得多少
44.列综合算式计算.
(1)42乘391与145的差,积是多少
(2)27除3923与1234的和,商是多少
(3)24与31的和除3630得多少
(4)125与69的差乘38,积是多少
45.把下列式子改写成文字题.
(1)1350-14×27
(2)2852÷23-115
(3)132×(494-458)
(4)1245÷(29+54)
46.选择.把正确答案的序号填在括号里.
(1)1749减去46乘38的积,差是多少 正确列式是 [ ]
A.1749-46×38 B.(1749-46)×38
C.1749-38×46 D.38×(1749-46)
(2)36除18加上450的和,商是多少 正确列式是 [ ]
A.36÷18+450 B.18+450÷36
C.36÷(18+450) D.(18+450)÷36
47.把下面各式改写成两种不同叙述方式的文字题.
Ⅶ 怎样才能上好小学六年级数学
小学6年级数学辅导怎样做?数学在大部分人的眼中是一科较难的科目,并且跟随年级的增长也逐步变难,正因为这样数学是被拉分的科目.好多学生以为数学就是练习,以为练习好多,得分就会升高.其实有一个关键因素在阻碍我们数学得分的升高,那就是好的学习习惯.
小学6年级数学辅导需要帮助孩子建立的八种好习惯:
8、重复"检查"习惯.培养学生的考核能力习惯是提高数学学习质量的重要举措,这是培养学生自我意识和责任感的必要过程.小学6年级数学辅导只要从以上八点出发,相信孩子在很短的时间内会有惊人的进步.
Ⅷ 小学6年级数学
1.栽一批树苗,成活249棵,死了6棵,求成活率。(得数保留一位小数)
249÷(249+6)×100%=97.6%
2.某乡修建蔬菜大棚,原计划投资40万元,实际投资43.6万元,投资增加了百分之几?
(43.6-40)÷40=9%
3.联想牌电脑现在每台的价格是6000元,比原价降低了400元,降低了百分之几?
400÷(6000+400)=6.25%
4.印刷厂一、二、三车间人数的比为12:8:21,一车间比二车间多80人,三个车间共有多少人?
3个车间共有
12+8+21=41份
1份是
80÷(12-8)=20人
三个车间共有
20×41=820人
Ⅸ 小学六年级数学
第一步,求两个圆相交部分的面积,这是两个120度大弓形的面积和,求解用120度的扇形面积,减去三角形面积,得到的差乘以2,即
[3.14*2"*120/360 - 2根号3*1/2]*2
= 3.14*8/3 -2*根号3
第二步,求中间空白的面积,这是三个弓形的面积和,加上一个等边三角形的面积,求解可用三个扇形的面积,减去两个三角形面积,则
3*[3.14*2"*60/360]- 2*[根号3*2/2]
= 3.14*2 -2*根号3
第三步,前两值相减,就是两圆相交里面的一个阴影面积,将它乘以3,就是三个圆两两相交的阴影面积了。
3*[3.14*8/3 -2*根号3]-3*[3.14*2 -2*根号3]
= 3.14*8 -6*根号3 -3.14*6 +6*根号3
= 3.14*2
这就是6.28平方厘米。
其实还有更简便的方法,连接两个圆心,以及这两个圆的圆心到两圆的交点,形成一个菱形。与菱形相接,在两个圆相交的面积里面,包含了两个等边三角形,以及四个60度的弓形。
其中,一块阴影部分的面积,是一个三角形加上两个弓形,再减去一个弓形,由于这些60度弓形面积全部相等,所以一块阴影部分的面积,就是一个三角形加上一个弓形,三块阴影部分的面积和,就是三个扇形的面积。
分析明白以后,我们求解就方便多了。
S阴影= 3*3.14*2"*60/360= 3.14*2 =6.28
题目要求的,三个圆两两相交的三块阴影面积和,就是6.28平方厘米
Ⅹ 小学数学一到六年级公式大全
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
不同地方教材可能不一样,这个应该比较全面了
小学教学没有必要死记公式,重在理解