⑴ 小学生三年级数学史演讲稿
高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=? 这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!” 老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050.
⑵ 如何让数学史走进小学课堂
首先是我们最喜爱的吴正宪老师上了一节面积的认识一课。以前,也听过吴老师上这节课,感觉这节课又有了新的变化。吴老师让学生对面积提出问题后,有学生问面积是做什么用的?吴老师就把数学史带进了课堂。古埃及有一条河叫泥罗河,发大水时,它经常把农田淹没了。河水退后,人民就开始测量被淹的土地有多大,所以就产生了面积。如果说吴老师不说,我们当了十几年的数学老师都不知道这个知识,真是惭愧呀。学生喜欢听故事,从故事中也了解了一些知识,对面积也有了更深切的认识。从这节课,让我也对数学史有了很浓厚的兴趣。我立刻上网络进行搜索,也没有找到相关知识的介绍,看来,我也要抓紧买些数学史的书,好好读一读,丰富自己的数学史知识,也让学生感受一些数学史。
接下来,还听了一节用字母表示数。原来我们上这节课都喜欢用一只青蛙一张嘴,两只眼睛,四条腿来引入教学,当学生找到规律后,就可以用A只青蛙A张嘴,2A只眼睛,4A条腿来表示,从而引入用字母表示数,又有故事情境,又能吸引学生,教学效果也不错。可是,老师不是这样教的。而是用信封装粉笔的方法引入。一个也不放,用0表示,放了5枝,用数字5来表示。当老师不让学生看到粉笔的枝数,让学生猜时,学生猜了很多,可能是几,是几,但是不可能大于几,不可能小几,学生也能猜出一个范围。老师让学生反复体会这个数的不确定,自然而然地想到了可以用A或者B或者C,26个字母都可以。充分让学生经历了字母是求知数的这个含义,充分感受这个未知数产生的根源。而刚开始说的那个情境,是从具体的数,转化成字母,学生总认为是先有数字再有未知数,而颠倒了先有未知数,再求未知数的值的本源问题。这个认识太到位了。这就为后面学生不喜欢列方程解决问题或者解方程时老是出问题找到了根源。
除此之外,华东师范大学的数学教授的讲座也是给了我数学史不一般的感受。我们了解数学史,把数学史带入到我们的课堂,让教师更加了解数学知识的本源,使教学更具科学性,也让学生了解一些简单的数学史,感受知识的产生的过程。同时,我认为最重要的是数学家的故事让我们感受到数学家的人格魅力,从他们身体上我们不仅仅能学到数学知识,更让我们从数学家的身上学习到坚持、勤奋、努力、钻研等一系列的精神品质。
虽然具体地还不知道现在究竟要具体做些什么,但是,现在,最最要做的一件事情就是:买有关于数学史的书,一定会对自己有所帮助。
⑶ 适合小学生演讲的数学史
华罗庚一生都是在国难中挣扎。他常说他的一生中曾遭遇三大劫难。自先是在他童年时,家贫,失学,患重病,腿残废。第二次劫难是抗日战争期间,孤立闭塞,资料图书缺乏。第三次劫难是“文化大革命”,家被查抄,手槁散失,禁止他去图书馆,将他的助手与学生分配到外地等。在这等恶劣的环境下,要坚持工作,做出成就,需付出何等努力,需怎样坚强的毅力是可想而知的.早在40年代,华罗庚已是世界数论界的领袖数学家之一。但他不满足,不停步,宁肯另起炉灶,离开数论,去研究他不熟悉的代数与复分析,这又需要何等的毅力寻勇气!华罗庚善于用几句形象化的语言将深刻的道理说出来。这些语言简意深,富于哲理,令人难忘。早在SO年代,他就提出“天才在于积累,聪明在于勤奋”。华罗庚虽然聪明过人,但从不提及自己的天分,而把比聪明重要得多的“勤奋”与“积累”作为成功的钥匙,反复教育年青人,要他们学数学做到“拳不离手,曲不离口”,经常锻炼自己。50年代中期,针对当时数学研究所有些青年,做出一些成果后,产生自满情绪,或在同一水平上不断写论文的倾问,华罗庚及时提出:“要有速度,还要有加速度。”所谓“速度”就是要出成果,所谓‘加速度”就是成果的质量要不断提高。“文化大革命”刚结束的,一些人,特别是青年人受到不良社会风气的影响,某些部门,急于求成,频繁地要求报成绩、评奖金等不符合科学规律的做法,导致了学风败坏。表现在粗制滥造,争名夺利,任意吹嘘。1978年他在中国数学会成都会议上语重心长地提出:“早发表,晚评价。”后来又进一步提出:“努力在我,评价在人。”这实际上提出了科学发展及评价科学工作的客观规律,即科学工作要经过历史检验才能逐步确定其真实价值,这是不依赖人的主观意志为转移的客观规律。”华罗庚从不隐讳自己的弱点,只要能求得学问,他宁肯暴露弱点。在他古稀之年去英国访问时,他把成语“不要班门弄斧”改成“弄斧必到班门”来鼓励自己。实际上,前一句话是要人隐讳缺点,不要暴露。华罗庚每到一个大学,是讲别人专长的东西,从而得到帮助呢,还是对别人不专长的,把讲学变成形式主义走过场?华罗庚选择前者,也就是“弄等必到班门”。早在50年代,华罗庚在《数论导引》的序言里就把搞数学比作下棋,号召大家找高手下,即与大数学家较量。中国象棋有个规则,那就是“观棋不语真君子,落子无悔大丈夫”。1981年,在淮南煤矿的一次演讲中,华罗康指出:“观棋不语非君子,互相帮助;落子有悔大丈夫,改正缺点。”意思是当你见到别人搞的东西有毛病时,一定要说,另一方面,当你发现自己搞的东西有毛病时,一定要修正。这才是“君子”与“丈夫”。针对一些人遇到困难就退缩,缺乏坚持到底的精神,华罗庚在给金坛中学写的条幅中写道:“人说不到黄河心不死,我说到了黄河心更坚。”人老了,精力要衰退,这是自然规律。华罗庚深知年龄是不饶人的。1979年在英国时,他指出:“村老易空,人老易松,科学之道,戒之以空,戒之以松,我愿一辈子从实以终。”这也可以说是他以最大的决心向自己的衰老作抗衡的“决心书”,以此鞭策他自己。在华罗索第二次心肌梗塞发病的,在医院中仍坚持工作,他指出:“我的哲学不是生命尽量延长,而是昼多做工作。”生病就该听医生的话,好好休息。但他这种顽强的精神还是可贵的。总之,华罗庚的一切论述都贯穿一个总的精神,就是不断拼搏,不断奋进。
⑷ 小学数学发展史
小学数学概率的发展史
概率论是一门研究随机现象规律的数学分支。其起源于十七世纪中叶,当时在误差、人口统计、人寿保险等范畴中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。数学家费马向一法国数学家帕斯卡提出下列的问题:“现有两个赌徒相约赌若干局,谁先赢s局就算赢了,当赌徒A赢a局〔a < s〕,而赌徒B赢b局〔b < s〕时,赌博中止,那赌本应怎样分才合理呢?”于是他们从不同的理由出发,在1654年7月29日给出了正确的解法,而在三年后,即1657年,荷兰的另一数学家惠根斯〔1629-1695〕亦用自己的方法解决了这一问题,更写成了《论赌博中的计算》一书,这就是概率论最早的论着,他们三人提出的解法中,都首先涉及了数学期望〔mathematical expectation〕这一概念,并由此奠定了古典概率论的基础。
使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布-伯努利〔1654-1705〕。他的主要贡献是建立了概率论中的第一个极限定理,我们称为“伯努利大数定理”,即“在多次重复试验中,频率有越趋稳定的趋势”。这一定理更在他死后,即1713年,发表在他的遗著《猜度术》中。
到了1730年,法国数学家棣莫弗出版其著作《分析杂论》,当中包含了著名的“棣莫弗—拉普拉斯定理”。这就是概率论中第二个基本极限定理的原始初形。而接着拉普拉斯在1812年出版的《概率的分析理论》中,首先明确地对概率作了古典的定义。另外,他又和数个数学家建立了关于“正态分布”及“最小二乘法”的理论。另一在概率论发展史上的代表人物是法国的泊松。他推广了伯努利形式下的大数定律,研究得出了一种新的分布,就是泊松分布。概率论继他们之后,其中心研究课题则集中在推广和改进伯努利大数定律及中心极限定理。
概率论发展到1901年,中心极限定理终于被严格的证明了,及后数学家正利用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从以正态分布。到了20世纪的30年代,人们开始研究随机过程,而著名的马尔可夫过程的理论在1931年才被奠定其地位。而苏联数学家柯尔莫哥洛夫在概率论发展史上亦作出了重大贡献,到了近代,出现了理论概率及应用概率的分支,及将概率论应用到不同范畴,从而开展了不同学科。因此,现代概率论已经成为一个非常庞大的数学分支。
⑸ 小学数学你知道吗中关于数学史的有
小学的数学历史基本很少,因为加减法的运算从古时候开始就有了,多数后面字符的引入部分也是国外引入的
⑹ 如何给小学生讲数学史
可以让学生自己先找材料,然后自己找材料。比比谁照的多的,激发学生的兴趣,自然而然就好教了。
⑺ 如何让数学史走进小学课堂
《数学课程标准(实验)》提出:“数学是人类的一种文化,他的内容、思想、方法和语言是现代文明的重要组成部分。”数学是一种科学,更是一种人类的文化。营造数学文化的人文氛围,揭示数学的文化内涵,在数学教学中,渗透数学史是必不可少的!我们认为小学数学必须以数学文化内涵为导向重构教学,让数学史走进小学数学课堂,通过这些丰富内容的呈现,激发学生学习数学的兴趣,掌握数学知识的精华,真正提高学生的数学素养。只有如此,才能真正实现以学科教育促进学生的全面发展。
如何让数学史走进数学课堂?
1提高教师的自身的数学文化素养。现在的数学教师中有相当一部分教师基本的数学文化素养,部分教师知识面太窄,对数学的文化内涵无从把握。有的教师甚至从未读过数学史或未完整地读过数学史,于是他们不能正确的理解“渗透数学文化思想”的重要内涵。基础教育的教师,尤其是贫困边远地区的教师团队在这一方面的问题就更为严重,由于供教师参考的关于渗透数学史教育的文献比较少,所以他们自身的数学文化素养相对滞后。大多数数学教师把有关的数学史知识轻描淡写,一带而过,大大忽视了数学史对数学学习的促进作用,。
培养什么样的人才很大程度上取决于老师的教育思想和教育行为。教师的文化底蕴是数学“文化”的保证,教师对教材的理解,对数学的理解,对教学活动的组织都反映了教师的文化修养。所以说,提高教师的自身的数学文化素养迫在眉睫。首先,学校单位应有计划地组织小学教师学习、培训。而作为教师本身要提高意识,树立数学史的教育价值理念。有成长意识的教师会主动学习与自身教学有关的资料,熟悉学科最新动态,尽可能扩大有关教学的知识面,从而让自己跟上时代潮流,做一个专业型教师。从而把数学史融入到数学课堂教学当中,体现数学的文化价值。
2转变重“知”轻“识”的功利化观念
在各种考试压力下,仅仅关注学生对数学知识的接受,大搞题海战术,只会越来越使学生喘不过气,从而更加厌恶数学。所以,在数学教学中,我们必须树立全面育人的教育观,实施“减负”政策,认真贯彻素质教育,逐渐有序的把数学史的教育渗透到教学中去,重视对数学概念的理解、掌握数学思想与方法的运用。使学生能轻松愉悦的面对数学,让他们不再是空洞的解题训练,帮助学生树立好数学的信心。
3 改进教材编制, 以数学之趣激发兴趣。提高学习热情
俗话说:“兴趣是最好的老师。”学习数学,不应是“概念—定义—定理—解题”那样枯燥乏味。所以,为了能在教学过程中激发学生的学习兴趣,在小学数学教材中,应不同程度的适当的选一些有趣的数学史料作为背景知识。在小学阶段,数学史知识能更好的激发孩子们学习数学的兴趣,使学生更好的理解数学。(1)加强低年级段的数学史教育。从一年级开始就渗透数学史知识,在每册中都适当安排一些内容,让学生尽早接触。从儿童心理年龄特征看,在低段课程教材中恰当地融入数学史,更能吸引儿童,激发他们学习数学的热情。(2)增加新的设计模式。目前总体上说,小学数学教材的内容设计主要有两种比较好的模式。其一是“习题内容引出数学史”,像人教版,小学数学五年级上册的先由习题第5题创设的游戏情景引出“有些偶数可以表示成两个质数的和”的结论,进而通过提出问题而引出歌德巴赫猜想的历史由来,以及我国数学家对此所做出的贡献。另外一种模式是“阅读材料式数学史”,比如说西师版的在“倍数与因数”这章内容后以阅读材料的形式体现出来的:以“陈景润”为主线展开,有陈景润的故事引出哥德巴赫猜想。像这样的丰富的内容模式设计,使得数学史的渗透才更加全面,更具效果,能激发学生强烈的求知欲、好奇感,从而产生探索的快乐感,发生浓厚的学习兴趣。因此,教材编写者有必要根据不同的情况设计不同的模式,以达到效果最优化。
4、让数学方法、数学名题走进课堂
“问题是数学的心脏”这是数学教师所熟知的由美国数学家哈尔莫斯所说的一句名言。而作为教师,就应该善于创设问题,让数学课是由一个又一个的问题,一层又一层深入的问题组成的。而用数学方法论激活问题可以使教学具有灵活性,开放性和探索性。进行一题多解、一题多变,产生变化性问题;引导解题后反思,提出引申性问题等,激发学生的好奇心。同时需要结合数学名题,如高斯的故事:七岁时高斯还不到几秒钟把 1到 100的整数1+2+3+4+……97+98+99+100用1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,50×101=5050的方法快速的算出了答案。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
这些具有精妙解题思想的数学名题,必能深深地吸引学生,帮助他们掌握知识的来龙去脉,学习到数学家的坚毅品质及为数学二合科学的献身精神,进而让学生养成良好的学习态度。
5、 运用数学史开展各种活动丰富课堂
怎样把枯燥无味的数学课堂变成吸引学生的磁场呢?我们可以通过各种小活动丰富课堂,活跃课堂气氛。实施这种方式的关键在于最大限度的发挥学生的能动性和积极性。
第一,课堂上可以进行一些与数学有关的小游戏,数学游戏的参与,既增加了学生的学习兴趣,也让学生了解数学家解决问题的特殊见解。
第二,开展读书交流活动。数学史课外书籍的阅读和交流是一种很好的方式,利用假期的时间提出任务,要求学生按自己的喜好阅读数学史书籍、故事,然后在活动课堂上交流自己的心得体会。
学生都是有悟性的,他们可以可以从陈景润等人研究数学奥秘的辛苦中获得一份学习的勇气; 可以从祖冲之的圆周率计算比外国早一千年获得民族自豪感……
第三,影视资料的运用。影视资料具有直观形象性这么一个优点,学生在听的同时又可以看,这种眼耳并用的声像结合,非常符合符合小学生的思维习惯。在活动课当中播放一些相关的数学史影视资料使介绍数学史知识时图文并茂,妙趣横生,更能吸引学生,激发他们的兴趣。
所以,利用计算机这一现代化的工具为数学史教育服务,把某一数学知识的发展过程娓娓道来,生动有趣。激发他们学习数学的欲望和自信。
数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富。在数学文化的背景下学习,能吸引学生自主性地参与学习活动,促使他们通过动手实践、自主探索与合作交流,获得必需的数学。这样才能有效地彰显它的文化价值。
最后,建议你多看一点数学史方面的书籍。国内现在也有一些书是讨论数学史与数学教育的,像汪晓勤,张维忠的书,
⑻ 如何将数学史融入到小学数学教学
说句内心的话,我很反对只将数学史从人文教育的角度教授给学生,这也只会成为学生课余闲暇时的谈资,而不会对数学学习起到最根本的作用。
数学的发展是连续的,人类的认识是有规律的,所以有必要从数学史的角度去关注数学教育。
我认为数学史对数学教育有如下3个方面的意义,
1.人文教育,激发学生的兴趣。如数学家传记、数学史的故事;
2·理解数学的知识,深层次看待数学发展。如数学历史名题、数学悖论。
3·从数学发展的本质对数学教育提供理论指导。需要解释下,人类的认识规律是基本一致的,研究前人在学习数学,发现数学中的困难和错误也是现在学生学习的困难和易犯错误。从这个角度考虑改革数学教学。这是最本质的改进与影响。
以上三个层次是数学史影响数学教育逐低到高过程
针对不同阶段的教育,现在世面上虽有初等数学中的数学史、中学数学中的数学史....类似书,但是我认为这些书都是为了迎合教育工作的心理,不用自己动手就可以把数学史渗透到数学教育中,而成书的内容与成效是较差的。
我推荐如果是年轻的教师想在教学上有所作为,那一定要自己研究数学的历史,会看到很多不同于教材的数学内容,推荐几本书可以研究。只推荐中文的吧:
《世界数学通史》梁宗巨(上下册);《数学史通论》Victor J Katz 国内有中译本。两本书都只研究一半就够了。
这条路很长,这条路也很有挑战,这条路也是现代数学教育改革的方向。