❶ 小学四年级数学大全
require.async(['wkcommon:widget/ui/lib/sio/sio.js'], function(sio) { var url = 'https://cpro.static.com/cpro/ui/c.js'; sio.callByBrowser( url, function () { BAIDU_CLB_fillSlotAsync('u2845605','cpro_u2845605'); } ); });
(2)体积=长×宽×高 V=a×b×h 5:三角形
S:面积 a:底 h:高 面积=底×高÷2 S=a×h÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6:平行四边形
S:面积 a:底 h:高 面积=底×高 S=a×h 7:梯形
S:面积 a:上底 b:下底 h:高 面积=(上底+下底)×高÷2 S=(a+b)× h÷2 ▲8:圆形
S:面积 C:周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ ▲9:圆柱体
v:体积 h:高 s:底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 ▲10: 圆锥体
V:体积 h:高 S:底面积 r:底面半径 体积=底面积×高÷3 V=S底面积×h×1/3 总数÷总份数=平均数 ▲和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 ▲和倍问题 和 差倍问题 和÷(倍数-1)=小数 小数×倍数=大数(或者 和-小数=大数) 差÷(倍数-1)=小数 小数×倍数=大数(或 小数+差=大数) ▲倍数和因数
0是自然数。在自然数中,最小的偶数是0,最小的奇数是1。 一个数的最小倍数和它的最大因数相等。
一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。 一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。 什么是偶数?是2倍数的数叫做偶数。(能被2整除的数是偶数) 什么是奇数?不是2倍数的数叫做奇数。(不能被2整除的数是奇数) 2的倍数,个位上的数是2、4、6、8和0。2的倍数都是双数。
5的倍数,个位上的数是5和0。个位上是0的既是2的倍数,又是5的倍数。 3的倍数,它各位上数的和一定是3的倍数。
注意:4的倍数一定是2的倍数,2的倍数不一定是4的倍数。
什么是素数(或质数)?只有1和它本身两个因数,叫做素数(或质数)。 什么是合数?除了1和它本身还有别的因数,叫做合数。 注意:1的因子只有1个(是1)。1既不是素数,也不是合数。最小的素数是2,最小的合数4。没有最大的素数和合数。
小学四年级数学下册一些定义、定律、计算公式和法则
var cpro_psid ="u2572954"; var cpro_pswidth =966; var cpro_psheight =120;
▲一、四则混和运算
四则混合运算的顺序:在四则混合运算中,只有加减或只有乘除的运算,就从左至右依此计算;如果既有加减法又有乘除法,就要先算乘除,后算加减;如果有括号,就要先算括号里面的,再算括号外面的;如果既有小括号,又有中括号,就先算小括号里面的,再算中括号里面的,最后算括号外面的。 二、乘除法的关系和运算律 乘除法的关系:
一个因子=积÷另一个因子
已知两个因数的积与其中的一个因数,求另一个因数,用除法。
除数=被除数÷商 被除数=商×除数 除法是乘法的逆运算 0不能作除数 在有余数的除法里,被除数与商、除数、余数之间的关系: 被除数=商×除数+余数 除数=(被除数-余数)÷商 商=(被除数-余数)÷除数
一个整数除以另一个不为0的整数,商是整数,没有余数,我们就说一个数能被另一个数整除。如:6÷2=3,就是6能被2整除,或者说2能整出6。
乘法交换律:两个因数相乘,交换因数的位置,积不变,这就是乘法交换律。如果用a,b表示两个数,乘法交换律可以表示为:a×b=b×a
乘法结合律:三个数相乘,先乘前两个数或者先乘后两个数,乘积不变,这就叫乘法结合律。如果用a,b,c表示3个数,乘法结合律可以表示为:
(a ×b)×c=a×(b×c)
乘法分配律:两个数的和与一个数相乘,可以先把两个数与这个数分别相乘,再将两个积相加,结果不变,这叫做乘法分配律。如果用如果用a,b,c表示3个数,乘法分配律可以表示为:(a+b) ×c= a ×c+ b×c
简便计算的方法很多:如,利用上面的运算定律,可以使计算简便,还可以用凑整法,分解法,一个数连续减两个数,等于这个数减两个数的和,等都可以使计算简便。在简便计算时,要根据实际情况具体分析,该用什么方法才能使计算简便,就用什么方法,要灵活运用。
因子与积的变化规律:
一个因子不变,另一个因子扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。 一个因子扩大(或缩小)几倍,另一个因子也扩大(或缩小)几倍,积就扩大(或缩小)两个因子扩大(或缩小)的倍数之积。
如果一个因子扩大几倍,另一个因子缩小相同的倍数,积不变。 三、小数的意义和性质
小数的意义:像0.7,0.45,0.025,0.107„„这样,用来表示十分之几、百分之几、千分之几„„的数,叫做小数。小数的计数单位有0.1,0.01,0.001„„每相邻两个计数单位间的进率是“10”。
小数的读法:整数部分按照整数的读法来读,小数部分从左到右顺次读出每一个数位上的数。
小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变。这叫做小数的性质。
小数大小的比较:两个小数比大小,整数部分大的那个就大,整数部分相同,十分位元元上的数较大的那个就大,整数部分相同,十分位元元也相同,百分位上的数较大的那个数就大„„以此类推。
❷ 小学四年级数学日记
为你提供四篇!
(一)数学让我回味无穷
数学,数学我爱你,就像老鼠爱大米。大家知道我为什么喜欢数学呢?因为数学它有魅力,我已被它深深的吸引住了。
今天,我又学会了一个新知识,那就是——加、减法的简便算法。学了加减法的简便算法,我的计算速度快了许多,学习计算更加轻松。举个例子说说吧!比如:367+498=?我只要这样想:把498看作500来加,然后用367+500,发现多加了2,于是我便在和里减去2,结果得到865。而796+295呢?我这样想:796可以看作800来加,而295可以看作300,一个多加了4,另一个多加了5,于是算式就变成了800+300-4-5=1091,瞧,多方便呀!
学完了加法的简便算法,再来学习减法的简便算法就容易多了。如:483-299,嘿嘿,我脑袋瓜轻轻一动,就有方法了。我先把299看作300来减,因为多减了1,所以只要结果中加上1,就是用483-300+1=184,这样就好算多了。不过呢,我可警告你一句:计算减法最好别动被减数的主意,要不可就麻烦咯!
现在,我越来越喜欢数学了,因为它让我学会迅速的计算结果,数学真的是让我回味无穷!
(二)预习是把金钥匙
今天,数学课后,老师布置我们预习除法估算。
预习是什么呢?老师为什么叫我们预习呢?我带着惊奇的心情回到家。查资料,问爸妈。原来预习就是在学习新课之前,自己先把书上的内容看一遍,(如果有什么不懂的,做上记号,等上课时,再认真听。)这样,就能对新知识有了初步认识。
我好奇地预习着除法估算。通过预习,我知道了估算538÷62时,可以把538看作540,62看作60,那么,538÷62≈9。原来,预习可以帮助我扫除数学学习的障碍,我对估算有了初步的理解。听课时,我能很快地接受新知识。即使有疑问的地方,也能迎刃而解。
所以,课前预习很重要,我们一定要养成预习的好习惯,因为成功的预习,可以使听课质量更高,学习的效率也跟着提高,所以,它是打开知识大门的金钥匙。
(三)一场别开生面的数学比赛
一年一度的数学比赛开始了。森林里热闹非凡。今年参加比赛的有:免子、乌龟、老虎和狮子。
比赛开始了。天鹅老师先给这些考生们各发了一张试卷,然后对它们说:“谁能在一定的时间内算得又对又快,就可以获得智慧杯大奖。”
天鹅老师的话一说完。这些考生们就开始动笔了。兔子跑得快,做得也很快。只见她运笔如神,不一会儿已经做了一大半了。来,我们来看看它的考卷。“晕!!!”你看:80-70=150、20÷4=80……多马虎啊!连运算符号都没看清楚。
再看看狮子和老虎。咦!怎么不见狮子和老虎呢!只看见一大堆一大堆的稿子。走前一看,只见狮子、老虎正忙的不亦乐乎呢!原来,狮子每做一道都要拿出稿纸计算一下。稿子越堆越多,就把狮子的头给掩没了。真是头脑简单,四肢发达。而老虎更夸张。每做完一题,就拿出稿子验算一次。难怪做的满头大汗。
最后来看看乌龟吧!
乌龟平时慢性子,可这次它的头脑转的一点儿也不慢。你看这道题算的多妙:3456-999=3456-1000+1=2457。乌龟运用了简便算法很快得做完了试卷,而且做得又对有快!
最后乌龟获得了智慧怀大奖。
(四)0的重要性
0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。
这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!
如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0——100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊!
❸ 小学四年级数学
A/B=16……28
(1)
除数必须要大于28,比28大的数有无数个
但其中最小的就是29。
检验:把除数专=29带入(1)中,A/29=16…属…28,
那么:A=29*16+28=492
所以
除数最小为29是成立的。
❹ 小学四年数学
解:设他作对了X道题 则错了15-X道题
8X-4(15-X)=72
解方程得X=11
所以他作对了11道题
小学毕业若干年 具体格式要求我不记得了 你就按老师讲的好了
❺ 小学四年级数学小论文
“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。
2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。
去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了298元券买了一件藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。
我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。
广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。
商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!
满意吗?``祝你成功!~
❻ 小学四年级数学
1.一辆汽车平均每分钟行驶800米,按这样的速度计算,这辆汽车平均每小时行驶多少千米?要行驶240千米,需要几小时?
这辆汽车平均每小时行驶800*60=48000米=48千米
要行驶240千米,需要240/48=5小时
2.四年级数学课外小组同学到书店购买了三种课外书,每种15本,他们交给营业员200元钱,找回20元,平均每本书多少元?
(200-20)/(3*15)
=180/45
=4元
3.学校操场上有一条200米的直跑道。小刚和小强同时从跑道的同一端跑向另一端,小刚每秒跑4米,小强每秒跑5米。经过20秒后,两人相距多少米?
5*20-4*20
=100-80
=20米
4.有3个人排队打电话,甲要打5分钟,乙要打3分钟,丙要打2分钟,要使三人等候时间总和最少,应该怎样顺序排列?打电话等候时间总和最少是多少?
要使三人等候时间总和最少,应该按打电话时间由短到长顺序排列,即从丙到乙再到甲的顺序!
打电话等候时间总和最少
=2*2+3
=4+3
=7分钟
5.家长会结束后,老师请三位同学家长留下来交流。老师与刚刚爸爸谈话需要8分钟,与奇奇的妈妈谈话需要6分钟,与乐乐的妈妈谈话需要5分钟,怎样安排与三位家长的谈话顺序才能使三个人等候时间总和最少?谈话和等候时间总和最少是多少分钟?
要按照谈话时间由短到长的时间安排谈话顺序才能使三个人等候时间总和最少,
即从乐乐的妈妈到奇奇的妈妈到刚刚的爸爸
谈话等候时间总和最少
=5*2+6
=16分钟
6.有40块糖,小红和小丽两人轮流取,每次最多取4块,最少取1块,谁拿到最后一块谁就赢,请你帮帮小红。(小红:我一定要赢,我应该先拿还是后拿呢?要是先拿应该拿几个,然后再怎样拿呢?如果后拿,应该怎样拿
小红一定要赢,就应该后拿!
小丽拿1块,小红就拿4块
小丽拿2块,小红就拿3块
小丽拿3块,小红就拿2块
小丽拿4块,小红就拿1块
始终保持和是5,剩下的糖的数量就是5的倍数,就可以保证能拿到最后一块糖!
如果小红先拿,拿几块都无所谓,只要小丽不犯错误,小红都赢不了!
如是小丽犯了错误,剩下的糖的数量不是5的倍数,那么小红再拿的数量就一定要使剩下的糖的数量是5的倍数,然后再按照后拿时的原则办就行了!
二填一填
1.一个平底锅每次可以烙3张饼,烙熟一张饼至少需要4分钟,烙3张饼至少需要(4)分钟。
2.一个理发店只有一个理发师,同时来了四位顾客,按他们发型时间计算,甲需要154分钟,乙需要25分钟,丙需要18分钟,丁需要40分钟。理发师应该按(丙)、(乙)、(丁)、(甲)的顺序安排,才能使四个人等候时间的总和最少?
❼ 小学四年级生活中的数学知识
1、加法:把两个数合并成一个数的运算。
2、减法:已知两个数的和与其中一个加数,求另一个加数的运算。
3、乘法:求相同加数和的简便计算。
4、除法:已知两个因数的积和其中一个因数,求另一个因数的运算。
小数四则运算的运算顺序和整数四则运算顺序相同。
分数四则运算的运算顺序和整数四则运算顺序相同。
❽ 数学(小学四年级)
8576-7808=768 7-1=6 768/6=128 8576/128=67
❾ 小学四年级数学
每条线上的每一个点会形成2条射线,所以共2x2x3=12条
❿ 小学四年级数学学的公式
小学四年级数学公式大全
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
三角形的面积=底×高÷2。公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子
叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,
等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数
(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面
1、单价×数量=总价 2、单产量×数量=总产量
3、速度×时间=路程 4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =(a+b
)*c
初中数学知识点归纳.
有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算
减正等于加负,减负等于加正。
有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。
合并同类项
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】 一提(提公因式)二套(套公式)
因式分解
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
比和比例
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
解比例
外项积等内项积,列出方程并解之。
求比值
由已知去求比值,多种途径可利用。
活用比例七性质,变量替换也走红。
消元也是好办法,殊途同归会变通。
正比例与反比例
商定变量成正比,积定变量成反比。
正比例与反比例
变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。
判断四数成比例
四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。
判断四式成比例
四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。
比例中项
成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。
根式与无理式
表示方根代数式,都可称其为根式。
根式异于无理式,被开方式无限制。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。
被开方式有字母,又可称为无理式。
求定义域
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
解一元一次不等式
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
解一元一次不等式组
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)
敬老院以老为荣,(同大就要取较大)
军营里没老没少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
a正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
用平方差公式因式分解
异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。
用完全平方公式因式分解
两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。
一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。
两边若负中间正,底差平方相反数。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。
判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
用常规配方法解一元二次方程
左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。
该种解法叫配方,解方程时多练习。
用间接配方法解一元二次方程
已知未知先分离,因式分解是其次。
调整系数等互反,和差积套恒等式。
完全平方等常数,间接配方显优势
【注】 恒等式
解一元二次方程
方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。
b、c同时不为零,因式分解或配方,
也可直接套公式,因题而异择良方。
正比例函数的鉴别
判断正比例函数,检验当分两步走。
一量表示另一量, 有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质
正比函数图直线,经过 和原点。
K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。
K负左高右边低,一大另小下山峦。
一次函数
一次函数图直线,经过 点。
K正左低右边高,越走越高向爬山。
K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
反比例函数
反比函数双曲线,经过 点。
K正一三负二四,两轴是它渐近线。
K正左高右边低,一三象限滑下山。
K负左低右边高,二四象限如爬山。
二次函数
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
A定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。
如果要画抛物线,平移也可去描点,
提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线
直线、射线与线段
直线射线与线段,形状相似有关联。
直线长短不确定,可向两方无限延。
射线仅有一端点,反向延长成直线。
线段定长两端点,双向延伸变直线。
两点定线是共性,组成图形最常见。
角
一点出发两射线,组成图形叫做角。
共线反向是平角,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
直平之间是钝角,平周之间叫优角。
互余两角和直角,和是平角互补角。
一点出发两射线,组成图形叫做角。
平角反向且共线,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
钝角界于直平间,平周之间叫优角。
和为直角叫互余,互为补角和平角。
证等积或比例线段
等积或比例线段,多种途径可以证。
证等积要改等比,对照图形看特征。
共点共线线相交,平行截比把题证。
三点定型十分像,想法来把相似证。
图形明显不相似,等线段比替换证。
换后结论能成立,原来命题即得证。
实在不行用面积,射影角分线也成。
只要学习肯登攀,手脑并用无不胜。
解无理方程
一无一有各一边,两无也要放两边。
乘方根号无踪迹,方程可解无负担。
两无一有相对难,两次乘方也好办。
特殊情况去换元,得解验根是必然。
解分式方程
先约后乘公分母,整式方程转化出。
特殊情况可换元,去掉分母是出路。
求得解后要验根,原留增舍别含糊。
列方程解应用题
列方程解应用题,审设列解双检答。
审题弄清已未知,设元直间两办法。
列表画图造方程,解方程时守章法。
检验准且合题意,问求同一才作答。
添加辅助线
学习几何体会深,成败也许一线牵。
分散条件要集中,常要添加辅助线。
畏惧心理不要有,其次要把观念变。
熟能生巧有规律,真知灼见靠实践。
图中已知有中线,倍长中线把线连。
旋转构造全等形,等线段角可代换。
多条中线连中点,便可得到中位线。
倘若知角平分线,既可两边作垂线。
也可沿线去翻折,全等图形立呈现。
角分线若加垂线,等腰三角形可见。
角分线加平行线,等线段角位置变。
已知线段中垂线,连接两端等线段。
辅助线必画虚线,便与原图联系看。
两点间距离公式
同轴两点求距离,大减小数就为之。
与轴等距两个点,间距求法亦如此。
平面任意两个点,横纵标差先求值。
差方相加开平方,距离公式要牢记。
矩形的判定
任意一个四边形,三个直角成矩形;
对角线等互平分,四边形它是矩形。
已知平行四边形,一个直角叫矩形;
两对角线若相等,理所当然为矩形。
菱形的判定
任意一个四边形,四边相等成菱形;
四边形的对角线,垂直互分是菱形。
已知平行四边形,邻边相等叫菱形;
两对角线若垂直,顺理成章为菱形。