导航:首页 > 小学学科 > 小学数学概念教学

小学数学概念教学

发布时间:2020-11-28 14:13:33

❶ 如何加强小学数学的概念教学

在小学数学课中,根据教学内容可以划分为概念课、计算课、解决问题课与空间图形课,而几乎在每一个新知识的起始课,学生最先接触到的必然是数学概念。
数学概念是数学知识的“细胞”,是进行逻辑思维的第一要素。一切数学规则的研究、表达与应用都离不开数学概念。概念是构成小学数学基础知识的重要内容,它们是互相联系着的,也是学习其他数学知识的基础,因此上好概念课对小学生的后续学习以及数学素质发展的培养都具有很重要的意义。
一、概念引入的教学策略
儿童学习数学概念有一个学习准备的过程,这个过程就称为“概念的引入”。良好有效的概念引入有助于学生积极主动地去理解和掌握概念。
概念引入的基本策略有:
1、生活实例引入
数学源于生活。结合生活实例引入概念是数学概念教学的一个有效途径。它可以使数学由“陌生”变为“熟悉”,由”严肃”变为“亲切”,从而使学生愿意接近数学。例如:“直线和线段”的教学。可呈现四组镜头让学生观察。镜头一:妈妈织毛衣的场景,突出散乱在地上的绕来绕去的毛线。镜头二:斜拉桥上一根根斜拉的钢索。镜头三:一个女孩打电话,用手指绕着弯弯曲曲的电话线。镜头四:建筑工地上用绳子拴住重物往上拉的画面,突出笔直的钢丝绳。然后提问:“刚才你在屏幕上看到了什么?你能给这些线分分类吗?你有什么办法使这些线变直?”这些熟悉的生活现象不仅唤起了学生对生活的回忆,更激起了学生探索欲望,为学生提供了“做数学”的机会。
2、从直观操作引入
组织学生动手操作,可使学生借助动作思维,获得鲜明的感知。如:教学“平均分”的概念,可先引导学生动手操作,把8个桃子分给2只猴子,看看有几种不同的分法。然后进行比较,说说你认为哪种分法最公平。从而使学生认识到:众多的分法中有一种分法是与众不同的,那就是每人分的同样多,从而形成“平均分”的表象。
3、从旧知迁移引入
数学概念之间的联系十分紧密,到了中高年级,许多概念可以通过联系相关的旧概念直接引入。例如:“质数与和数”的教学。由于质数、和数是通过约数的个数来划分的,所以在教学时,可以从复习约数的概念入手,然学生找出1、2、6、7、8、11、12、15的所有约数。在引导学生观察比较,他们各有几个约数?你能给出一个分类标准,把这些数分分类吗?从而为引出质数、和数做好铺垫。又如:“乘法”的概念可从“加法”来引入,“整除”的概念可从除法中的“除尽”来引入。
4、从情景设疑引入
丰富的情景不仅能激发学生的学习欲望,而且有利于学生主动观察和积极思考,还有利于培养学生通过观察发现并提出问题的能力。例如:关于“体积”概念的教学,可以先将两个同样的玻璃容器盛满水,然后拿出两个大小明显不等的石块,分别放进两个玻璃容器中,让学生观察,出现了什么现象,并想一想,为什么石块放进容器后,水要往外溢?为什么放进较大石块的容器,流出的水较多?从而让学生获得石块占有空间的感性认识,为引出“体积”做好了准备。
5、从动手计算引入
有些数学概念很难让学生观察或操作,但可以组织学生进行计算,使学生获得感性认识。例如:“循环小数”概念的教学。可先让学生进行小数除法计算,10/3,58.6/11。在计算过程中,学生会发现他们都除不尽,并且注意到当余数不断重复出现时,商也不断跟着重复出现,从而感知循环小数。
引进数学概念的方法较多,有时需要配合使用几种方法才能收到良好的教学效果。
二、概念建立的教学策略
概念建立是概念教学的中心环节。小学生建立数学概念有两种基本形式:一是概念的形成,二是概念的同化。由于小学生的思维特点处于由形象思维像抽象逻辑思维过度的阶段,因此,小学生学习数学概念大多以“概念形成”的形式为主。数学概念的形成,一般要经过直观感知---建立表象---解释本质属性三个过程。
1、强化感知
感知是人们认识事物的开始,没有感知就不可能认识事物的本质和规律。因此在概念教学中,首先根据教学内容有目的、有计划地向学生提供丰富的感性材料,引导学生观察,并结合学生自己的动手操作,丰富感性认识,为概念形成做好准备。在组织学生进行感知活动时,要有意识地把感知的对象从背景中凸现出来,以便学生清晰地感知。同时,变静止的为活动的,给学生留下清晰而深刻的印象。
2、重视表象
表象是人脑对客观事物感知后留下的形象,是多层次感知的结果。表象接近感知,具有一定的具体性,同时又接近于概念,具有一定的抽象性,它起着从感知到概念的桥梁作用。建立表象,可以使学生逐步摆脱对直观材料的依赖,克服感知中的局限性,为揭示概念的本质属性奠定基础。因此,在演示或操作结束后,不要急于进行概括,可以让学生脱离直观事例,默默地回想一下,唤起头脑中的表象,并通过教师的引导,是表象有模糊到清晰,由分散到集中,进而过渡到抽象概括。如:在直观感知黑板面、课桌面、课本面是长方形的基础上,抽象出几何图形。
3、揭示本质属性
在学生充分感知并形成表象后,教师要不失时机地引导学生进行分析、比较、综合,概括出事物的本质属性,并把这些本质属性推广到同类事物的全体,从而形成概念。
如:“三角形的认识”教学。首先让学生说出日常生活中常见的三角形实物;接着在屏幕上出示三角旗、红领巾、三角板等实物图,提问这些物体都是什么形状?然后教师去掉图中的颜色,只留下三个物体的外框,让学生说说这三个图形的相同点和不同点。舍弃这三种物体的颜色、大小、材料等非本质的东西,抽象出三角形的本着特征:都是有三条线段组成的。接着教师出示三条线段,在屏幕上慢慢“围成”一个三角形,形象地突出了“围成”这一特征,是学生准确理解:“由三条线段围成的图形叫三角形”。
4、深入理解概念的内涵和外延
当用定义把概念的本质属性揭示出来时,学生对概念的理解还是肤浅的。因此,教师要采取一切手段帮助学生逐步理解概念的内涵和外延,以便学生在理解的基础上掌握概念。一般可采取以下方法。
(1)析概念的关键性词语。如在概括出分数的概念后,可进一步剖析:①单位“1”表示什么意思?②“1”为什么加引号?③“平均分”表示什么意思?④“表示这样的一份或几份”是什么意思?只有把这些观念词语的意思弄清楚了,才能对分数的概念有深刻的理解。
(2)利用概念的肯定例证和否定例证。肯定例证有利于概念的概括,否定例证有利于概念的辨别。因此教师不仅要充分运用肯定例证帮助学生正面理解概念的内涵,同时还及时运用否定例证促进学生对概念的辨析。如:学习了“循环小数”的概念后,可举若干肯定例证和否定例证。
(3)运用变式突出概念的内涵与外延。“变式”是指本质属性不变而非本质属性发生变化。例如教学“三角形的高”时,当学生在标准图形做出高之后,可出示变式图形,然学生根据概念做出高。这样即使“三角形的高”的内涵到强化,又使外延到充分揭示。如果只提供标准图形,学生只会在标准图形上做高,而不会再变式图形上做高,这样就会缩小“三角形的高”这一概念的外延。
三、概念巩固的教学策略
学生对概念的掌握不是一次就能完成的,要由具体到抽象,再由抽象到具体多次往复。当学生初步建立概念后还需要运用多种方法,促进概念在学生认知结构中的保持,并通过不断运用加深对概念的理解和记忆,使新建立的概念得以巩固。
1、促进记忆
为了巩固所获得的新概念,首先需要记忆。教学中,我们必须遵循记忆的规律,指导学生对概念进行记忆。记忆有机械记忆、理解记忆。概念的机械记忆就是按概念在课本上的表述进行记忆。小学生机械记忆的能力一般比较强,但这种记忆如不及时上升到理解记忆,就很容易被遗忘,即使记住了也很难运用。概念的理解记忆是在明确了概念的内涵和外延,并使新概念和学生原有的知识经验建立联系后进行的记忆。
2、自举实例
自举实例就是让学生把已获得的概念简单地运用于实际,通过实例来说明概念,来加深对概念的理解。有经验的教师根据小学生通常带有具体性的特点,在学生通过分析、综合、抽象概括出概念以后,总是让他们自举例证,并把概念具体化。如在学生学习乘法的初步认识后,然学生找找生活中哪些问题可以用乘法解决。
3、强化应用
学生是否牢固地掌握了某个概念,不仅在于能否说出概念的名称和定义,还在于能否正确地应用。通过应用可以家生理解,增强记忆,提高数学的应用意识。
概念的应用可以从概念的内涵和外延两方面进行。概念的内涵的应用有:①复述定义或根据定义填空;②根据定义判断是非;③根据定义推理;④根据定义计算。概念外延的应用有:①举例;②辨认肯定例证或否定例证,并说明理由;③按指定条件从概念的外延种选择事例;④将概念按不同的标准分类。
4、注意辨析
随着学习的深入,学生掌握的概念不断增多,有些概念的文字表述相同,有些概念的内涵相近,学生容易混淆,如质数与互质数、整除与除尽、和数与偶数等。因此在概念的巩固阶段,要注意引导学生运用对比的方法,弄清易混淆概念的联系与区别,以促使概念的精确分化。
总之,小学数学概念教学是小学数学教学的重要组成部分,教师在上概念课的时候一定要根据针对学生的认知规律以及概念的具体特点,采取科学的教学策略来开展教学工作,以保证数学概念教学的质量。在小学数学教学中,帮助学生逐步形成正确的数学概念,是课堂教学的一个重要任务。

❷ 如何进行小学数学概念教学

————论如何在小学数学教学中用好概念数学
现在很多小学生对学习数学的积极性不高,缺乏学习兴趣,认为数学特别难学。我们只要认真分析,就不难发现,主要是学生对一些数学概念没有搞清楚。如:12的最大约数与最小倍数是相等的。学生却判断是错误的,本题涉及 “因数”、一个“自然数”的因数是“有限的”,最小的是1,最大的是它本身。“倍数”、一个自然数的倍数是“无限的”,最小的是它本身,最大的没有。还有“相等”。学生出现错误,说明学生对数学概念没有理解掌握好。数学概念是“双基”(即基础知识和基本技能)教学的核心内容;是基础知识的起点;是逻辑推理的依据;是正确、合理、迅速运算的保证。学生正确、清晰、完整地掌握数学概念,是掌握数学知识的基础。如果学生对概念不明确,也会影响学生的学习兴趣和学习效果。如果不懂什么是“分数”和“分数单位”,就很难理解分数四则运算法则的算理,就会直接影响分数四则计算能力的提高。正确、迅速、合理、灵活的计算能力只有在概念清楚的基础上,掌握计算法则,经过适当练习才能形成。学生概念清楚了,才能进行分析推理;逻辑思维能力和解决问题的能力才能不断提高。因此,在教学中如何使学生形成概念,正确地掌握和运用概念是极为重要的。数学教学过程,就是“概念的教学”。一个数学教师,要把概念教学放到突出地位。小学数学中的一些概念,对小学生来说,由于年龄小,知识不多,生活经验不足,抽象思维能力差,理解起来有一定的困难。因此教师在有关概念的教学过程中,一定要从小学生年龄实际出发,这样才会收到好的教学效果。
一、教学中让学生理解数学概念
1.直观形象地引入概念
数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。如在教平均数应用题时,我利用铅笔做教具,重温“平均分”的概念。我用9个同样大的小木块摆出三堆,第一堆1块,第二堆2块,第三堆6块,问:“每堆一样多吗?哪堆多?哪堆少?”学生都能正确回答。这时,我又把这三堆木块混到一起,重新平均分三份,每份都是3块,告诉学生“3”这个新得到的数,是这三堆木块的“平均数”。我再演示一遍,要求学生仔细看,用心想:“平均数”是怎样得到的。学生看我把原来的三堆合并起来,变成一堆,再把这堆木块分做3份,每堆正好3块。这个演示过程,既揭示了“平均数”的概念,又有意识地渗透“总数量÷总份数=平均数”的计算方法。然后,又把木块按原来的样子1块,2块、6块地摆好,让学生观察,平均数“3”与原来的数比较大小。学生说,平均数3比原来大的数小,比原来小的数大,这样,学生就形象地理解了“求平均数”这一概念的本质特征。
2.运用旧知识引出新概念
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。我就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。苏霍姆林斯基说:“教给学生能借助已有的知识去获取知识,这是最高的教学技巧之所在。”从心理学来分析,无恐惧心理,学生容易活跃;无畏难情绪,易于启发思维;旧知识记忆好,容易受鼓舞;所以运用旧知识引出新概念教学效果好。例如从求出几个数各自的“倍数”从而引出“公倍数”、“最小公倍数”等概念。总之,把已有的知识作为学习新知识的基础,以旧带新,再化新为旧,如此循环往复,既促使学生明确了概念,又掌握了新旧概念间的联系。
3.通过实践认识事物本质、形成概念
常言说,实践出真知,手是脑的老师。学生通过演示学具,可以理解一些难以讲解的概念。如一年级小学生初学数的大小比较。是用小鸡小鸭学具,一一对比。如一只小鸡对一只小鸭,第二只小鸡对第二只小鸭,……直到第六只小鸡没有小鸭对比了,就叫小鸡比小鸭多1只。又如二年级小学生学习“同样多”这个概念也是用学具红花和黄花,学生先摆5朵红花、再摆和红花一样多的5朵黄花,这样就把“同样多”这个数学概念,通过演示(手),思维(脑),形成概念,符合实践、认识,再实践、再认识的规律。这比老师演示、学生看,老师讲解、学生听效果好,印象深、记忆牢。
4、从具体到抽象,揭示概念的本质
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。如圆周率这个概念比较抽象。一般教师都是让学生通过动手操作认识圆的周长与直径的关系,学生通过观察、思考,分析,很快就发现不管圆的大小如何,每个圆的周长都是直径的3倍多一点。教师指出:“这个倍数是个固定的数,数学上叫做“圆周率”。这样,引导学生把大量感性材料,加以分析综合,抽象概括抛弃事物非本质东西(如圆的大小,纸板的颜色,测量用的单位等)抓住事物的本质特征(不论圆的大小,周长总是直径的3倍多一点)。形成了概念。
5、用“变式”引导学生理解概念的本质
在学生初步掌握了概念之后,我经常变换概念的叙述方法,让学生从各个侧面来理解概念。概念的表述方式可以是多种多样的。如质数,可以说是“一个自然数除了1和它本身,不再有别的因数,这个数叫做质数。”有时也说成“仅仅是1和它本身两个因数的倍数的数”。学生对各种不同的叙述都能理解,就说明他们对概念的理解是透彻的,是灵活的,不是死背硬记的。有时可以变概念的非本质特征,让学生来辨析,加深他们对本质特征的理解。
6、对近似的概念加以对比
在小学数学中,有些概念的含义接近,但本质属性有区别。例如:数位与位数、体积与容积,减少与减少到等等相对应概念,存在许多共同点与内在联系。对这类概念,学生常常容易混淆,必须把它们加以比较,避免互相干扰。比较,主要是找出它们的相同点和不同点,这就要对进行比较的两个概念加以分析,看各有哪些本质特点。然后把它们的共同点和不同点分别找出来,使学生既看到进行比较对象的内在联系,又看到它们的区别。这样,学的概念就会更加明确。对近似的概念经常引导学生进行比较和区分,既能培养学生对易混概念自觉地进行比较的习惯,也能提高学生理解概念的能力。多年来教学实践的体会:重视培养学生的比较思想有几点好处:(1)有利于培养学生思维的逻辑性。(2)有利于提高学生的分析问题的能力。(3)有利于培养学生系统化的思维方式。
5、教师要帮助学生总结归纳出概念的含义
教学中学生的主体地位是必要的,但教师在教学的全过程中的主导地位也不能忽视。教师应发挥好主导作用。教师与学生的主、客体地位是相互依存,在一定条件下又相互转化。在概念教学中,教师要善于为学生创造条件,让学生沿着观察、思维、理解、表达的过程,由感性到理性的过程,由具体到抽象的过程去掌握概念。这样极易调动学生的积极性、主动性,也可以教会学生去发现真理。比如我教质数,合数两个概念。我先板书几个数:1、2、3、4、5、6、8、9、11、12,让同学分别写出每个数的因数来。为了便于学生观察,有意识地做如下的排列,学生写出下列答案:
1——1 2——1、2 6——1、2、3、6
3——1、3 4——1、2、4
5——1、5 8——1、2、4、8
11——1、11 9——1、3、9
12——1、2、3、4、6、12
订正后,让学生仔细观察,找自然数的因数规律。学生观察后发现了规律。有的说有三种规律,有的则认为四种情况。我表扬同学观察分析得好。是三种规律。于是又启发他们看是哪三种?①一个自然数只有一个因数;②一个自然数有两个因数;③一个自然数有三个以上因数。在这个情况下,我再次启发:一个因数的是什么样的数?两个的是什么样的?三个以上又是什么样的因数?学生则发现一个的只有1;两个的则有1还有本身;三个以上的则有1、自己本身、还有其它的因数。最后老师一一肯定,并由学生看书后总结出质数、合数概念,这时学生很受鼓舞,认为自己发现了真理。对质数、合数的概念印象极为深刻永不忘记。我又有意识地让学生研究“1”到底算哪类?学生沉默了,我说:“从书上找找是怎么说的?知道的就发言”。通过学生的口,说出“1”既不是质数,也不是合数。我问:“为什么”?学生答:因为“1”的因数只占一条,算1就没有本身,算本身又没有“1”,这样可比老师直接告诉、或叮咛他们注意主动。让学生在教师的帮助下,把大量感性材料经过分析综合,抽象概括。抛弃事物和现象的非本质的东西,抓住事物和现象的本质特征形成概念。因为是学生付出了脑力劳动而获取得到的,所以容易理解,记忆也牢固。
二有效巩固概念
教学中不仅要求学生理解概念,而且还要使学生熟记并灵活地运用概念。我认为概念的记忆与应用是相辅相成的。因此在教学中,加强练习,及时复习并做归纳整理,对巩固概念具有特殊意义。
1、学过的概念要归纳整理才能系统巩固
学习一个阶段以后,引导学生把学过的概念进行归类整理,明确概念间的联系与区别,从而使学生掌握完整的概念体系。如学生学了“比”的全部知识后,我帮助他们归纳整理了什么叫比;比和除法、分数的关系;比的基本性质,利用比的基本性质,可以化简比;这一系列知识复习清楚之后,才能很好地解决求比例尺三种类型题和比例分配的实际问题。只有把比的意义理解得一清二楚,才能继续学习比例。表示两个比相等的式子叫做比例。这样做,就构成了一个概念体系,既便于理解,又便于记忆。概念学得扎扎实实,应用概念才会顺利解决实际问题。
2、通过实际应用,巩固概念
学习的目的是为了解决实际问题。而通过解决实际问题,势必加深对基本概念的理解。如学生学了小数的意义之后,我就让学生利用课外时间,到商店了解几种商品的价钱,写在作业本上,第二天让他们在课上向大家汇报。通过了解的过程,非常自然地对小数的意义,读、写法得以运用与理解。又如学了各种平面图形后,我让学生回家后,观察家里那些地方有这些平面图形。通过这种形式的作业,学生感到新鲜,有趣。这不仅巩固了所学概念,还提高了学生运用数学概念解决实际问题的能力。
3、综合运用概念,不仅巩固概念,而且检验概念的理解情况。
在学生形成正确的数学概念之后,进一步设计各种不同形式的概念练习题,让学生综合运用、灵活思考、达到巩固概念的目的,这也是培养检查学生判断能力的一种良好的练习形式。这种题目灵活,灵巧,能考察多方面的数学知识,是近些年来巩固数学概念一种很好的练习内容。
练习概念性的习题,目的在于让学生综合运用,区分比较,深化理解概念。所安排的练习题,应有一定梯度和层次,按照概念的序,学生认识的序去考虑习题的序。要根据学生实际和教学的需要,采用多种形式和方法设计,借以激发学生钻研的兴趣,达到巩固概念的目的。尤其应组织好概念性习题的教学,引导学生共同分析判断。
多年来的教学实践,使我深刻地体会到:要想提高教学质量,教师用心讲好概念是非常重要的,既是落实双基的前提,又是使学生发展智力,培养能力的关键。但这也仅仅是学习数学的一个起步,更重要的是在学生形成概念之后,要善于为学生创造条件,使学生经常地运用概念,才能有更大的飞跃。只有学生会运用所掌握的概念,才能更深刻地理解概念,从而更好地掌握新的数学知识。只有这样,培养能力,发展智力才会有坚实的基础

❸ 如何进行小学数学概念课教学

数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。如在教平均数应用题时,利用铅笔做教具,重温“平均分”的概念。

❹ 小学数学中如何进行概念教学案例

注重概念的形成过程

许多数学概念都是从现实生活中抽象出来的,讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。

例如,负数概念的建立,展现知识的形成过程如下:①让学生总结小学学过的数,表示物体的个数用自然数1,2,3…表示;一个物体也没有,就用自然数0表示:测量和计算有时不能得到整数的结果,这就用分数。②观察两个温度计,零上3度。记作+3°,零下3度,记作-3°,这里出现了一种新的数――负数。③让学生说出所给问题的意义,让学生观察所给问题有何特征。④引导学生抽象概括正、负数的概念。

深入剖析,揭示概念的本质

数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延,也就是从质和量两个方面来明确概念所反映的对象。如,掌握垂线的概念包括三个方面:①了解引进垂线的背景:两条相交直线构成的四个角中,有一个是直角时,其余三个也是直角,这反映了概念的内涵。②知道两条直线互相垂直是两条直线相交的一个重要的特殊情形,这反映了概念的外延。③会利用两条直线互相垂直的定义进行推理,知道定义具有判定和性质两方面的功能。另外,要让学生学会运用概念解决问题

加深对概念本质的理解。如“一般地,式子根号a(a≥0]叫做二次根式”这是一个描述性的概念。式子根号a(a≥0)是一个整体概念,其中a≥0是必不可少的条件。又如,讲授函数概念时,为了使学生更好地理解掌握函数概念,我们必须揭示其本质特征,进行逐层剖析:①“存在某个变化过程”――说明变量的存在性;②“在某个变化过程中有两个变量x和u”――说明函数是研究两个变量之间的制约关系;③“对于x在某一范围内的每一个确定的值”――说明变量x的取值是有范围限制的,即允许值范围;④“u有确定的值和它对应”――说明有确定的对应规律。由以上剖析可知,函数概念的本质是对应关系。

❺ 小学数学概念教学中应注意的几个问题

01
最小的一位数是0还是1?
这个问题在很长一段时间存在争论。先来看看《九年义务教育六年制小学数学第八册教师教学用书》第98页“关于几位数”的叙述:“通常在自然数里,含有几个数位的数,叫做几位数。例如“2”是含有一个数位的数,叫做一位数;“30”是含有两个数位的数,叫做两位数;“405”是含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。
再来听听专家的说明:在自然数的理论中,对“几位数”是这样定义的,“只用一个有效数字表示的数,叫做一位数;只用两个数字(其中左边第一个数字为有效数字)表示的数,叫做两位数……所以,在一个数中,数字的个数是几(其中最左边第一个数字为有效数字),这个数就叫几位数。
于此,所谓最大的几位数,最小的几位数,通常是在非零自然数的范围研究。所以一位数共有九个,即:1、2、3、4、5、6、7、8、9。
0不是最小的一位数。
02
为什么0也是自然数?
课标教材对“0也是自然数”的规定,颠覆了人们对自然数的传统认识。
于此,中央教科所教材编写组主编陈昌铸如是说:国际上对自然数的定义一直都有不同的说法,以法国为代表的多数国家都认为自然数从0开始,我国教材以前一直都是遵循前苏联的说法,认为0不是自然数。2000年教育部主持召开教材改编会议时,已明确提出将0归为自然数。这次改版也是与国际惯例接轨。
从教学实践层面来说,将“0”规定为“自然数”也有着积极的现实意义。
“0”作为自然数的“好处”

众所周知,数学中的集合被分为有限集合和无限集合两类。有限集合是含有有限个元素的集合,像某班学生的集合。无限集合是含有的元素个数是非有限的集合,如分数的集合。因为自然数具有“基数”的性质,因此用自然数来描述有限集合中元素的个数是很自然的。
但在有限集合中,有一个最主要也是最基本的集合,叫空集{},元素个数为0。如果不把0作为自然数,那么空集的元素的个数就无法用自然数来表示了。如果把“0”作为一个自然数,那么自然数就可以完成刻画“有限集合元素个数”的任务了。于此,从“自然数的基数性”这个角度,我们看到了把“0”作为自然数的好处。
把“0”作为自然数,不会影响自然数的 “运算功能”
“0”加入传统的自然数集合,所有的“运算规则”依旧保持,如新自然数集合{0,1,2,…,n,…}中的任何两个自然数都可以进行加法和乘法运算,而运算结果仍然是自然数。同时,加法、乘法运算的结合律和交换律,以及乘法的分配律也不会受到影响。
所以,“0”加盟到自然数集合实属理所当然,而不仅仅是人为的“规定”。它让我们更好地理解自然数和它的功能,同时也让我们意识到教学时不仅要知道和记住数学的“定义”和“规定”,还应该思考“规定”背后的数学涵义。
03
什么是有效数字一无效数字?
有效数字是对一个数的近似值的精确程度而提出的。同一个近似数如果在取舍时,保留的有效数字多,就比保留的有效数字少更精确。
一般说,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。这时,从左边第一个非零的数字起,到那一位上的所有数字都叫做这个数的有效数字。
如近似数0.00309有三个有效数字:3、0、9;0.520也有三个有效字:5、2、0。
而0.00309中左边的三个零,0.520中左边的一个零,都叫做无效数字。
04
加法与减法、乘法与除法是否互为逆运算?
“加法与减法互为逆运算、乘法与除法互为逆运算”这似乎成了许多老师的口头禅,这其实是一种误解。例如:
加法“2+3=5”,其逆算为“5-2=3”,“5-3=2”。
故此,加法的逆运算只有减法;
减法“5-2=3”,其逆算有 “5-3=2”, “2+3=5”。
故此,减法的逆运算有减法和加法两种运算。
综上可知,只能说减法是加法的逆运算,而不能说加法与减法互为逆运算。
同理,也只能说除法是乘法的逆运算,而不能说乘法与除法互为逆运算。
05
为什么不写“倍”?
在学习“求一个数是另一个数的几倍”应用题时,很多小朋友会自然提出这样的疑问,如:“饲养小组养了12只小鸡,3只小鸭,小鸡的只数是小鸭的几倍?”为什么“12÷3=4”的后面不写“倍”呢?
我们首先应该肯定学生的质疑(学生有较强的解题规范意识)。但同时又该对学生说明:在解答应用题时,得数后面一般要写上的是数的单位名称
如:12只的“只”;8克的“克”。一个数只有带上单位名称,才能准确地表示出一个物体的多少、大小、长短、轻重等等。但是,“倍”不是单位名称,它表示两个数量之间的一种关系。例如,上面的计算结果“4”,表示12里面有4个3,就是12只小鸡是3只小鸭的4倍。
所以,在算式里不写“倍”,以免“倍”与单位名称发生混淆。
06
“倍”和“倍数”的区别
在第一学段我们学习了“倍的初步认识”,认识了概念“倍”,而在第二学段,我们又学习到“倍数”这个概念。那么,“倍”和“倍数”这两个词到底是不是一回事呢?这两个词之间有什么区别呢?
“倍”指的是数量关系,它建立在乘除法概念的基础上。例如:男生有10人,女生有30人,因为“10×3=30”或者“30÷10=3”,我们就说,女生人数(30)是男生人数(10)的3倍,也可以说,男生人数(10)的3倍等于女生人数(30)。勿宁说,“倍”其实表示的是两个数的商(这个商可以是整数、小数、分数等各种表现形式)。
“倍数”指的是数与数之间的联系,它建立在整除概念的基础上。例如,30能被6整除,30就是6的倍数。可见,“倍数”是不能独立存在的(具有特定的指向性),而且对数的形式有特别的要求(必须为整数)。
同时我们又看到,30也是6的5倍,因为6×5=30,“6×5”表示6的5倍。所以从这个角度来说,“倍”的涵义应宽泛于“倍数”,后者可以视为前者在特定情形下的一种表现。
07
“时”和“小时”有什么不同?怎样使用“时”和“小时”?
首先应该明确的是,〔小〕时并非国际时间单位。在1984年国务院发布的《关于我国统一法定计量单位的命令》中,把秒作为时间的基本单位,把非国际单位制的时间单位天(日)、〔小〕时、分作为辅助单位。
(注:〔〕里的字,在不致混淆的情况下,可以省略)。
这样,在我国范围内使用的法定时间单位就有:天(日)、〔小〕时、分、秒。
由此,“时”既可以表示时间,又可以表示时刻。由于“时间”和“时刻”这两个不同的概念容易产生混淆,在实际应用时间单位“时”时,现行教材作了如下处理:
7.1当列式计算出时间的长短时,在得数的括号里写上时间的单位“时”。例如:超市营业时间:21-9=12(时)。(此处可省略“小”字)
7.2在用语言表述时间的长短时,为避免“时间”和“时刻”这两个概念产生混淆,则在“时”的前面加上一个“小”字。例如:超市营业时间12小时。
7.3 在用语言表示时刻时,一律不得出现“小时”字样。例如:公园每天早上7时30分开园(而非7小时30分)。
08
“改写”和“省略”是一样的吗?
从形式上看,此例将“改写”与“省略”两种对数的变化置于了同一个要求之下(即改写成用“亿”作单位的数)。我们真希望编者不是有意而为之,因为“改写”与“省略”其本质是完全不同的。表现在:
8.1目的不同
“改写”的目的是方便对大数的读写,而“省略”则是取数的近似值。
8.2方法不同
此处的“改写”是去掉“亿”位后面的0,再写上一个“亿”字,而“省略”除了要找准“亿”位,还要考虑被省略的尾数的最高位是几,然后用四舍五入法求出近似数。
8.3符号不同
“改写”只改变了数的表现形式,大小并未改变,所以用“=”号连接;而“省略”既改变了数的形式,又改变的数的大小,所以用“≈”连接。
09
“路程”就是“距离”吗?
这两个词在许多老师的教学语言中是替代使用的,其实不然。
“路程”是指从一个地点到另一个地点所经过路线的长度;而“距离”则指连接两个地点而成的直线段的长度。
“路程”所经过的路线可以是曲形线,也可以是直形线,还可能是折形线。
一般情况下,两个地点之间的“路程”要大于它们之间的“距离”,只有当两个地点之间的路线为直线时,路程和距离才相等。
虽然老师们都知道这个等式是成立的,但我们的学生却没有相应的知识储备,怎样绕开”极限”寻找能为小学生所理解和接受的证明途径。
10
最大的分数单位是1/2还是1/1?
先看看分数单位的含义:把单位“1”平均分成若干份,表示这样一份的数。
显然,在分数意义中,关键是“分”,没有“分”,就没有“份”。
因为把单位“1”平均分成的最少份数是2份(如果是1份,也就无所谓“分”),由此得到的分数单位是1/2,所以1/2是最大的分数单位。
尽管就广义的分数来说,1/1也可视作分数,但它已不是我们通常意义上认识的与整数对立的那种分数(在平均分的基础上所产生),故此,最大的分数单位应以1/2为宜。
11
像 0/3、0.2/3、3/0.2这样的数是不是分数?
分数的定义明确告诉我们:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。其中,分成的份数叫做分数的分母,要表示的份数叫做分子。
由此可知,分数的分子和分母都应该是非零自然数。从这个意义来说,以上这几个数徒具分数的形式,而不具分数的实质,因此都不应该视为分数。
进而,在考查学生对“分数”涵义的理解时,应着眼于通常意义上的分数,将上述这些变异形式纳入思考的范围,其本身对训练学生的思维并无多大实际意义,而且会令诸如“分数都大于0”等命题的真与假陷入尴尬。
12
比6多1/2的数应该是“6+1/2”还是“6+(1+1/2)”
要弄清这个问题,先得弄清“6”的性质。显然,此处的“6”其实质是一个“数”,而非一个“量”,求“比6多1/2的数”应属于“求比一个数多几的数”的范畴,问题中的“多几”都是确定的具体数,这里的“几”既可以是整数,也可以是小数或分数。所以,这里的“1/2”是指在6的基础上“多1/2”这个“1/2”数的本身,而非“6的1/2”。
所以,“比6多1/2的数”应该是“6+1/2”。
当然,如果题目确定为“比6多它的1/2的数”,那答案则属于后者。
13
计算出勤率可不可以不乘100%?
先来看看新人教版、北师大版和苏教版三个不同版本的教材对类似问题的理解。
同一课程标准下,不同的教材给出了不同的理解,这给执教者带来了困惑:到底可不可以不乘100%呢?笔者以为,求“××率”其结果必定为百分率。以出勤率为例,就是求实际出勤人数占应出勤人数的百分之几。
如果公式只写成:出勤率=实际出勤人数/应出勤人数,我们说这只是分数形式(也即是求实际出勤人数占应出勤人数的“几分之几”),并不是百分数。
因此,在公式后面乘上“100%”,既可以使计算数值大小不变,又能保证结果形式满足百分数的要求。因此,计算出勤率、发芽率、出粉率、合格率……的公式中,都应乘“100%”。
同时建议各版本教材的编委统一思想,以免给一线教师造成认识上的混乱。
14
小于90度的角都是锐角吗?
根据课标教材定义:小于90度的角叫做锐角。答案似乎是肯定的,但由此又产生一个新的问题:0度的角是什么角,也是锐角吗?
事实是,锐角定义有一个隐含的前提,就是小学数学中所讨论的角都是正角。习惯上,我们把射线按逆时针方向旋转而得到的角叫做正角,射线按顺时针方向旋转而得到的角叫做负角,当一条射线没有做任何旋转时,就把它看成零角。如果将角的概念推广到任意大小的角,就应分为正角、负角、和零角。
由此,严格意义上的锐角定义应是:大于0度而小于90度的角叫做锐角。
15
足球比赛记分牌上的“3︰2”是数学中的“比”吗?
我们至少可以从两个方面来理解它们的差别。
第一,球类比赛中的“3︰2”表示的是比赛双方的得分情况,是“差”比,即表示相差关系,一方得3分,另一方得2分,双方相差1分;数学中的“3︰2”表示的是“3÷2”,是“倍”比,商为1.5。有鉴于此,球类比赛中的“比”(其实是比分),其后数可以为0的,而数学中的“比”,其后数(相当于除数)是不可以为0的。
第二,数学中的“比”是可以化简的,如“4︰2=2︰1”;同样的“4︰2”放在球类比赛中,却不可以化简,如果化简就不能反映双方在比赛中的实际得分了。

❻ 什么是小学数学概念教学概念教学主要存在哪些问题该怎么解决

毕业论文题目是:小学数学概念教学存在的问题及对策。请问这篇论文应该以一个什么思路来写呢,大致应该分为哪几个部分呢,需要阐述哪些问题,大体的格式是什么样子的呢,请大家多多帮助! 但这个论文重点不是数学教学那么宽泛的范围,而是集中在概念教学上面想一想你们是否重视数学,喜欢数学。然后再想应该怎么提升数学成绩,提高对数学的重视。然后再写你对数学的看法与观点。 小学数学教学论文--在小学数学教学中培养学生的思维能力

培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。

一 培养学生的逻辑思维能力是小学数学教学中一项重要任务

思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。

值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。

《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。

二 培养学生思维能力要贯穿在小学数学教学的全过程

现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。

怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。

(一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。

(二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。

(三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。

三 设计好练习题对于培养学生思维能力起着重要的促进作用

培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。

(一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。

❼ 小学数学概念教学的重点是什么

你是老师吧?
其实小学数学不用讲的这么深入,因为小学数学并不难。
让学生了解这节课主要讲了什么,做一道题能举一反三,最好还能自己出这样的题,那么学生就学会了,像1、2楼直接告诉学生像这种经过圆心并且两端都在圆上的线段就是这个圆的直径 是很没效率的,只会让学生厌烦数学!
求采纳!

❽ 如何搞好小学数学概念教学

如何搞好小学数学概念教学
重视数学概念教学,对于提高教学质量有着举足轻重的作用。那么应该如何搞好小学数学概念教学呢?

一、充分利用感性经验,帮助学生形成概念。

概念是对客观事物本质属性的反映,是在感性经验的基础上形成的,对于正处于由具体形象思维向抽象逻辑思维过渡的小学生来说,感性经验在形成概念过程中起着重要的支撑作用。因此 ,在数学教学过程中,应该尽量借助学生的感性经验。例如,“分数概念”的教学,教材中对分数是这样定义的:“把单位‘1’平均分成若干份,表示这样的一份或者几份的数,叫做分数。”在这里,关键是对单位“1”的理解,这个“1”并不是具体数字,而是代表一个整体。为了说明这一点,可结合学生自身经验进行举例:一个学校是一个“1”一个班级是一个“1”,一个小组也可以是一个“1”。这其中包含数量的多少并无关系,主要是看它能否构成一个“整体”,学生一旦理解了“1”的含义,分数的概念也不难掌握了。

二、运用变式,突出概念的本质属性。

概念是客观事物本质属性的概括。学生理解概念的过程即是对概念所反映的本质属性的把握过程,在教学过程中,通过变式的运用,可以使要领的本质属性更加突出,达到化难为易的效果。例如,在三角形概念教学中,通过不同形态(锐角三角形、直角三角形和钝角三角形)不同面积,不同位置的三角形与一些类似三角形的图形进行比较,就可以帮助学生分清哪些属于三角形的本质属性,哪些属于三角形的非本质属性,从而准确地理解三角形的概念。在直角三角形概念的教学中,让学生接触不同位置不同形态的一些直角三角形从而使生理解只要有一个角是直角三角形,就是直角三角形即直角三角形的概念。又如,在学习了万以内数的读写后,学生再学习多位数的读写就可以运用迁移使学习变得轻松,容易掌握,这样,即避免了教师的大量讲解,节省了时间,又可从中锻炼学习的自学能力,可谓一举两得。

三、运用迁移规律,促进举一反三。

学习迁移,简单地说,就是旧的学习对新的学习的影响。在数学教学过程中,自觉地运用迁移规律,用旧的学习不断促进新的学习,就能使学生对概念的学习变得简单容易,并且记忆巩固。例如学生学习了加法“结合律”和“交换律”之后,再学习乘法的“结合律”、“交换律”时,教师只要运用迁移规律稍加点拨,学生就很容易接受。

四、形成概念体系,达到融会贯通。

数学概念是学习数学的基础,但概念与概念之间并不是孤立的,许多概念之间存在着一定的内在联系。在学习过程中,一个概念掌握之后,可以有助于其它有关要领的理解,在头脑中形成概念体系。例如,分数和小数是两个不同的概念,从表面上看,分数与小数也是不同形式的数,但只要通过实例向学生说明,小数实际上是一种以10、100、1000……为分母的分数,学生自然就会在头脑中把分数与小数联系起来纳入到同一个概念体系当中,学生在学习分数与小数的互化及相关计算时,就不会感到困难了。

❾ 浅谈在小学数学中如何有效进行概念教学

数学概念不仅是小学数学知识的基本要素,也是培养和发展学生数学能力的重要内容。对它的理解和掌握,关系到学生学习数学的兴趣,关系到学生计算能力和逻辑思维能力的培养,关系到学生解决实际问题的能力。由于小学生的年龄特点,直观形象思维制约了对数学中抽象概念的掌握,导致孩子们在学习和运用概念的过程中,经常出现这样或那样的错误。那么,怎样才能使数学概念教学更有效呢?
一、数学和生活实际联系,引入概念
数学知识来源于生活,又应用于生活。把点滴生活经验变成系统数学知识目的在于使其更好地运用到生活中去,除了在课堂上一些与生活相连的习题更好体会知识的还是生活本生。
例如,在教学《认识钟表》时,认识整时和大约几时这两个数学概念本身就比较抽象,你若直接告诉孩子看钟点的方法:分针对着12,时针对着几就是几时,1时=60分,1分=60秒,孩子未必真正理解,而且长期地这样教学学生就不会去思考,产生一种依赖的心理。因此我们在课起始时便以猜谜揭示课题,而后分认识钟面,认识整时和大约几时三步走。认识钟面环节让学生根据已有经验说说钟面的认识,为了让学生的介绍更为有针对性把提问变成“你知道钟面上有什么?”这样学生根据手中的闹钟很容易回答。在学生拨钟也让学生自由的拨出一些整时并说说在这一时刻在干什么,这样学生对各个时段的认识就能联系生活而不仅仅停留在1~12各个数上。在“两个8时”这一环节,让学生根据生活经验充分的讨论两个8时的存在和不同,再指导学生会照样子用一句话说一说,同时从数学角度提醒学生在平时说话时要注意用上“早晨、上午、下午、晚上” 等词语,这样说起来就更清楚明白。钟面、整时和大约几时三个环节层层递进,每一个环节与学生经验紧密联系。
低年级小学生,由于年龄、知识和生活的局限,理解一个概念主要是凭借事物的具体形象。因此,在低年级数学概念教学的过程中,要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。
二、迎合学生学习兴趣,引入概念
托尔斯泰说过:“成功的教育所需要的不是强制,而是激发学生的兴趣。”兴趣是成功的秘诀,是获取知识的开端,是求知欲的基础。学生对学习数学的兴趣,直接影响到课堂教学效率的高低。抽象的理论如果再加上干巴巴的讲解,必然不会引起学生的学习兴趣。
例如,在教学《认识角》时, 既要让学生感知直角、锐角、钝角等不同种类的角,又要注意变化角的大小和角的开口方向,这样才能获得对角的清晰认识。教师可以事先做好一个只露出三角形一个角的教具,让学生观察露出的一个角,判断整个三角形是什么三角形。当露出一个直角时,学生马上回答这是个直角三角形;当露出一个钝角时,学生马上回答这是个钝角三角形;当露出一个锐角时,学生就自然而然地回答这是个锐角三角形。这时教师拿出的却不是锐角三角形,这样,学生就有了悬念:为什么有一个直角的是直角三角形,有一个钝角的是钝角三角形?而一个角是锐角的三角形就不一定是锐角三角形了呢?这时学生强烈的求知欲已经成为一种求知的“自我需要”,学生的学习兴趣得到了激发,使兴趣成为学生学习的动力,为教学新概念创造良好的学习气氛,使学生在获得概念的整个过程中感到学习的快乐。
三、动手操作,引入概念
低段小学生他们爱摆弄东西,什么都想尝试。但若遇到困难而无法解决时,操作的积极性就会下降。所以利用学生这种心理适当安排动手尝试的学习内容可以激发起学生的学习兴趣,更好得形成概念。
例如,在教学《米和厘米》时,在认识了“厘米”以后我安排学生通过测量,看看你身体上哪个部位的长度最接近一厘米。学生的积极性很高,先是拿出尺子不停的比划,然后三五成群的议论开了,积极主动地去寻求答案。在交流想法时,小朋友不仅给出了我想要的答案,更让我收获了不少的惊喜。
学生在操作、实践中获得感性认识,经历“充分感知-丰富表象-领悟内涵”的过程,在头脑中切实、清楚地建立了1厘米的实际长度和空间观念,突出了本节课的教学重点。
四、巧用多媒体,引入概念
应用多媒体辅助教学,充分激活课堂教学中的各个要素,全方位地调动和发挥教师在课堂教学中的主导作用和学生学习的主体作用,建立合理的教与学的关系,
例如,在教学《认识分数》时,我设计了这样一个动画:周末,同学们去野餐,在优美的音乐的声中,一群活泼可爱的小朋友来到了郊外,贴近生活化的情境一下子就吸引了学生的注意力。跟着提出问题:“把8个苹果和4瓶果汁平均分给2人,每人分得多少”?学生回答后动画演示分得的结果,非常直观地显示出“平均分”,加强了学生对“平均分”这个概念的理解。接着提出:“把一个生日蛋糕平均分成2份,每人分得多少”?演示“一半”,提出“一半”用什么数来表示?自然地引出本节课要研究的认识分数。
我们在教学中,要结合概念的特点和学生的实际,灵活掌握使用,优化数学概念教学,提高概念教学的有效性,更好地进行概念教学。

❿ 小学数学概念教学中涉及哪些概念

浅谈小学数学中的概念教学
概念是客观事物的本质属性在人们头脑中的反映,概念教学的过程是认识从感性上升到理性的过程。小学生年龄小,生活经验不足,知识面窄,构成了概念教学中的障碍。而数学概念又是小学数学基础知识的一项重要内容,是学生理解、掌握数学知识的首要条件,也是进行计算和解题的前提。因此,重视数学概念教学,对于提高教学质量有着举足轻重的作用。那又如何搞好小学数学概念教学呢?下面我粗浅地谈谈自己的一些看法:概念教学一般都分四个阶段:引入 、形成 、巩固 、发展。 一、概念的引入
1、概念的引入是概念教学的第一步。教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,把“纯粹”的数学知识与学生在日常生活的、熟悉的、具体的材料相联系,这样就有利于抽象的数学概念具体化、形象化,便于学生的理解,同时也能激发学生的思维和探索新知的欲望。例如,“分数的初步认识”的教学,主要要说明“谁”的几分之几,为了说明这一点,可出示不同形状和大小的图形,折出它们的二分之一,让学生明白虽然都是二分之一,却表示不同的大小,所以一定要说明“谁”的二分之一。
2、同时,在概念的引入中要格外做到旧知识的迁移。
任何一个数学概念都是在以往概念的基础上演变发展而来的,前一个概念是后一个概念的基础和推理依据,旧概念铺垫不好,就会影响新概念的建立,如,在“整除”概念基础上建立了“约数”、“倍数”概念;由“约数”导出“公约数”、“最大公约数”;由“倍数”引出“公倍数”,再导出“最小公倍数”。 在几何知识中,由长方形的面积导出正方形、平行四边形、三角形、梯形等的面积公式。
3、最后还可以从计算引入新概念。有些概念不便于用具体事例来说明,而通过计算才能揭示数与形的本质属性。如,教学“互为倒数”这个概念时,可先出示一组题让学生口算:3×1/3,1/7×7,3/4×4/3,9/11×11/9„„,算后让学生观察这些算式都是几个数相乘,它们的乘积都是几。根据学生的回答,教师指出:象这样的乘积是1的两个数叫做互为倒数。其它如比例、循环小数、约分、通分、最简分数等都可以从计算引入。
或者几个数字依次不断重复出现,这样的数叫循环小数。”这里要抓住两点,一是前提是一个数的小数部分,与整数部分没关系,二是属性是一个数字或几个数字重复出现,且是依次不断的。明确了这两点就能迅速的判断出某些数字是不是循环小数,如7777.777、7.32132、2.2020020002„„这样的小数都不具备循环小数的本质属性,所以都不是循环小数。而0.324324„„、0.146262„„具备了循环小数的本质属性,它们都是循环小数。
2.注意比较有联系的概念的异同。
数学中的一些概念是相互联系的,既有相同点,又有不同之处。划清了异同界线,才能建立明确的概念。而对这类概念,应用对比的方法找出它们之间的联系、区别。使学生更加准确地理解和牢固记忆学过的概念。如教学“质数和合数”时,先给出一些自然数,让学生分别找出这些数的所有约数,在比较每个数的约数的个数;然后根据约数的个数把这些数进行分类,①只有一个约数的,②只有1和它本身两个约数的,③除了1和它本身,还有别的约数的,即约数有三个或三个以上的;最后引导学生根据三类数的不同特点,总结出“质数”和“合数”的定义。 3、运用变式,突出概念的本质属性。
概念是客观事物本质属性的概括。学生理解概念的过程即是对概念所反映的本质属性的把握过程,在教学过程中,通过变式的运用,可以使要领的本质属性更加突出,达到化难为易的效果。例如,在三角形概念教学中,通过不同形态(锐角三角形、直角三角形和钝角三角形)不同面积,不同位置的三角形与一些类似三角形的图形进行比较,就可以帮助学生分清哪些属于三角形的本质属性,哪些
横向、纵向联系,促进概念系统的形成,培养学生综合运用知识的能力,可以设计综合性练习等。但千万要按照由简到繁、由易到难、由浅入深的原则,逐步加深练习的难度。如学过“加法和减法的关系”后,可以安排以下三个层次的练习:
a. 看谁填得又对又快!
237+69=306 502-387=115 306-□=237 387+□=502 □-237=69 □-115=387
这一层是基本练习,它是刚学完新课之后的单项的、带有模仿性的练习,它可以帮助学生巩固知识,形成正确的认知结构。

阅读全文

与小学数学概念教学相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99