导航:首页 > 小学学科 > 小学数学数形结合

小学数学数形结合

发布时间:2020-11-29 18:18:02

❶ 为什么要在小学数学中应用数形结合思想

数形结合思想为什么在现实中有广泛的应用? 数与形是世界上万事万物存在的基本要素,因而专门反映数与形规律的数学在现实世界中无处不在、无处不用.数形结合思想是数学思想方法中非常重要的一种思维方法,本质上,它贯穿于数学发展的每一个阶段,而明确地体现则在笛卡儿的“变量”和《解析几何》诞生之后,并由此促成了初等数学向高等数学的发展,使数学从仅仅研究静止、平直的对象扩展到研究运动变化和弯曲的对象.数形结合的思想方法应用非常广泛,在解题过程中,能化繁为简,化抽象为具体,对于帮助学生开阔思路、突破思维定势有极好的作用.

❷ 国内外怎样研究小学数学的数形结合思想方法

一、研究背景:数学是研究客观世界的空间形式与数量关系的科学,数是形的抽象概括,形是数的直观表现.华罗庚先生指出,数缺形时少直观,形少数时难入微.数形结合既是一个重要的数学思想,又是一种常用的数学方法.数形结合在数学解题中有重要的指导意义,这种“数”与“形”的信息转换,相互渗透,即数量问题和图象性质是可以相互转化的,这不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径.长期以来,在教学中数学知识是一条明线,得到数学教师的重视;数学思想方法是一条暗线,容易被教师所忽视.在我们的小学数学教学中,如果教师能有意识地运用数形结合思想来设计教学,那将非常有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力.“数形结合”对教师来说是一种教学方法、教学策略,对学生来说是一种学习方法,如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中.作为一线教师,如何系统的运用数形结合思想进行数学教学,是我们面临的一个极富实践价值的重要课题.二、研究价值:1、通过组织、实施本课题的研究,提高教师对数形结合思想的理解,加深对教材中数形结合思想的分析能力.能在平时的教学中,时刻注意渗透数形结合思想,提升教师自身的专业素养.2、通过组织、实施本课题的研究,提升学生的思维水平,提高学生应用数形结合思想解决实际问题的能力,以适应未来社会发展的需要.三、研究目标: 1、教师有意识地运用数形结合思想进行教学设计,化抽象为形象,创造性地开发课程资源,有效地提高课堂教学质量. 2、研究“数形结合”在小学数学四至六年级领域中的应用,分阶段、有层次的渗透数形结合思想. 3、通过“数形结合”有效地提高学生学习数学的兴趣,使数形结合成为学生重要的学习方法,能运用数形结合创造性地解决抽象的数学问题.在不断地“探索”与“创造”中构建属于个人的数学思想.四、概念界定:1、数形结合:“数”和“形”是数学中两个最基本的概念,“数”,属于数学抽象思维范畴,是人的左脑思维的产物;而“形”主要指几何图形,属于形象思维范畴,是人的右脑思维的产物.它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,化难为易,化抽象为直观.使人充分运用左、右脑的思维功能,相互依存、彼此激发,全面、协调、深入发展人的思维能力.2、数形结合思想:所谓数形结合思想,其实质是将抽象的数学语言与直观的图像结合起来,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法.主要有以下几种解题思路:(1)以“数”变“形”;(2)以“形”变“数”;(3)“形”“数”互变.3.“渗透”指某种思想方法在某个实践过程中逐渐的渗入利用,这里主要指在小学数学课堂教学中逐步渗透数形结合思想方法.五、研究内容:1、数形结合思想在“数与代数”知识领域中的应用.2、数形结合思想在“空间与图形”知识领域中的应用.3、数形结合思想在“统计与概率”知识领域中的应用.4、数形结合思想在“实践与综合运用”知识领域中的应用.六、研究思路:1、学习查找相关理论资料;2、开始分年级教师进行具体研究;3、在具体的实践中进一步完善研究内容和研究措施;4、最后对研究效果进行提升,形成课题成果报告.七、研究方法:1.调查法:调查当前小学数学教师对数形结合思想在教学中渗透的认识,调查当前学生对数形结合思想来解题的认识状态.2、文献研究法:收集、学习、整理有关渗透数学思想方法以及数形结合思想的相关文献资料并加以分析,以供实验研究.3、案例研究法:选择不同领域的教学内容(数与代数、空间与图形、统计与概率、实践与综合运用)中的素材,作为案例进行分析研究,寻求在不同数学学习领域中有效渗透数形结合思想的途径与模式.4、经验总结法:把实验过程中积累的经验加以总结、归纳并在实验过程中加以论证.

❸ 如何在小学数学教学中渗透数形结合思想

1 以形促思,在数的认识教学中,渗透数形结合思想方法,帮助学生很好地建立数感数感是一种主动、自觉或自动化的理解数和运用数的态度和意识,是对数学对象、材料直接迅速、正确敏感的感受能力。《数学课程标准》指出:“数感主要表现在理解数的意义;能用多种方法表示数。”例如教学《10 的认识》时,我请小朋友们认真观察图,从图中你知道了什么?让学生利用数数的经验上台现场数数后,学生明白10 个人、10 只鸽子都可以用数字10 表示。接着让学生摆小棒操作,知道一捆就是1 个十,所以10 个1 是十。接着我让学生找一找生活中哪些物体的个数可以用数字10 表示。最后让“10”宝宝参加数字排队队,0~9这几个数字宝宝已经按从小到大的顺序排好队了(出示尺子图),10 应该排在哪儿?请计数器来帮忙。学生动手操作先拔8 颗,再添一颗是几颗(使生能直观感觉到9 比8 多1)?9 颗再添上一颗是几颗?10 颗再去掉一颗是几颗(使生感觉到10 比9 多1)?10 应该排在哪儿?回到尺子图,让生猜猜9 的后面是几?请生分别按从小到大、从大到小的顺序读0~10 这几个数字。在以上教学中,我巧妙渗透数形结合的思想方法,使学生在对具体数量的感知和体验中,进一步强化了数感,加深了对数的意义的认识。
2 借形理解,在概念教学中,加强实验操作,渗透数形结合思想方法,使学生直观地理解概念数学概念是知识教学中的重要组成部分,在概念教学中,仅阐明其实际意义是不够的,还应从事物的整体、本质和内在联系出发,对概念进行进行全面分析,突出其本质属性,但它的抽象性、枯燥性使得教学效果不尽如人意,学生学起来比较困难。借助直观的图形、加强实验操作可以将概念教学趣味化、形象化,从而帮助学生在轻松、愉快的学习氛围中理解概念的形成过程。
例如:在《认识体积》的教学中,我通过3 个步骤渗透数形结合的思想方法,让学生借形直观地理解概念:2.1 通过实验,使学生体会到物体是占有空间的。教师出示两个一样的杯子,左边的盛满水,右边的放了一个柑果。请同学们猜猜,如果把左边杯子里的水倒入右边的杯子,结果会怎样?学生猜测,并通过实验来验证猜测是否是对的。学生倒水操作明白:原来两个杯子装的水是一样多的,现在放进去一个柑果,杯中有一部分空间被柑果占去了,能装水的空间就少了。使学生体会到物体占有一定的空间。
2.2 通过实验,使学生体会到物体所占的空间是有大有小的。出示两个完全一样的玻璃杯:一个杯子里放的是柑果,另一个杯子里放的是葡萄,如果往这两个杯子里倒水,倒进哪个杯里的水会多一些?学生猜测并再次实验操作,验证猜想:两个杯子能装的水同样多,柑果占的空间大,因而相应杯中的水就少;葡萄占的空间小,因而相应杯中的水就多。
2.3 揭示体积的含义。出示3 个大小不同的水果,这3 个水果,哪一个占的空间大?把它们放在同样大的杯中,再倒满水,哪个杯里水占的空间大?学生实验操作,明确:物体是占有空间的,一个物体越大,它占有的空间就越大,反之,一个物体越小,它占有的空间就越小。我们把物体所占空间的大小叫做物体的体积。学生举生活实例比较两个物体体积的大小,认识体积,我通过三部教学,加强实验操作,渗透数形结合思想方法,学生不仅借形直观地理解概念,而且能够应用概念。
3 看形想量,结合“量的计量”的教学渗透数形结合思想方法,帮助学生建立质量观念数学的主要研究对象是数与形。但在现实生活中,数与形和量与计量总是密切联系着的,学习数学必然要涉及量与计量。如何在量与计量中渗透数形结合呢?
例如《千克的认识》教学:①认识秤和秤面。观察秤面从秤面上看到了什么?②建立1 千克的质量观念。a.掂一掂,初步体验一千克的重量。分小组称一称2 袋盐,通过观察发规2 袋盐重1 千克。b.猜一猜,再次体验1 千克的重量。先猜一猜几个这样的苹果、桔子、桃子重1 千克,最后称一称,数一数1 千克这样的果到底有几个?c.比一比,加深对一千克的认识。师出示一个重2 千克大米,让几名学生拎一拎,说说感觉,猜猜重多少千克,通过比较进一步加深对1 千克的体验。
建立“千克”这个计量单位的观念,对学生来说比较抽象,渗透数形结合的思想方法,学生就很容易建立“千克”的表象,并能运用。
4 看数画形,在解决问题教学中,渗透数形结合思想方法,使解题过程具体化、明朗化数学家华罗庚曾说:“人们对数学早就产生了干燥无味、神秘难懂的印象,成因之一便是脱离实际。”数形结合的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。
例如学生初步认识分数时,通过数形结合的对应思想,帮助学生构建了整体“1”与部分量之间的关系,在各种图形的运用中,线段图的使用显得更为清晰方便,使学生能够一目了然地获取相关的信息和问题,直观形象地了解到各信息与问题之间的数量关系。
气象小组有12 人,摄影小组的人数是气象小组的13 ,航模小组的人数是摄影小组的34 。航模小组有多少人?很多学生在读完题后显得较为迷茫,觉得有些混乱,不知道从何开始思考,这时我引导他们与老师一起尝试用线段图来表示三者之间的数量关系。

运用数形结合画出图形,帮助学生分析数量关系,揭示本质,有助于学生逻辑思维与形象思维协调发展,相互促进,提高学生的思维能力,而且有助于培养学生的创新思维和数学意识,并能正确解题。摄影小组:12×13=4(人),航模小组:4×43=3(人)。
5 看“数”想“形”,在几何与图形教学中,渗透数形结合思想方法,使学生的空间观念得到培养在教学中我们都知道,虽然“形”有形象、直观的优点,但在定量方面还必须借助“数”来计算。
例如练习题:把一根长20 厘米,宽5 厘米,高3 厘米的长方体木料沿横截面锯成2 段,表面积增加多少?这样的题目一出现,学生就无从下手,不知道应该怎样计算?这时我就利用看“数”想“形”的数形结合思想,引导学生经历三个空间观念的建立解题过程:动手操作,画出一个长方体,才长方体上切2 段,看看表面积多了几个面,多的这几个面的面积合起来就是表面积增加的部分———教师实物操作,让学生验证自己所切的面是否与老师操作的一样———抽象概括,使物体的整体模型印刻在脑海中,从而空间观念在活动体验中得到培养和形成。
6 数形结合、数形互用,学生的思维能力得到提升在实际教学中,数和形往往是紧密结合在一起,相互并存的。数形结合、数形互用往往会启发学生展开发散思维。经过长期发散思维训练的学生,解题方法多样,思维灵活多变,往往能在发散的基础上产生奇特的思路,从而使解法变得十分简明扼要而且巧妙。

❹ 如何运用数形结合完善小学数学概念教学

数学概念作为小学数学教学中最为基本的知识,是小学数学知识结构的重要组成部分。学生只有掌握了数学概念,才可了解进而掌握数学知识。数形结合思想就是指在教学过程中,借助于直观形象的模型和集合图形来理解抽象的数学概念、规律及数量关系。小学生大多处在直观的认识阶段,很难理解抽象的概念。只有把抽象的数学概念与形象生动的图形结合起来,丰富小学生的感性认知途径,就可以帮助学生轻易理解数学概念的真正内容。本文结合笔者多年教学实践,谈谈数形结合思想在小学数学概念教学中的运用。
1、数形结合思想的内涵
“数”和“形”是数学教学过程中两个最为重要的部分,也是数学教学中经常研究的对象。在数学教学过程中,将“数”与“形”结合起来,借用直观形象的“形”来理解抽象难懂的“数”,运用细致的“数”来解释“形”的特征。将两者有机的组合在一起,相互配合。使得抽象难懂的概念与直观易懂的图形统一起来,从而轻松的解决数学问题。
2、数形结合思想在小学数学概念教学中的运用
2.1 建立模型,引入概念
考虑到小学生的理解能力有限,在引入数学概念时必须考虑到学生对于概念的理解和掌握。在引入概念时,需要先建立直观的模型,让学生了解其表象,进入深入了解概念的内涵。对于模型表象的建立,是学生通过对感知材料进行分析,以此为基础而产生的印象。在小学数学教学中引入概念时,图形演示是建立模型的最常用也是最有用的方法。小学生尚处在简单的用形象思维考虑问题的阶段,在对于抽象的数学概念理解时,需要借助于丰富而形象的感性材料。在数学概念教学过程中,需要充分展现抽象的概念与形象的图形之间的相似之处,用最具有表现力的图形将难懂概念的本质演示出来。通过数形结合,学生将对所学的数学概念轻松掌握,并记忆深刻。
在倍数的教学过程中,学生就很难理解倍数的概念。如何将倍数的概念最为简单明了的教授给学生,使他们能完全掌握呢?图形演示绝对是最为简单而有效的方法。教学时可将2个三角形看成一份,在下面在摆出4个正方形,分成两份。教授学生们观察三角形有1个2,正方形中有2个2,以2个为一份,就可以用数学语言表达:正方形的个数是三角形的2倍。在这简单的图形演示中,学生从最简单的“个数”“份数”,再引出“倍数”,过渡自然,不会显得很突兀和难以理解,从而轻松掌握“倍数”概念的本质。
在利用直观的图形建立模型以助理解时需注意分寸,不要为增强图形对学生的刺激效果,而在图形演示上下太多功夫,导致学生的注意力集中到图形上去,失去理解概念的兴致。图形演示只是手段,是为了让学生直观的感受概念的本质,更好的理解数学概念的本质,其本身需简洁明了。
2.2 步步递进,分析形成
学生对数学概念的认识形成都有一个过程,在教学时仅借助一个图形是不够的,需在图形的基础上提出逐步深入的问题,诱导学生进行更深层次的思考,让学生亲自经历从对概念的直观感知到深刻理解的过程。学生不仅要能理解概念,还要能运用。故在引入概念时,需对学生理解的图形表象进一步递进,分析概念的形成过程,增强问题的形象性,拓展问题的深度,以启发学生更深层次的思考。在教学中学生需回忆概念引入的过程,观察和分析抽象概念如何变得形象,从而形成对新概念的掌握。
在概念抽象且难以理解时,教师可在教学过程中借助于形象的物体设问,引导学生观察分析。例如在对于“体积”概念的教学时,教师可先引导学生观察橡皮与粉笔盒,问哪个物体更大,让学生初步感知“体积”的概念。然后可在烧杯内盛水,并放入小石块,让学生观察烧杯内水位的变化,并询问:水位为什么会上升?上升了多少?学生可以从水位上升中明白物体所占的空间体积大小就是“体积”。水位上升的多少就是小石块在水中占有的体积。通过深入讨论,学生就能轻易到“体积”就是物体所占有的空间体积大小。学生不仅因趣味实验而理解了“体积”的概念,还对次产生深刻的印象,也可以在以后更熟练的应用此概念。
在进行实物建立概念模型,设置情境时,教师需特别注意层层递进,注意概念与图形的有机结合。在教学过程中,还需要用问题去诱导学生,启发学生,让学生在观察中发现问题,进而分析并解决问题。教师需要在学生形成对概念的表象认识时,引导学生观察分析概念的本质属性,使得学生在整个概念学习过程中能步步递进,了解整个过程的形成情况,完成对概念的理解过程。
2.3 动手作图,理解本质
小学生难以运用生活经验将实际遇到的问题转移在数学问题上,从而形成对数学概念的理解。所以在平时教学过程中,教师需根据实际教学情况,引导学生利用工具动手作图,以帮助理解概念的本质。通过作图观察,学生可建立属于自己的概念表象,拓展学生的空间观念,提高空间思维能力。从而培养学生的抽象思考、分析概括等能力。
在三角形的教学中,学生就很难理解三角形“高”的概念。脱离图形,教师就很难阐述“高”的含义,学生就更不会理解其本质。因此在这种情况下,教师可引导学生自己动手作图,经历一个找三角形“高”的过程,这样就会使学生对“高”产生深刻的印象。教师可指导学生如何过某一点做一条直线的垂线段;然后指导学生过三角形一顶点做底边的垂线段,这条垂线段就是三角形的“高”。学生们也可通过作图练习,来充分理解三角形“高”的概念。通过平时的大量作图练习,可以让学生去发现各个图形的特征,充分调动积极性,培养学生的观察和作图能力,更形象理解“高”的本质属性。
在学生动手作图的过程中,需着重引导学生总结在此过程中的体验和感悟,进而充分全面的理解数学概念。指导学生们作图,让他们在作图过程中找到学习的乐趣,获得掌握知识的快感,让学生们在此过程中找到学习数学的方法。
3、对数形结合思想的思考
在运用图形来帮助理解数学概念时,教师可以通过借助直观而又形象的图形,将抽象的数学概念变得通俗易懂,变得直观形象,以便学生对其的理解和分析。在教学过程中教师需要用清晰的理论来帮助学生理解,进而掌握。分析问题时,需根据具体情况,将图形问题转为数量问题,或是将概念问题转变图形问题,使复杂的问题简单明了,帮助学生准确的理解,找到概念的本质,培养和扩展学生逻辑思维能力。
在遇到复杂的几何图形时,可以尝试用简单的数量关系来表示。通过简单的代数运算来表示复杂的图形关系。鼓励学生观察图形,从中分析图形中数字的意义,借助数量关系的运算来解决复杂的图形问题。这样就可以让学生们充分了解“数形结合”的思想内涵,熟悉数形结合的思想方法,更好的在学习数学过程中运用“数形结合”方法,使得学生对“数”与“形”产生一定的敏感性。
“数形结合”是一种重要的数学学习方法。它是一个双向的过程,需根据实际情况处理好两者的结合,相互配合。教师在小学数学概念教学过程中,需注重对学生应用“数形结合”进行合理的指导,让学生养成在学习过程使用“数形结合”方法的良好习惯。要重视培养学生的数学思维能力,从而是学生在学习数学时达到数形统一,这将对学生日后的数学学习有非常重要的意义。

❺ 浅谈如何培养小学生的数形结合意识

数学是研究现实世界数量关系与空间形式的一门科学, 数与形的统一结合贯穿于数学学科研究与发展的始终。数和形是数学研究的两大对象,数形结合法是一种重要的数学思想方法。数是指数据与式子,主要表现在以下几方面:函数、方程、不等式、数列、复数、排列组合等。形可以理解为几何图形。采用数形结合法去解数学题,就是对题目中的条件与结论,既分析其代数含义又分析其几何含义。力图将代数和几何统一起来去找出解题思路。数形结合是数学中的一种重要思想与解题策略, 利用数形结合这一思想, 可以较直观地对问题进行分析, 解决许多比较抽象的数学问题。因此, 通过数形结合能很好地解决一些问题, 对培养学生的解题能力非常重要。一、渗透数形结合思想,提高学生的数学素养素质教育是通过科学有效的途径,开发受教育者的潜能,以完善和全面的提高学生素质为根本目的教育。数学素质在人的素质养成上具有不可替代的作用。这是因为数学的直观思维、逻辑推理、精确计算以及结论明确无误等特征是每个学生应该具备的科学文化素质。由此可见,对数学教师来说,要突出素质教育的数学教学关键是加强数学思想方法的教学,因为数学思想方法作为数学知识的精髓,它既是数学中的深层次的基础知识,又是解决问题和思维策略。数学思想方法掌握的深、浅度,直接关系到能否顺利或比较简捷地解决问题;关系到是否深刻地对数学知识本质认识,数学规律的理性认识;关系到是否能把某些数学内容和对数学的认识过程中提炼上升的数学观点加以应用。而这些数学知识的掌握是以解题思维能力作为起点的。因此,在中学数学教学中,如何引导学生选择恰当的方法来提高解题速度和效率,应注重培养学生解题能力,掌握多种方法。尤其数形结合法的教学更是学生应该熟练掌握的重要思维方法。数形结合是解决数学问题的重要思想,其实质是把抽象的数学语言与直观的图形结合起来,以直观辅助抽象的思考,以抽象的思考研究直观的细节。著名数学家华罗庚先生说过:数无形,少直观;形无数,难入微。发掘数与形互相依存的关系,把数式运算的周密性和图形的直观性巧妙结合起来,对解决数学问题非常有益,它常能有效突破解题障碍,顺利沟通已知和未知,使问题由繁化简,由难化易。数形结合思想方法是中学数学基础知识的精髓之一,是把许多知识转化为能力的桥。在中学数学教学中,许多抽象问题学生往往觉得难以理解,如果教师能灵活地引导学生进行数形结合,转化为直观、易感知的问题,学生就易理解,就能把问题解决,从而获得成功的体验,增强学生学习数学的信心。尤其是对于较难问题,学生若能独立解决或在老师的启发和引导下把问题解决,心情更是愉悦,这样,就容易激发学生学习数学的热情、兴趣和积极性。同时,学生一旦掌握了数形结合法,并不断进行尝试、运用,许多问题就能迎刃而解。二、在数学教学中渗透数形结合思想本文特从以下几个方面,对数形结合’解题进行例析研究。1几何图形与数量关系相结合几何中的计算与证明问题,常常根据几何图形的特点挖掘蕴涵的数量关系;一些数量关系的比较问题,常常构造出由数量关系反映出的几何图形,根据图形的直观性寻求解决。2函数图象与数量关系相结合数轴使实数与数轴上的点建立起一一对应的关系,平面直角坐标系使有序实数对与平面上的点建立起一一对应的关系,为数形结合创造了充分的条件函数图象在直角坐标系的位置及变化趋势,为研究函数的性质提供了直观、形象的依据,反过来,依据函数的性质又能推断函数图象在直角坐标系屮的位置及变化情况,数形结合成为研究解决函数问题的重要思想方法。3图形的运动变化与函数问题的结合函数建立起两个变量之间的关系,运动变化便进入了数学,运动改变了图形的位置、形状,其中蕴涵的数量关系也会发生变化,研究图形运动变化体现出来的函数关系,使数形结合更具活力,更丰富多彩。 4 注重数学思想方法的教学加深认识,让学生亲自参与知识发现的过程。恩格斯说:世界不是一成不变的事物的集合体,而是过程的集合体。对于数学而言,知的发生过程就是思维方法的产生过程,因此教师在平时的教学过程中,应切实加深学生对知识的认识,让学生亲自去参与知识发现的过程,揭示事物的本质特征。数学学习贯穿着两条主线,即数学知识和数学思想方法,通性通法蕴涵着丰富的数学思想和方法,更贴近学生的认知水平,符合常人的思维习惯,同样也有利于培养学生的数学能力。在初中数学中,常用的数学思想有函数和方程思想、数形结合思想分类讨论论思想、化归转化思想、整体处理思想等,上面教学片断的探究题,教者通过引导学生从数和形的角度来解决问题,很好地发展了学生的方程思想和数形结合思想,同时也渗透了数学分类的思想方法。在平时的教学中,我们应在解决问题的过程中,对这些数学思想加以揭示、运用和提炼,以提高学生的思维水平和解题能力。人常说,数学是锻炼思维的体操,恐怕就是因为

❻ 小学数学数形结合的例子

小学数形结合,比如数学中的画图题。证明题都需要。

阅读全文

与小学数学数形结合相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99