导航:首页 > 小学学科 > 小学数学差额平均数

小学数学差额平均数

发布时间:2020-12-06 02:30:52

1. 小学数学应用题分类(请尽快解答)

我也是一名小学毕业

3典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)

(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)

(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。
列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)

(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)

(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2
流水速度=(顺流速度逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。

(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。

(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数+1 棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+ 不足
第一次正好,第二次多余或不足 ,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足, 总差额= 大不足-小不足
例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
-

2. 数学中的差额平均分什么意思

差额平均问题是把大于或小于标准数的部分之和被总份数平均分,求的是标准数与各数相差之和的平均数

3. EXCEL表格中为什么越大数值计算出来的平均值差额相差越大

看了你来这个问题感觉有点意源思,自己用你的数据看了一下,也是这样。后来想想这不是数据四舍五入的问题,而是你这样的计算方式本来就是不对等的(用平均值相加再除以个数求平均值,这本来就是错的。),两个计算出来的结果不是求同一个东西的,所以有差距,这应该是个数学问题。用简单的数据来测试就可以看出来了
4 2 2
6 1 6

4. 小学四年级平均数问题 一一 差额平分

已知大小不相等的两部分,移多补少使两部分同样多的应用题,叫做差额平分问题。
通常的解答方法是:先求出两部分数量的差(差额),再将其差平均分成两份,取其中一份,使两部分相等。

例1、 有甲乙两个书架。甲书架上有书940本,乙书架上有书1280本。要使两书架上书的本数相等,应从乙书架取多少本书放入甲书架?
先求出乙书架上的书比甲书架多多少本。再把差额平分成两份。
(1280-940)÷2=170
例2、 一班有学生52人,调6人到二班,两个班的学生人数相等。二班原来有学生多少人?
由“调6人到二班,两个班的学生人数相等”,可知,原来一班比二班多6×2=12人。由此求得二班原有人数。
52-6×2=40人
例3、 甲仓有大米1584袋,乙仓有大米858袋,每天从甲仓运33袋到乙仓,几天后两仓的大米袋数相等?
要求“要运多少天”,先要求甲仓总共要运多少大米到乙仓,再求每天运33袋,要运多少天>
(1584-858)÷2÷33=11天
例4、 甲乙丙三个组各拿出相等的钱去习同样的数学书。分配时,甲组要22本,乙组要23本,丙组要30本。因此,丙组还给甲组13.5元,丙组还要还给乙组多少元?
先要求平均时,各组应分得多少本,甲组少分了多少本,乙组少分了多少本。每本多少元,然后再求丙组还要给乙组多少元。
1、 平均分时,各组应得多少本
(22+23+30)÷3=25本
2、 甲少分了多少本
25-22=3本
3、 乙少分了多少本
25-23=2本
4、 每本多少元
13.5÷3=4.5元
5、 丙组还应给乙组多少元
4.5×2=9元
例5、 、甲乙丙三校合买一批树苗。分配时,甲校比乙丙两校多分60棵,因此,甲校还给乙、丙两校各160元。每棵树苗多少元?
1、 乙丙两校各少分了多少棵
60÷3=20棵
2、 每棵树苗多少元
160÷20=8元
例6、 甲仓有粮食100吨,乙仓有粮食20吨。从甲仓调多少吨粮食到乙仓,乙仓的粮食是甲仓的2倍?
要求“从甲仓调多少吨粮食到乙仓,乙仓的粮食是甲仓的2倍”,需要知道“调粮后甲仓有多少吨”。
两仓一共有存粮多少吨,乙仓是甲仓的2倍,根据和倍应用题的解答方法,可求得调粮后甲仓有粮多少吨?再求要调出粮食多少吨。
1、 两仓共有粮食多少吨
100+20=120吨
2、 调粮后甲仓有粮多少吨
120÷(2+1)=40吨
3、 甲仓要调出多少吨到乙仓
100-40=60吨
100-(100+20) ÷(2+1) =60吨

5. 高分悬赏!!!!!!!

一、加法的种类:(2种)

1.已知一部分数和另一部分数,求总数。

例:小明家养灰兔8只,养白兔4只。一共养兔多少只?

想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。

列式:8+4=12(只)答:(略)

2.已知小数和相差数,求大数。

例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少 只?

想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。(灰兔的只数。)

列式:4+3=7(只) 答:(略)

二、减法有3种:

1.已知总数和其中一部分数,求另一部分数。

例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?

想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)

列式:12—8=4(只)

2.已知大数和相差数,求小数。

例:小强家养白兔8只,养的白兔比灰兔多3只。养灰兔多少只?

想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)

列式:8-3=5(只)

3.已知大数和小数,求相差数。

例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只?

想:已知大数(白兔8只)和小数(灰兔5只),求相差数。(白兔比灰兔多多少只?)

列式:8-5=3(只)

三、乘法有2种:

1.已知每份数和份数。求总数。

例:小利家养了6笼兔子,每笼4只。一共养兔多少只?

想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少 。用乘法计算。

列式:4×6=24(只)

本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。不得改变两者关系。

即:每份数×份数=总数。

决不可以列式:份数×每份数=总数。

2.求一个数的几倍是多少?

例:白兔有8只,灰兔的只数是白兔的2倍。灰兔有多少只?

想:白兔有8只,灰兔的只数是白兔的2倍,也就是说:灰兔有白兔只数两个那么多,就是求2个8只是多少?

列式:8×2=16(只)

四、除法有4种:

1.已知总数和份数,求每份数。

例:小强有15个苹果,平均放在3个盘子里,平均每盘放几个苹果?

想:已知总数(15个),份数(放3盘)。求每份数(每盘放几个?)也就是把15平均分成3份,求每份是多少。

列式:15÷3=5(个)

2.已知总数和每份数,求份数。

例:小强有15个苹果,每5个放一盘,可以放几盘?

想:因为已知总数(15个苹果)和每份数(5个放一盘)求可以放几盘?也就是看25里面有几个5,就可以放几盘?

列式:15÷5=3(盘)

3.求一个数是另一个数的几倍。

例:小勇有15个苹果,有5个梨,苹果的个数是梨的几倍?

想:看苹果的个数里面有几个梨的个数,就是梨的几倍。即求一个数是另一个数的几倍。

列式:15÷5=3

4.已知一个数的几倍是多少,求这个数。(用除法来计算。)

综上所述,把千变万化各种内容的应用题按照其数量关系所特有的内函和外延概括出各自的规律。使学生认识了应用题中的各类数时关系的规律,并掌握各自解题规律。反过来根据这些规律性准确而迅速地化解应用题。使知识转化为能力。这样可以起到举一反三,触类旁通的作用。为今后解答复合应用题打下坚实的基矗

但是如果学生学到三年级,一步简单应用题已经学完了,教者不能及时地以不同的数量关系的规律性、系统性加以总结和指导,学生仍按感性认知,对各类应用题的数量关系的概念只有模糊认识。那么在解题时就会出现:遇到“比……多……”就用加法来计算;遇到“比……少……”就用减法来计算;或有“倍”字的题就用乘法来计算的混淆观念。如果能为学生分清应用题的数量关系的类型,如果出现上述问题时,教师可以从规律上加以指导:“你用加法来计算,想一想你算的这道(或这步)应用题是属于哪一类加法应用题的数量关系?(因为加法只有2类),如果你对不上类型,你一定是算错了。”

在教学两步或两步以上复合应用题时,也要时刻强调:解答复合应用题的每一步都离不开上述十一类的数量关系。虽然世间的事物千变万化,但是在“+、-、×、÷”这四种运算中,数量之间的关系都不会离开上述某一个类型。只有清晰地掌握这十一种关系,才掌握了解题的规律。例如:

同学们植了350棵树,其中200棵是松树,其余全是杨树。松树比杨树多植多少棵?

分析:这是一道有两个已知条件的两步计算。三年级学生刚接触很容易与一步应用题的解法相混。那么只有学生清晰地掌握了基本类型中的“已知大数和小数,求相差数。”这一类数量关系。教者可以从问题入手,应用“分析法”来引导:(1)求“栽的松树比杨树多多少棵?:要求是什么数?(是相差数)。(2)要求相差数,必须已知哪两个数?[大数(松树的棵数)与小数(杨树的棵数)](3)大数与小数的数量题中告诉我们了吗?告诉了,是多少?没告诉怎么办?[大数(松树200棵)已知。小数(杨树的棵数)不知道。必须先求出杨树有多少棵?]

这样就顺理成章地找出解答本题的关键一环——中间问题:杨树有多少棵?

解题:

(1)杨树有多少棵?

想(说算理):已知总数(350棵)和一部分数(200棵),求另一部分数(杨树的棵数)[用减法来计算]

350-200=150(棵)

(2)松树比杨树多多少棵?

想(说算理):已知数(200棵)和小数(150棵)求相差数,(用减法来计算)

200-150=50(棵)

从上面明显看出:使学生正确理解和掌握解答应用题的方法,首先必须使学生清晰地掌握以上十一种类量关系。在解答复合应用题时,每一步都离不开这种关系。虽然应用题的内容千变万化,但是在“+、-、×、÷”四种运算的过程中,每一步的数关系都不会离开上述十一种关系中的某一种。只有让学生清晰地掌握了这十一种数量关系,才能掌握了解答应用题的规律。才能达到高屋建瓴,纲举目张的作用。

同时,教学应用题的解法时,尽量引导学生运用线段分析图示之,使学生有了第一感知印象,达到数形统一。并要教给学生“综合分析法”等思考方法。这使学生对解答一般复合应用题就不会望而怯步,而会学趣盈然,解答起来,得心应手。

阅读全文

与小学数学差额平均数相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99