导航:首页 > 小学学科 > 有关小学数学的论文

有关小学数学的论文

发布时间:2020-11-27 03:30:18

小学数学论文可以写什么 要和生活有关系!!!

有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等版她。我没什么事,权就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。

在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!

❷ 小学数学论文大全六百字

论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献和附录和致谢。
下面按论文的结构顺序依次叙述。
题目
(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。
署名
(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。
引言
(三)论文——引言是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。
材料方法
(四)论文——材料和方法按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。
实验结果
(五)论文——实验结果应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据、不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。
实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。

❸ 小学数学论文 关于0的 1000字左右

大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。
但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。
在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。
想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。
我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。
0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧!
以前写的。祝你成功!

❹ 小学数学论文题目大全

学术堂整理了十个毕业论文题目供大家进行参考:

1、小学数学教师几何知识掌握状况的调查研究

2、小学数学教师教材知识发展情况研究

3、中日小学数学“数与代数”领域比较研究

4、浙江省Y县县域内小学数学教学质量差异研究

5、小学数学教师教科书解读的影响因素及调控策略研究

6、中国、新加坡小学数学新课程的比较研究

7、小学数学探究式教学的实践研究

8、基于教育游戏的小学数学教学设计研究

9、小学数学教学中创设有效问题情境的策略研究

10、小学数学生活化教学的研究

❺ 谁有关于小学数学论文的

数学发展史

此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味网络读物。

数的出现

一、数的概念出现

人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。

数字与符号的起源与发展

一、数的出现

很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。
而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。

二、符号的出现

加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简
单,直到17世纪中叶才全部形成。
法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。

1、加号(+)和减号(-)

加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。

2、乘号(×、·)

乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。

3、除号(÷)

除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。
至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。

4、等号(=)

等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。

分数

一、分数的产生与定义

人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。
一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。
分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.
分数一般包括:真分数,假分数,带分数.
真分数小于1.
假分数大于1,或者等于1.
带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。
注意 :
①分母和分子中不能有0,否则无意义。
②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)

二、分数的历史与演变

分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。
在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。
公元前1850年左右的埃及算学文献中,也开始使用分数。
200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数.
为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的.
最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。
《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法.
在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。

几何

一、公式

1、平面图形

正方形: S=a² C=4a
三角形: S=ah/2 a=2S/h h=2S/a
平行四边形:S=ah a=S/h h=S/a
梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a
圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏
半圆: S=∏r²/2 C=∏r+d=5.14r

顶点数+面数-块数=1

2、立体图形

正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a
长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)
圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r²
其它柱体:V=S底h
锥体: V=V柱体/3
球: V=4/3∏r³ S表=4∏r²

顶点数+面数-棱数=2

数论

一、数论概述

人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0)
对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。
人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。
数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。

二、数论的发展简况

自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。
自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。
在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。
到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。
在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。
由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。

三、数论的分类

初等数论
意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。
解析数论
借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。
代数数论
是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。
几何数论
是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。
计算数论
借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。
超越数论
研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。
组合数论
利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。

四、皇冠上的明珠

数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。
简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题……

五、中国人的成绩

在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。

名著录

《几何原本》 欧几里得 约公元前300年
《周髀算经》 作者不详 时间早于公元前一世纪
《九章算术》 作者不详 约公元一世纪
《孙子算经》 作者不详 南北朝时期
《几何学》 笛卡儿 1637年
《自然哲学之数学原理》 牛顿 1687年
《无穷分析引论》 欧拉 1748年
《微分学》 欧拉 1755年
《积分学》(共三卷) 欧拉 1768-1770年
《算术探究》 高斯 1801年
《堆垒素数论》 华罗庚 1940年左右

任意选一段吧!!!

当然还有一篇供你参考

关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

写的不好,多多包涵!!

❻ 有没有关于小学数学专业的毕业论文

小学数学教学论文--在小学数学教学中培养学生的思维能力 培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学中一项重要任务 思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。 值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。 《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。 二 培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。 (一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。 (二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。 (三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。 三 设计好练习题对于培养学生思维能力起着重要的促进作用 培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。 (一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。()”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。

❼ 小学数学论文

如何在小学数学教学中对学生进行
学习兴趣的培养
[关键词]:小学数学教学 学生 学习兴趣
在现代教育教学过程中,如何培养学生,使他们成为品学兼优、志存高远的学生,是一个在相当长的时间内都必须存在的话题。而在数学教育教学过程中,对低年级的学生进行学习兴趣的培养,就显得特别敏感和重要。该怎么做?仁者见仁,智者见智。作为一名数学教师,根据多年的教育教学经验,我认为要切实做到:
一、在教学过程中,教师要联系实际,引发学生的学习兴趣
众所周之,小学生的思维能力受年龄特点、思维特点等所限制,认识感知实际知识需要一个过程。因而,培养其兴趣,就显得尤其重要,特别是抽象的数学问题,更是如此。那么,如何就其特点,结合实际,引发兴趣,为他们搭建认知的桥梁,就显得极其重要了。
二、积极营造良好的学习环境,培养学生的学习兴趣
在学生成长和发展的过程中,学习环境的直接或间接影响力是不可忽视的,为他们营造一个良好的学习环境是无可非议的。营造一个良好的学习环境,首先,应从教师的自身做起,教师要主动参与其中;其次,要做好学生的思想工作,正确引导他们认识学习的重要性,领悟到自己不仅是学习的主人,更是终身学习的主人;最后,可以通过自办班级学习报、定期办好黑板报、组织学生写好数学日记、开展好数学兴趣小组的活动、实施“超市式”数学作业、定期开展优秀作业展、组织学生参加各类数学竞赛、做好培优补差工作等形式,为学生创建一个平等、和谐、民主、愉快的学习氛围,使学生产生浓厚的学习兴趣。
三、主动创设操作性情境,调动学生的学习兴趣
根据小学生好动、好奇的心理特点,在小学数学课堂教学中,教师可以组织一些以学生活动为主,对一些实际问题通过让学生自己动手测量、演示或操作,使学生通过动手动脑获得学习成效,既能巩固和灵活运用所学知识,又能提高操作能力,培养创新精神,调动学生的主动参与能力和兴趣。
四、合理创设游戏性情境,提高学生的学习兴趣
根据数学学科特点和小学生年龄特点,设置游戏性情境,把新知识寓于游戏活动之中,通过游戏使学生产生对新知识的求知欲望,让学生的注意力处于高度集中状态,在游戏中得到知识,发展能力,提高学习兴趣。例如,在课堂训练时,组织60秒抢答游戏。教师准备若干组数学口答题,把全班学生分为几组,每组选3名学生作代表。然后由教师提出问题,让每组参赛的学生抢答,以积分多为优胜,或每答对一题奖励一面小红星,多得者为优胜。学生就能在游戏中,精神高度集中,在不知不觉中学到不少有用的知识,体验成功的快乐,有力地提高了学生的学习兴趣。
五、获取成功喜悦,让学生体验学习兴趣
任何人都渴望成功。成功会给学生在学数学时心理求知的厚动力,在数学教学中,要给每个学生创造出更多的表现的机会,充分利用“低、小、全、快”的方法,阶段型的开放学生的梯级思维。由浅显的问题入手,引导学生对习题作出正确的解答。学生经过对问题的独到见解或创造性的思维取得一次次的好成绩,并为获取的成功渐进式地感到高兴和骄傲,让他们感受到成功的喜悦。最终让学生明白只要开启心智就有希望,就能成功。如果失败了,就会加倍努力,直到成功为止。因此,教师在设计提问、板书、作业时要因人而异,分层次地提出切合不同学生的不同要求,使每个学生都有成功的希望,从而获得成功的体验,提高他们学习动机和学习兴趣。
综上所述,通过“引发—培养—调动—提高”学生的学习兴趣,一次或多次的成功体验,会成为学生学习动机和激发兴趣的“激活剂”。

❽ 关于小学数学的教育的论文

在教学时试图通过“提问——思考——发现”的方式调动学生学习的积极性和创造性,营造学生高参与的课堂氛围。但从课堂实施效果来看,喜忧参半!

一、 快节奏的课堂教学是引导学生高参与的基础
我相信,一个人在一支慢吞吞的队伍里排队等候自己感兴趣的东西,他的心理感受只可能用“焦急、厌倦、沮丧”来形容。在我们的教学中,由于受“希望学生尽快掌握所学知识”的心理影响,教师往往更乐意将知识嚼得碎碎的喂给学生,期望学生都能体会到获得知识的欣喜,所以突破难点时总爱唠叨几句,练习中总愿意等最慢的一个学生也把题目做完,哪怕减缓上课节奏都在所不惜,美其名曰:以学生为本,却不知这正是消磨学生学习积极性的症结所在。美国“启发策略研究所”的研究表明:当老师在整堂课里快节奏地讲解授课内容时,学生们通常更能全身心地投入。

教学是门永远带有遗憾地艺术。我们的课堂中应该以快节奏方式来维持一定的学生参与度,当我们感到学生参与程度在下降、学习活力在减弱、注意力在转移时,应尽快向下推进课程,让学生们感到课在不断地推进,总觉得有事要做、有问题要思考。老师讲解、问题解释和学生练习、答写只要有约一半的学生明白、完成就尽快变化,哪怕对反应相对迟缓的学生来说,我们也不能减慢速度去适应他们,而是用希望的力量和同伴高涨地学习积极性激励他们赶上教学的节奏。

❾ 小学数学小论文

让学生对数学充满兴趣

我们每个人从事各种活动,都是由一定的动机、兴趣所引起的,有了动机、兴趣才能去从事各种活动,从而达到一定的目的。学习兴趣是学生学习的强化剂,在学生的认识过程与学习活动中起着巨大的推动和内驱作用。我国古代教育心理学家说过:“知之者不如好知者,好知者不如乐知者。”就非常形象、生动地说明了兴趣在学习中的作用,古往今来,许多发明家之所以能取得令人瞩目的成绩,更是与他们浓厚的学习兴趣和强烈的求知欲望有关。

传统的数学课堂把丰富复杂、动态变化的教学过程简约化归为“明算理,重练习”的特殊认识活动,导致数学课堂变得机械、沉闷和程序化,缺乏生机与乐趣,缺乏对智慧的挑战。学生学习起来觉得枯燥、乏味,没有激情。那么怎样才能使课堂气氛活跃,使学生拥有浓厚的学习兴趣呢?我觉得可以从以下几个方面着手:

一、用新颖有趣的教法诱发学习兴趣

苏霍姆林斯基说过:“兴趣并不在于认识一眼就能看见的东西,而在于认识深藏的奥秘”。小学生好奇心强,求知欲强烈,容易被新奇的事物吸引。这就要先在学生面前揭示出一种新的东西,激发起他们的惊奇感。这种情感越能抓住学生的心,他们就越迫切地想要知道、思考和理解。这就需要我们要善于用新颖的教学方法引起他们对于学习内容的好奇感,从而神情专注、兴趣盎然地投入到学习活动中来。例如果在教学“乘法的初步认识”时,我是这样导入的,我说:“今天老师要和小朋友们开展计算比赛,比一比谁算的又对又快,接着我出示了如下题目:3+3+3,7+7+7+7+7,8+8+8+8……+8(100个8)。看了题目以后,小朋友们马上投入到紧张的计算比赛中去,正在兴致勃勃的把数字一个一个的加,我却立即说出了得数。小朋友们一个个你看看我,我看看你觉得很奇怪。这时我说:”其实,老师做加法的本领并不比你们强,只是我掌握了一种新的运算方法,掌握了这种方法以后,算几个相同加数的加法时,速度就会快多了。这种运算叫乘法,你们想学吗?“正是这一举措,展示了乘法这一教学内容的内在魅力和巨大作用,无疑把学生紧紧地吸引住了,从而诱发了学生急切学习乘法的需要和强烈的学习兴趣。

二、用数学本身的内在力量唤起学习兴趣

布鲁纳说过:“最好的学习动机莫过于学生对所学材料本身具有内在的兴趣。”数学知识严密的逻辑性和系统性,各种数学材料之间的有机联系,解决数学问题时思路的开阔和敏捷,数学思维的各种特殊而巧妙的形式……构成了数学这门学科的潜在的吸引力。所以在数学教学中,要努力把数学这种内在力量显示出来,使学生看到一个“快乐的数学王国”,使学生潜移默化的对数学产生深刻的兴趣。如在教学“20以内个数的认识”时,我出了这样一道题:同学们排队做操,小华的前面有5个同学,后面有8个同学,这一队一共有多少同学?让学生解答,结果学生们不假思索的告诉我:5+8=13(个)。看着学生们一个个神气的神态,我并没有急于表态,而是讲了一个故事:兔妈妈带小兔们到草地上去做游戏。天黑了,兔妈妈让小兔们把队伍整理好准备回家。她认认真真的数了数,大吃一惊:“不好,丢了一只小兔”。她又仔仔细细数了一次,小兔却一只都没少。为什么14只兔子变成了13只呢?这时学生们顿有所悟,边笑边喊:“兔妈妈把自己都忘了数了。”也正是此时,学生们马上意识到刚才那道题存在的错误。纷纷表示怎么把小华给忘了。如此妙趣横生的数学内容,当然深深的吸引了学生。此外,还可以组织一题多变,一题多解,一题多问,一题多算,一题多编等活动,显示出数学特有的内在力量,唤起学生对之产生深刻的兴趣。

三、用数学的应用价值调动学习兴趣

数学是一门应用非常广泛的学科。小学数学中的许多知识,也都直接或间接的应用于人们的生活领域和生产实际。因此,在教学中,对教学内容要讲来源,讲用处,通过联系实际,解决学习、生活中的问题,让学生感到生活中处处有数学,这样学起来自然有亲切感、真实感,从而激发学生学习数学的积极动机,产生学习兴趣。如教学“11-20”各数的认识,可设计让学生很快翻书找到指定页码的练习;应用题的练习,要尽量设计解决生活实际中遇到的一些具体问题,又如在教学“认识人民币”时,我设计了这样一个活动:在教室里布置了一家超市,里面摆了好多商品,琳琅满目,选一位小朋友扮演售货员,其他小朋友先仔细观察这些商品的价格,一方面使学生进一步认识了人民币,使课内的数学知识得以巩固。另一方面也让学生真正认识到数学就在我们生活中间。既看得见也摸得着,不再觉得数学是脱离实际的海市蜃楼。而且培养了学生分析问题和解决问题的能力,调动学生学习数学的兴趣。

四、用学习的成功感增添学习兴趣

心理学家盖兹说过:“没有什么东西比成功更能增强满足的感觉;也没有什么东西让每个学生都体验到成功的喜悦,更能激发学生的求知欲望。”学生对于数学的兴趣是在自身的活动中形成和发展的。当学生通过努力获得某种成功时,就会表现出强烈的学习兴趣。教师的责任在于相机鼓励、诱导点拨、帮助学生学习获得成功。当学生想独立的去探索某个新知时,要十分注意情绪鼓舞:“你一定能自己解决这个问题”、“你一定能行!”等。当学生的学习停留于一定的水平时,要注意设“跳板”引渡,使他们成功的到达知识的彼岸。当学生的学习活动遇到困难,特别是后进生泄气自卑时,要特别注意给予及时的点拨诱导,使他们“跳一下也能摘到果子吃”。这样,各种不同水平的学生就会在探究中获得成功的喜悦,满足感油然而生,进一步增添了对数学知识的学习兴趣。

五、用数学课外活动发展学习兴趣

学生在学到一定的数学知识,并激发了学习兴趣后,就会不满足于课堂内所学的

知识。这时,教师应组织各种数学课外活动,为其创造一个非常自由的、宽松的、生动活泼的学习环境。使枯燥的数学知识更加趣味化,实践化。例如,在低年级组织全班性的数学表演会,通过讲数学故事、猜数学谜语、做数学游戏等活动,发展学习兴趣;在中、高年级可以结合教材内容,介绍国内外数学家的故事、现代科学技术的发展、数学小常识,出数学墙报等活动。这样不仅能扩大学生的视野,拓宽知识,而且可以通过多种形式启发学生学习的兴趣,最大限度地调动学生学习的积极性和主动性,使学生的学习兴趣不断地得到发展。

总之,要使课堂气氛活跃焕发生机,就要从培养学生的学习兴趣入手,科学的设计学习活动,使学生不仅爱学、会学,而且学得积极主动,学得活泼,实现从“要我学”到“我要学”的转变,让数学成为孩子们自觉追求的东西。

阅读全文

与有关小学数学的论文相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99