导航:首页 > 小学学科 > 小学数学经典题目

小学数学经典题目

发布时间:2020-12-04 01:21:30

小学六年级数学经典题目

1.甲、乙两队学生从相距18km的两地同时出发,相向而行。一个同学骑车以14km/时的速度,在两队之间联络。甲队5km/时,乙队4km/时。两队相遇时,骑车的同学共行多少千米?
1、18/(5+4)=2小时
2.将5个数从小到大排列,平均数是38,前3个数的平均数是27,后3个数的平均数是48,中间一个数是多少?
2)5个数共190
前两个数之和190-48*3=46
第三个数为X,则:(46+X)/3=27
X=35
3.除法求出469和1072的最大公因数
3、1072/469=2余134
469/134=3余67
134/67=2余0
即469和1072的最大公因数是67
4.()()x()()=1995?()里数字不同。
4、1995=3*5*7*19=21*95=35*57
又()里数字不同
所以填(2)(1)x(9)(5)=1995
或(9)(5)x(2)(1)=1995
三个小朋友家里都种着树,小月说我家比小华家少种了20棵,小亮说我家比小月家多种1/4,小华说我家比小月家多种1/5,
问5、小华家种了多少棵树
5.120棵
6、小亮家种了多少棵树
6.125棵
7 .打四分钟电话最多可以通知多少个学生?
四分钟最多通知:一分钟1个,两分钟3个,三分钟7个,四分钟15个
8要通知60个学生,最少要几分钟?
六分钟
9数学题90,100,600,3四个数的答案是2400(用加减乘除或括号计算)90÷3×100-600 =2400
10.还有一题,,姐姐做英语题,比妹妹做数学题多用48分钟,比妹妹做英语题多用42分钟,妹妹做数学、英语两门共用了44分钟,那么妹妹做英语练习用了多少分钟?
设妹做数学用x英语用y 1,{x+y=44 {x=25
{x+42=y+48 解{y=19 答:用了19分钟

六年级奥数题答案
学校原来的男生与女生的人数比是4:3,后来转入两名女生,现在,女生是男生的5/6,问原来有男生和女生各多少名?(第一题)
图书馆有故事书,故事书借出40%后,有买进360本,这时的故事书与原来的比是3:4,问原来有多少本?
1. 原来4:3(男比女) 现在6:5 (男比女)男生不变 尽量把比例合一
4:3=4×1.5:3×1.5 = 6:4.5(原来男比女)
现在6:5 (男比女)6:4.5(原来男比女)2÷(5-4.5)=一份=4(人)
共有6+4.5=10.5(份)4×10.5=42(人)

2. 设原来是x。(1-40%)x+360=现在的书的本数
现在是3份 原来是4份
(1-40%)x+360 = x÷4×3
60%x+360 = x÷4×3
五分之三x+360 = x×四分之三(打不出来分数)
x = 2400

第二种办法: 借出40%=还剩60% 故事书与原来的比是3:4 现故事书与原来的故事书的差价是3:1 分成了四份,就是75%:25% 。 40%是借出的分率,25%是故事书与原来故事书的差价的分率 40%-25% 就是360本书所对应的分率15% 。
具体的量(360)÷所对应的分率(15%)=单位“1”(原来的数量)
一目了然:
360÷15%=360×十五分之一百=360×三分之二十=120×20=2400(本)

Ⅱ 小学六年级数学经典题目 人教版

一根电线长3米,第一次剪下1/6米,第二次剪下全长的1/6,现在还剩下多少米?用去了多专少米?

三种昆虫,蜘属蛛,蜻蜓和蝉共18只,共有20对翅膀,116条腿。它们各有多少只?(蜘蛛没有翅膀,8条腿;蜻蜓两对翅膀,6条腿;蝉1对翅膀,6条腿)

有两筐苹果,第一筐重80千克,如果从第一筐中取出1/5,放入第二筐,则两筐苹果重量相等,第二筐原来中多少千克?

一个圆锥的底面半径是圆柱底面半径的三分之二,这个圆柱的体积是圆锥体积的四分之三,这个圆柱的高是圆锥的高的几分之几?

在一个停车场上,汽车和摩托车共停了12辆,一共有34个轮子。其中每辆汽车有4个轮子,每辆摩托车有2个轮子。停车场上汽车和摩托车各有多少辆?

答案自己想,我懒得打

小学数学常考的典型题及解题技巧

具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)

(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)

(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。
列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)

(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)

(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2
流水速度=(顺流速度逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。

(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。

(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数+1 棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+ 不足
第一次正好,第二次多余或不足 ,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足, 总差额= 大不足-小不足
例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)

Ⅳ 小学数学经典智力题

1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?

2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?

3、有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。可是当初他们三个人一共付出$30那么还有$1呢?

4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同, 而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?

5、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?

6、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?

7、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?
8、你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?

9、对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。

10、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?

11、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?

12、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?

13、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

14。 假设有一辆车,它的油箱恰好和一个油桶一样大,而且车上恰好可以
运载一个桶。假设一桶油可以让车开一百公里。现在在起点,车装满
了油,另外起点还有100桶油。问,这车最远能离开起点多远?

15。有三个囚徒,将要被执行死刑,现在给他们一次赦免的机会。
10分钟后,他们将被带往三个互相隔离的房间,由狱警丢硬币决定给他们戴上红色或蓝色的帽子。囚徒互相之间不能通信息,但可以看到其他囚徒头上帽子的颜色。
现在囚徒要猜自己头上帽子的颜色,只能猜一次,每个囚徒都必须在10秒钟之内说“红”、“蓝”或“过”。
(1)如果任何一个囚徒违反规则,三个囚徒都将被砍头;
(2)如果三个囚徒都说“过”,也是全体砍头;
(3)如果任何一个囚徒说错了自己头上帽子的颜色,也是全体砍头;
(4)不然的话,就全体释放。
现在这三个囚徒有10分钟的时间可以商量,要采取什么措施,使得获释的机会最大。
提示:如果三个囚徒都胡乱猜测的话,则成功的机会为1/8;如果两个囚徒都说“过”,而第三个囚徒胡乱猜测的话,成功的机会为1/2。
还有更好的方案吗?

16。四只乌龟在边长为3米的正方形四个角上,以每秒1厘米的速度同时匀速爬行,每只乌龟爬行的方向都是追击(注意:是追击)其右邻角上的乌龟,问经过多少时间他们才能在正方形的中心碰头?

17。有2000方格排成一排,两个玩家轮流在方格里写S或O,谁先在连续的三个方格里写出SOS,谁就获胜;如果都写不出来就算平局。请证明:后写的人有胜算。

18。这是简单明快的一道题,主要证明了三角形两边之和=第三边。你能找出其中的错误吗?

19。卢姆教授说:“有一次我目击了两只山羊的一场殊死决斗,结果引出了一个有趣的数学问题。我的一位邻居有一只山羊,重54磅,它已有好几个季度在附近山区称王称霸。后来某个好事之徒引进了一只新的山羊,比它还要重出3磅。 开始时,它们相安无事,彼此和谐相处。可是有一天,较轻的那只山羊站在陡峭的山路顶上,向它的竞争对手猛扑过去,那对手站在土丘上迎接挑战,而挑战者显然拥有居高临下的优势。不幸的是,由于猛烈碰撞,两只山羊都一命呜呼了。
现在要讲一讲本题的奇妙之处。对饲养山羊颇有研究,还写过书的乔治·阿伯克龙比说道:“通过反复实验,我发现,动量相当于一个自20英尺高处坠落下来的30磅重物的一次撞击,正好可以打碎山羊的脑壳,致它死命。”如果他说得不错,那么这两只山羊至少要有多大的逼近速度,才能相互撞破脑壳?你能算出来吗?

Ⅳ 小学数学经典题目

五年级的。
五个数的平均数是8,把其中一个数改为6后,这五个数的平均数是16,这个改动的数原来是多少?
要答案么?

Ⅵ 小学数学典型例题和答案(最少5道题)

1.一根圆柱形的木料长2米,截成相等的3段,表面积增加24平方厘米,原来的木料的体积是多少立方厘米?
2.一个圆锥形麦堆的底面周长12.56米,高1.2米,如果每立方米小麦重500千克。这堆小麦重多少吨?
3.一个长方形的长8厘米,宽4.56厘米,与这个长方形周长相等的圆的面积是多少?
4.一块三角形地的面积是0.8公顷,它的底是400米,它的高是多少米?
5.一块白布是边长2米的正方形,剪成直角边是2分米的等腰直角三角形小三角巾,最多可以剪多少块?
6.用12.56分米长的铅丝分别围成一个正方形和圆,圆的面积比正方形面积多多少?
7.小红看一本故事书,3天看了54页,照这样计算,要看完162页的这本书,还需几天?(用比例解)
8.有一个等腰三角形,它的两个角的度数比是1:2,这个三角形按角分类可能是什么三角形?
9.织布厂加工完成一批布,甲乙合作16天完成,甲单独做20天完成,乙每天织600米,这批布共多少千米。
10.甲乙从同一地点向相反的方向行驶,甲下午6时出发每小时行40000米,乙第二天上午4时出发,经过10小时后两车相距1080千米。乙车的时速是多少千米?

Ⅶ 小学数学题目答案(所有的)

1、1除以15=1/15 (1/15+1/10)*4
1除以10=1/10 =1/6*4
1-2/3=1/3 =2/3 答:两车行了4小时后行了全程的2/3,还剩几分之几没行完?
2、5/8-1/2=1/8(千米)C=(a+b)*2=(5/8+1/8)*2=3/4*2=3/2(千米)答:周长是3/2千米。

3、1除以10=1/10 1/15*5=1/3
1除以15=1/15 1/10*5=1/2 答:甲完成这条路的1/3,乙完成这条路的1/2。
4、1+4=5(段) 20*1/5=4(厘米)1除以5=1/5 答:每小段长4厘米,每小段是全长的1/5。
5、15÷3÷2=5÷2=2.5(m)S=πrr=3*2.5*2.5=18.75(平方米)答:鸡舍的面积最大是18.75平方米。

6、3/4-3/4*1/4=3/4-3/16=9/16 答:还剩9/16没有耕.

7、34÷100=0.34(千克)1÷0.34=50/17(千克)答:每千克黄豆榨油0.34千克,榨1千克油要50/17千克黄豆.
8、180÷12=15(升) 1除以15=1/15(升)答:行1千米需要1/15升汽油.
9、40-3=37(棵)37÷40=37/40 3÷37=3/37
答:成活棵树占总棵树的37/40,死亡棵树占成活棵树3/37。
10、3-1=2(次)7÷2=3.5(分钟)答:平均锯一次需要3.5分钟。
11、5/6*2/2=10/12 10/12*3/3=30/36 答:原来这个分数是30/36。
12、21+14=35(人)35÷5=7(人)答:每组最多有7人,一共可以分成5个小组。
13、10÷2=5(种)答:共有5种不同的坐法。
14、30=5*2*3 24=2*2*2*3 30和24的最大公因数是2*3=6
30*24÷(6*6)=720÷36=20(个)答:剪成的正方形边长是6厘米,可以剪成正方形20个。
15、10=2*5 15=3*5 10和15的最小公倍数是2*3*5=30 30*3=60(分钟) 60分钟=1小时
5+1=6(时)答:至少再过30分钟又同时发车,两路车第三次同时发车是6时。
16、72÷(9*2)+1=72÷18+1=4+1=5(棵)答:不需要重栽的树有5棵。
17、47-2=45(个) 39-4=35(个)45和35的最大公因数是5 答:这组最多有5位同学。
18、12=2*2*3 8=2*2*2 12和8的最大公因数是2*2=4 4+2*2+1*2=4+4+2=10(棵)答:一共可以栽10棵树。
19、105÷7=15 15+2+2+2=17+4=21 答:其中最大的一个奇数是21.
20、5和7的最小公倍数是5*7=35 7月31日+35天=9月4日 答:9月4日再次相遇。
21、28-2-2=24 22-2-2=18 24=2*3*4 18=2*3*3 答:正方形的边长最大是3厘米。
22、分母:24÷(7-4)×7 = 24÷3*7=8*7=56
分子:24÷(7-4)×4 =24÷3*4=8*4=32 答:这个分数就是32/56
23、甲:3÷4=3/4 乙:4÷5=4/5 丙:5÷6=5/6 ∵5/6>4/5>3/4∴丙的效率最高。
24、解:设这个自然数是x
(11+x)/(16+x)=2/7
7(11+x)=2(16+x)
77-7x=32+2x
9x=45
x=5 答:这个数是5.
25、72÷(7+2)*2=72÷9*2=8*2=16 72÷(7+2)*7=72÷9*7=8*7=56 答:原来分数是16/56。
26、180-180*1/6=180-30=150(页) 180-180*1/5=180-36=144(页)180*2/9=40(页)
∵150>144>40∴小红看得多
27、r=d÷2=6÷2=3(米)S=πrr=3.14×3*3=28.26(平方米)3+2=5(米)
S=πr的平方;=3.14*5*5=78.5(平方米)78.5-28.26=50.24(平方米)
答:这条卵石路的面积是50.24平方米。
28、C=πr+2r=3.14*8+2*8=25.12+16=41.12(米)答:他需要准备41.12米长的篱笆。
【数学爱好者、数学之美2和语数外物化的团员回忆的沙漏038为你解答】
【有什么不明白可以对该题继续追问】
【如果满意,请及时选为满意答案,谢谢!】

Ⅷ 小学数学试题大全

姓名 班级 分数
一、判断题.对的在括号里打“√”,错的打“×”。(5分)
1.85乘23与77的和,积是多少?正确列式是:85×23+77 ( )
2.24×5×76×5=(24+76)×5 ( )
3.25×4÷25×4=100÷100=l ( )
4.56×17+43×17十17的简便算法是(56+43+l)×17 ( )
5.35×99=35×100+35=3535。 ( )
二、选择题,选择正确答案的序号填在括号里。(8分)
1.在学校团体操表演中,男女生分开站,男生有400人,女生有340人,每行站20人,女生比男生少站多少行?正确列式是( )。
①340÷20-400÷20 ②20×(400-340) ③(400-340)÷20
2.学校食堂买了8套不锈钢碗,每套里装9只,共花去216元钱,( )式子可用于计算每只碗多少元钱?( )
①216÷9×8 ②216÷8×9 ③216÷(9×8) ④2l6×9×8
3.小军在计算60÷(4+2)时,把算式抄成60÷4+2,这样两题的计算结果相差( )。
① 8 ② 7 ③ 5
4.用简便方法计算76×96是根据( )。
①乘法交换律 ②乘法结合律 ③乘法分配律 ④乘法交换律和结合律
三、直接写出得数。(12分)
650÷50= 98+17= 103×40=
380+320= 546—299= 90×70=
27×ll= 37十68×0= 25×14-25×10=
56×78×0= 1000÷125= 523+497=
四、下列算式漏了括号,请你补上。(6分)
160÷20+15×2 160÷20—15×2
=(8+15)×2 =160÷5×2
=23×2 =32×2
=46 =64
五、先想好运算顺序,再计算。(18分)
25 + 75 – 25

阅读全文

与小学数学经典题目相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99