❶ 小学数学新课标新在哪
义务教育阶段数学课程内容分为“数与代数”、“图形与几何”、“统计与概率”和“综合与实践”四个方面,每一部分内部的结构和具体内容都做了适当调整。
第一学段具体内容的修改
1.统计与概率等内容适当降低难度
2.增加或进一步明确了一些具体内容
增加的内容包括:“知道用算盘可以表示多位数。”“能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小。”
调整的内容包括:估算的要求改为“能结合具体情境,选择适当的单位进行简单估算,体会估算在生活中的作用”,使估算的要求更加具体、明确,有助于学生清楚地认识和理解估算的价值与意义。强调了“选择适当的单位进行简单估算”,明确估算的重点一是要有具体的情境,二是在一个确定的情境中,根据实际需要选择适当的单位进行估算。
第二学段具体内容的修改
1.统计与概率等内容适当降低难度
第二学段的统计与概率内容,删除了众数、中位数内容和“能设计统计活动,检验某些预测;初步体会数据可能产生误导。”
删除“了解两点确定一条直线和两条相交直线确定一个点”。这个内容对于小学生来说较为抽象,与生活经验的联系也不很紧密,要求学生了解意义不大,而把“了解两点确定一条直线”放在第三学段作为进行演绎证明的基本事实之一。
2.增加或调整了部分内容
增加“在具体情境中,了解常见的数量关系:总价=单价 ×数量、路程=速度 ×时间,并能解决简单的实际问题。”了解一些常见的数量关系,特别是运用这些数量关系解决问题,是小学阶段问题解决的核心。而“总价=单价 ×数量、路程=速度×时间”是小学阶段最常用的数量关系,绝大多数实际问题都可以归结为这两类数量关系。修订后的数学课程标准中增加了这一要求,为小学数学课程与教学中的问题解决提供了一个重要基础。
增加“结合简单的实际情境,了解等量关系,并能用字母表示。”了解数量关系是学习字母表示数的重点目的,这一要求让学生在实际情境中了解数量关系,也为学习简易方程做准备。
增加“了解圆的周长与直径的比为定值”,强调学生在探索周长与直径比的过程中认识圆周率。
第三学段具体内容的修改
1. 第三学段删减的内容
数与代数领域:能对含有较大数字的信息作出合理的解释与推断;了解有效数字的概念;能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题。
图形与几何领域:关于梯形、等腰梯形的相关要求;探索并了解圆与圆的位置关系;关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等;关于镜面对称的要求;等腰梯形的性质和判定定理。
统计与概率领域:会计算极差;会画频数折线图。
2. 第三学段增加的内容
一个是必学内容,一个是选学内容。选修内容的增设主要是从课程的理念出发,为学生个性的发展提供机会和可能。修订后的数学课程标准中提出课程“要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”因此,数学课程在规定了所有学生应该达到的标准的同时,也应该为学有余力、有特殊需求的学生提供更大的发展空间。选学内容的设置,就是为满足这些学生进一步探索、学习需要的,这些内容不要求面向所有学生。
此外,修订后的数学课程标准中还有一些知识内容是在具体要求上做了调整。
在第三学段的“综合与实践”领域,修订后的数学课程标准基本保持了《数学课程标准(实验稿)》的要求,如:“要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系”等等。同时提出更为具体的要求,如:“反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。”这样使“综合与实践”的学习更加具有可操作性。
❷ 小学数学新课程理念
小学数学新课程的基本理念
1、数学课程生活化
数学教学要从学生的生活经验和已有的知识出发,以学生从体验的和容易理解的现实问题为素材,并注意与学生已经了解和学生过的教学知识相联系,让学生在熟悉的事物和具体情境中,通过自主活动理解教学知识,建构数学知识结构。
2、让学生亲历数学知识的形成
学习数学唯一正确的方法是实行“再创造”,探究性学习强调学生通过自己参与类似于科学研究的学习活动,获得亲身体验,就是“再创造”。必须让学生看到数学知识形成和发展过程,亲身体验如何“做数学”。
3、转变学生的学习方式
《课程标准》指出:“学生的数学学习和活动应当是一个生动的,主动和具有个性的过程”。“动手实践,自主探索,与合作交流是学生学习数学的重要方式”。这是此次课改的核心理念。
4、教师要转变教学的方式
《课程标准》指出:“教师是数学学习的组织者,引导者与合作者”。在教学中,教师应精心组织课堂教学,有效地引导学生参与数学活动,真诚地与学生合作,共同创造一种新的课堂文化。
5、评价的根本是要促进学生的发展
新课程评价是关注学生的全面发展。评价的主要目的是为了全面了解学生的数学学习历程,激励学生的教学和改进教师的教学,应建立评价目标多元化,评价方法多样化的评价体系。评价要关注学生的学习结果,更要关注他们在教学活动中所表现出来的情感与态度帮助学生认识自我,建立信心。
6、重视现代信息技术的应用
❸ 小学数学新课程标准
小学数学新课程标准
第一部分 前 言
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛 应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得 数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好 地 探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为 人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收 集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考 虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发, 让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数 学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、基本理念
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数 学教育面向全体学生,实现:
--人人学有价值的数学;
--人人都能获得必需的数学;
--不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据 、进行计算、推理 和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想 和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造 力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文 明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利 于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不 同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆 ,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、 家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富 有个性的过程。
4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之 上。教师应激发 学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流 的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经 验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习 和改进教师的教 学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的 结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活 动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式 产生了重大的影 响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数 学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作 为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更 多的精力投入到现实的、探索性的数学活动中去。
二、设计思路
(一) 关于学段
为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验 稿)》(以下简称 《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:
第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
(二) 关于目标
根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明 确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度 等四个方面作出了进一步的阐述。
《标准》中不仅使用了"了解(认识)、理解、掌握、灵活运用"等刻画知识技能的目 标动词,而且使用了"经历(感受)、体验(体会)、探索"等刻画数学活动水平的过程性 目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面 的要求。
知识技能目标 了解(认识) 能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体 情境中辨认出这一对象。
理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握 能在理解的基础上,把对象运用到新的情境中。
灵活运用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标 经历(感受) 在特定的数学活动中,获得一些初步的经验。
体验(体会) 参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
探索 主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。
(三) 关于学习内容 在 各个学段中,《标准》安排了"数与代数" "空间与图形" "统计与概率" "实践与 综合应用"四个学习领域。课程内容的学习,强调学生的数学活动,发展学生的数感、符号 感、空间观念、统计观念,以及应用意识与推理能力。
数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情 境中把握数的相对 大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果 ,并对结果的合理性作出解释。
符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符 号来表示;理解符 号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符 号所表达的问题。
空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像 出实物的形状,进 行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复 杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形 的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利 用直观来进行思考。
统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通 过收集数据、描述 数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理 数据的方法,以及由此得到的结果进行合理的质疑。
应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在 现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和 方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其 应用价值。
推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想, 并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言 之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑 。
为了体现数学课程的灵活性和选择性,《标准》在内容标准中仅规定了学生在相应 学段应该 达到的基本水平,教材编者及各地区、学校,特别是教师应根据学生的学习愿望及其发展的 可能性,实施因材施教。同时,《标准》并不规定内容的呈现顺序和形式, 教材可以有多种 编排方式。
(四) 关于实施建议 《标准》针对教学、评价、教材编写、课程资源的利用与开发提出了建议,供有关人员参考 ,以保证《标准》的顺利实施。
第二部分 课程目标
一、总体目标
通过义务教育阶段的数学学习,学生能够:
● 获得适应未来社会生活和进一步发展所必需的重要数学知 识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
● 初步学会运用数学的思维方式去观察、分析现实社会,去 解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
● 体会数学与自然及人类社会的密切联系,了解数学的价值 ,增进对数学的理解和学好数学的信心;
● 具有初步的创新精神和实践能力,在情感态度和一般能力 方面都能得到充分发展。
具体阐述如下:
知识与技能
● 经历将一些实际问题抽象为数与代数问题的过程,掌 握数与代数的基础知识和基本技能,并能解决简单的问题。
● 经历探究物体与图形的形状、大小、位置关系和变换的过程,掌 握空间与图形的基础知识和基本技能,并能解决简单的问题。
● 经历提出问题、收集和处理数据、作出决策和预测的过程,掌握 统计与概率的基础知识和基本技能,并能解决简单的问题。
数学思考
● 经历运用数学符号和图形描述现实世界的过程,建立 初步的数感和符号感,发展抽象思维。
● 丰富对现实空间及图形的认识,建立初步的空间观念,发展形象 思维。
● 经历运用数据描述信息、作出推断的过程,发展统计观念。
● 经历观察、实验、猜想、证明等数学活动过程,发展合情推理能 力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。
解决问题
● 初步学会从数学的角度提出问题、理解问题,并能综合 运用所学的知识和技能解决问题,发展应用意识。
● 形成解决问题的一些基本策略,体验解决问题策略的多样性,发 展实践能力与创新精神。
● 学会与人合作,并能与他人交流思维的过程和结果。
● 初步形成评价与反思的意识。
情感与态度
● 能积极参与数学学习活动,对数学有好奇心与求知欲。
● 在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立 自信心。
● 初步认识数学与人类生活的密切联系及对人类历史发展的作用, 体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
● 形成实事求是的态度以及进行质疑和独立思考的习惯。
以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它 们是在丰富多彩的数学活动中实现的。其中,数学思考、解决问题、情感与态度的发展 离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。
二、学段目标
第一学段(1~3年级) 第二学段(4~6年级) 第三学段(7~9年级)
知识与技能 ● 经历从日常生活中抽象出数的过程,认识万以 内的数、小数、简单的 分数和常见的量;了解四则运算的意义,掌握必要的运算(包括估算)技能。
● 经历直观认识简单几何体和平面图形的过程,了解简单几何体和 平面图形,感受平移、旋转、对 称现象,能初步描述物体的相对位置,获得初步的测量(包括估测)、识图、作图等技能。
● 对数据的收集、整理、描述和分析过程有所体验,掌握一些简单 的数据处理技能;初步感受不确定现象
● 经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分 数、负数的意义,掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律,会用方 程表示简单的数量关系,会解简单的方程。
● 经历探索物体与图形的形状、大小、运动和位置关系的过程,了 解简单几何体和平面图形的 基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图 、作图等技能。
● 经历收集、整理、描述和分析数据的过程,掌握一些数据处理技 能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。
● 经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函 数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用 代数式、方程、不等式、函数等进行描述。
● 经历探索物体与图形的基本性质、变换、位置关系的过程,掌握 三角形、四边形、圆的 基本性质以及平移、旋转、轴对称、相似等的基本性质,初步认识投影与视图,掌握基本的 识图、作图等技能;体会证明的必要性,能证明三角形和四边形的基本性质,掌握基本的推 理技能。
● 从事收集、描述、分析数据,作出判断并进行交流的活动,感受 抽样的必要性,体会用 样本估计总体的思想,掌握必要的数据处理技能;进一步丰富对概率的认识,知道频率与概 率的关系,会计算一些事件发生的概率
数学思考 ● 能运用生活经验,对有关的数字信息作出解释,并初步学会用具体的数描述现实世界中的 简单现象。
●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中 ,发展空间观念。
●在教师的帮助下,初步学会选择有用信息进行简单的归纳与类比。
●在解决问题过程中,能进行简单的、有条理的思考。
● 能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描 述并解决现实世界中的简单问题。
●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的 过程中,进一步发展空间观念。
●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测 ,发展初步的合情推理能力。
●在解决问题过程中,能进行有条理的思考,能对结论的合理 性作出有说服力的说明。
● 能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数 刻画事物间的相互关系。
●在探索图形的性质、图形的变换以及平面图形与空间几何体的相互 转换等活动过程中,初步建立空间观念,发展几何直觉。
●能收集、选择、处理数学信息,并作出合理的推断或大胆的猜测。
●能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推 翻猜想。
●体会证明的必要性,发展初步的演绎推理能力。
解决问题 ●能在教师指导下,从日常生活中发现并提出简单的数学问题。
●了解同一问题可以有不同的解决办法。
●有与同伴合作解决问题的体验。
●初步学会表达解决问题的大致过程和结果。
●能从现实生活中发现并提出简单的数学问题。
●能探索出解决问题的有效方法,并试图寻找其他方法。
●能借助计算器解决问题。
●在解决问题的活动中,初步学会与他人合作。
●能表达解决问题的过程,并尝试解释所得的结果。
●具有回顾与分析解决问题过程的意识。
●能结合具体情境发现并提出数学问题。
●尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试 评价不同方法之间的差异。
●体会在解决问题的过程中与他人合作的重要性。
●能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果 的合理性。
●通过对解决问题过程的反思,获得解决问题的经验。
情感与态度 ●在他人的鼓励与帮助下,对身边与数学有关的某些事物有好奇心,能够积极参与生动、直 观的数学活动。
●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获 得成功的体验,有学好数学的信心。
●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联 系。
●经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合 理性。
● 在他人的指导下,能够发现数学活动中的错误并及时改正。
●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动。
●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有 克服困难和运用知识解 决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得 不断的进步。
●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学 方法来解决,并可以借助数学语言来表述和交流。
●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的 探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。
●对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题 进行讨论,发现错误能及时改正。
●乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作 用。
●敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问 题的成功体验,有学好数学的自信心。
●体验数、符号和图形是有效地描述现实世界的重要手段,认识到 数学是解决 实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
●认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验 数学 活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。
●在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己 的观点,并尊重与理解他人的见解;能从交流中获益。
第三部分 内容标准
本部分分别阐述各个学段中"数与代数" "空间与图形" "统计与概率" "实践与综合应用"四个领域的内容标准。
"数与代数"的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世 界。
"空间与图形"的内容主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。
"统计与概率"主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的推断和预测。
"实践与综合应用"将帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题,以发展他们解决问题的能力, 加深对"数与代数" "空间与图形" "统计与概率"内容的理解,体会各部分内容 之间的联系。
不全,因为这个帖子容纳不下。
❹ 如何理解如何理解小学数学新课标
.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。
教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
❺ 小学数学新课标倡导的学习方式是什么
动手实践、自主探索、合作交流。
❻ 小学数学新课标的主要内容有哪些
截止2018年目前小学数学新课标的主要内容如下:
义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
❼ 浅谈如何落实小学数学新课标理念
作为小学数学教学的一线教师,如何落实新课标理念,下面,就我多年的教学经验以及对新课改革精神的学习与理解,谈一谈我对在新课标理念指导下开展数学课的几点个人体会:
一、结合教学实际,重视培养学生的数感
在当前的义务教育数学改革中,笔算是被削弱的内容,降低了笔算的复杂性和熟练程度,这不是说计算能力的培养不重要了,其实正相反。《标准》中明确指出要“提倡算法的多样化,避免程式化的机械计算和叙述算理”。既然这样,我们怎样提高全体学生的计算能力和良好的数感呢?
1、依据教学内容,精心设计“口算”题。“口算”是一个人最基本的计算能力,也是一种最生活化的基本技能。
2、精心设计教学内容,留给学生自主探索的空间。计算的学习要符合儿童学习计算的认知规律,同时,也要符合计算知识本身的发展规律。
3、不用固定的语言文字来概括计算法则,让学生在自主的探索中获得对计算过程与算理的理解。
4、让学生在现实情景中理解数学知识的意义和作用,培养学生用数学解决问题的良好数感。
5、笔算与估算结合,加大估算的教学力度。要把估算作为现代数学基础教育的重要内容来抓,这既能为学生数学的发展奠定良好基础,也符合学生今后的生活需要。
二、结合生活与教学实际,加强对学生的实际操作能力、自主探索能力、估测能力的培养
1、在教学中培养学生的操作,探索和估测能力。课堂教学是学生学习的主阵地。学生将通过课堂学习获得相关的知识与技能,并在教师的指导下,获得学习的方法,端正学习的态度,受到各种思想的熏陶,特别是学生的操作、探索和估测能力的提高更是离不开教师的指导。
2、在生活中培养学生的操作,探索和估测能力。知识离开了生活,就无从验证,能力离开了生活就得不到提高。学生在课堂上所获得的是基础知识与基本技能,这些基础知识与基本技能只有经过学生生活的再次洗礼,才能不断提高学生的各种能力。在生活中教师也可以有意识的培养他们的这些能力。
三、逐步发展学生综合运用知识的能力,注重情感、态度、价值观以及数学思想的均衡发展
1、学生综合运用知识的能力培养。知识的价值在于应用,如果学会了知识却不会运用就等于不会知识。也就是说,教师的任务不仅仅是引导他们学会知识,更要的是要引导他们学会学习和运用知识。
2、渗透思想教育,让学生的情感、态度、价值观得以均衡发展。学生的情感、态度、价值观直接影响到他们对数学知识的把握与理解。那么,就需要教师在教学时激发他们的学习兴趣和探索知识的欲望,利用教材与生活中他们感兴趣的素材渗透各种思想教育。
四、建立与数学同步的评价机制与体系,增强学生学好数学的信心。
学生的信心来自于不断的成功,来自于教师充分的肯定。这就是说,学生用什么样的心态对待学习,很大程度上取决于教师的评价。因此,每一位教师都应该有自己对学生评价的评价体系和在教学中不断完善改进的评价机制。
相信“只有无心的教师,没有改变不了的学生。”只有具备了高尚心灵的老师才能心平气和,也才能具有无穷的智慧。面对千差万别的学生,教师“送之以甘泉”,他们会“报之以桃李”,教师立足学生长远发展的无私奉献必将硕果累累。