㈠ 小学五年级数学经典应用题有
小学五年级数学试题 应用题年级数学应用题练习
(1)04年12月 用方程解答下面的应用题
1.粮店运来30袋大米和40袋面粉,一共是2500千克,大米每袋50千克。每袋面粉多少千克?
2.一架飞机每小时飞行860千米,比一列火车每小时飞行的6倍还多20千米。这列火车每小时行多少千米?
3.甲乙两辆汽车同时从相距480千米的两地相对开出,经过3.2小时两车相遇。已知乙车每小时行72千米,甲车每小时行多少千米
4.甲乙两艘轮船同时从上海开往武汉,甲船每小时行24千米,经过8. 5小时甲船超过乙船5 1千米。乙船每小时行多少千米?
5.学校里的柏树和杨树一共有126棵,柏树的棵数是杨树的6倍。柏树和杨树各有多少棵?
6.一台空调的价钱的一台电视机的3倍,学校买了一台空调和4台电视机一共用了8400元钱。一台空调和一台电视机各多少元?
7.8筐苹果比8筐梨重40千克,已知一筐梨重20千克,一筐苹果重多少千克?
8.修一条长1960米的路,先是每天修80米,修了8天以后为了尽快完成,以后打算每天修120米,还要多少天才能修完?
9.今年爸爸比小芳大36岁,已知爸爸今年的岁数是小芳的4倍,爸爸和小芳今年各是多少岁?
10.甲乙两车同时从相距420千米的来两地相对开出,甲车的速度是乙车的1. 5倍,经过2. 4小时相遇。甲车和乙车每小时各行多少千米? 五年级应用题练习
(2)04年12月 选择适当方法解答下面应用题
1.一头牛重850千克,一头大象的重量比这头牛的5倍还多500千克。这头大象重多少千克?
2.新光小学的人数比宏扬中学少1260人,已知宏扬中学的人数是新光小学的2. 5倍。宏扬中学和新光小学各有多少人?
3.小兰和小芳同时从环形跑道上的一点向相反方向走去,小兰每分走65米,小芳每分走75米,经过2. 5分相遇。这个环形跑道全长是多少米?
4.植树节同学们植了12行杨树和8行杉树,一共是300棵,杉树每行有15棵,杨树每行有多少棵?
5.一个长方形的周长是64厘米,已知长是宽的3倍,这个长方形的长和宽分别是多少厘米?
6.一块三角形的地,它面积是60平方米,已知底是15米。高是多少米?
7.服装厂要生产6500套西服,已经生产了15天,平均每天生产200套 。余下的每天多生产50套,还有多少天才能完成?
8.甲乙两辆汽车同时从相距665千米的两地相对出发,甲车平均每小时行82千米,乙车平均每 小时行73千米,经过几小时两车还相距45千米?
9.少先队员到果园里摘苹果,上午摘了14筐,每筐装25千克;下午又摘了18筐,这一天一共摘了890千克。下午摘的苹果每筐装多少千克?
10.一支钢笔与一支圆珠笔一共是8. 3元,一支钢笔的价钱比一支圆珠笔的2倍还多0. 8元。一支钢笔和一支圆珠笔各是多少元?
㈡ 小学数学三年级典型应用题
小学三年级数学应用题(20题)
1. 商店有4筐苹果,每筐55千克,已经卖出135千克,还剩多少千克苹果?
2. 美术组有24人,体育组的人数是美术组的4倍,两个组共有多少人?
3. 每盒粉笔1元3角4分,每瓶墨水6角2分,学校买了6盒粉笔5瓶墨水,
共花多少钱?
4. 有篮球9个,足球的个数是篮球的8倍,足球有多少个?
5. 有足球72个,篮球9个,足球的数量是篮球的多少倍?
6. 有足球72个,正好是篮球个数的8倍,篮球有多少个?
7. 学校买来6箱图书,每箱50本,平均分给4个年级,每个年级分多少
本?
8. 在3千米长的公路一边,每隔5米种一棵树,一共要分多少段?
9. 小明从家到学校要走200米长的路,如果他来回走2趟共行多少米?
10. 商店有黄气球19个,红气球比黄气球少7个,花气球的个数是红气球
的2倍,花气球有多少个?
11. 同学们做习题,小华做了75道,小明做了85道,小青比小华和小明
的总数少30道,小青做了多少道?
12. 学校有14棵杨树,杨树的棵数是松树的2倍,柳树比松树多4棵,有多少棵柳树?
13. 三年级(1)班有46人,其中21人是女生,男生比女生多多少人?
14. 公园有7只大猴,小猴的只数比大猴多9只,公园一共养了多少只猴?
15. 甲有140元,甲的钱数是乙的2倍,甲乙共有多少元?
16. 一列火车早上5时从甲地开往乙地,按原计划每小时行驶120千米,
下午3时到达乙地,但实际到达时间是下午5时整,晚点2小时。问火车实际每小时行驶多少千米?
17.一辆汽车早上8点从甲地开往乙地,按原计划每小时行驶60千米,下
午4时到达乙地。但实际晚点2小时到达,这辆汽车实际每小时行驶多少千米?
18 .小宁、小红、小佳去买铅笔,小宁买了7枝,小红买了5枝,小佳没有买。回家后,三个人平均分铅笔,小佳拿出8角钱,小佳应给宁多少钱?给小
红多少钱?
19.三个好朋友去买饮料,小亮买了5瓶,小华买了4瓶,阳阳没有买。到
家后,三个人平均喝完饮料,阳阳拿出6元钱,他应给小亮多少钱?给小华多少钱?
20.用一个杯子向空瓶里倒牛奶,如果倒进去2杯牛奶,连瓶共重450克;
如果倒进去5杯牛奶,连瓶共重750克。一杯牛奶和一个空瓶各重多少克?
㈢ 小学数学典型应用题有哪些类型
1 归一问题
【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱?0.12×16=1.92(元)
列成综合算式 0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?
解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)
列成综合算式 90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解 (1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)
列成综合算式 105÷(100÷5÷4×7)=3(次)
答:需要运3次。
2 归总问题
【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】 1份数量×份数=总量 总量÷1份数量=份数
总量÷另一份数=另一每份数量
【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
解 (1)这批布总共有多少米? 3.2×791=2531.2(米)
(2)现在可以做多少套? 2531.2÷2.8=904(套)
列成综合算式 3.2×791÷2.8=904(套)
答:现在可以做904套。
例2 小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?
解 (1)《红岩》这本书总共多少页? 24×12=288(页)
(2)小明几天可以读完《红岩》? 288÷36=8(天)
列成综合算式 24×12÷36=8(天)
答:小明8天可以读完《红岩》。
例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
解 (1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成综合算式 50×30÷(50+10)=1500÷60=25(天)
答:这批蔬菜可以吃25天。
3 和差问题
【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】 大数=(和+差)÷ 2 小数=(和-差)÷ 2
【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
解 甲班人数=(98+6)÷2=52(人)
乙班人数=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解 长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米)
长方形的面积 =10×8=80(平方厘米)
答:长方形的面积为80平方厘米。
例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此 甲车筐数=(97+14×2+3)÷2=64(筐)
乙车筐数=97-64=33(筐)
答:甲车原来装苹果64筐,乙车原来装苹果33筐。
4 和倍问题
【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】 总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数
较小的数 ×几倍 = 较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
解 (1)杏树有多少棵? 248÷(3+1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:杏树有62棵,桃树有186棵。
例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
解 (1)西库存粮数=480÷(1.4+1)=200(吨)
(2)东库存粮数=480-200=280(吨)
答:东库存粮280吨,西库存粮200吨。
例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为 (52+32)÷(2+1)=28(辆)
所求天数为 (52-28)÷(28-24)=6(天)
答:6天以后乙站车辆数是甲站的2倍。
例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;
又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;
这时(170+4-6)就相当于(1+2+3)倍。那么,
甲数=(170+4-6)÷(1+2+3)=28
乙数=28×2-4=52
丙数=28×3+6=90
答:甲数是28,乙数是52,丙数是90。
5 差倍问题
【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】 两个数的差÷(几倍-1)=较小的数
较小的数×几倍=较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?
解 (1)杏树有多少棵? 124÷(3-1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:果园里杏树是62棵,桃树是186棵。
例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?
解 (1)儿子年龄=27÷(4-1)=9(岁)
(2)爸爸年龄=9×4=36(岁)
答:父子二人今年的年龄分别是36岁和9岁。
例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?
解 如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此 上月盈利=(30-12)÷(2-1)=18(万元)
本月盈利=18+30=48(万元)
答:上月盈利是18万元,本月盈利是48万元。
例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?
解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此
剩下的小麦数量=(138-94)÷(3-1)=22(吨)
运出的小麦数量=94-22=72(吨)
运粮的天数=72÷9=8(天)
答:8天以后剩下的玉米是小麦的3倍。
6 倍比问题
【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】 总量÷一个数量=倍数 另一个数量×倍数=另一总量
【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
解 (1)3700千克是100千克的多少倍? 3700÷100=37(倍)
(2)可以榨油多少千克? 40×37=1480(千克)
列成综合算式 40×(3700÷100)=1480(千克)
答:可以榨油1480千克。
例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?
解 (1)48000名是300名的多少倍? 48000÷300=160(倍)
(2)共植树多少棵? 400×160=64000(棵)
列成综合算式 400×(48000÷300)=64000(棵)
答:全县48000名师生共植树64000棵。
例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?
解 (1)800亩是4亩的几倍? 800÷4=200(倍)
(2)800亩收入多少元? 11111×200=2222200(元)
(3)16000亩是800亩的几倍?16000÷800=20(倍)
(4)16000亩收入多少元? 2222200×20=44444000(元)
答:全乡800亩果园共收入2222200元,全县16000亩果园共收入
44444000元。
7 相遇问题
【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
【数量关系】 相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解 392÷(28+21)=8(小时)
答:经过8小时两船相遇。
例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
解 “第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2
相遇时间=(400×2)÷(5+3)=100(秒)
答:二人从出发到第二次相遇需100秒时间。
例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解 “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,
相遇时间=(3×2)÷(15-13)=3(小时)
两地距离=(15+13)×3=84(千米)
答:两地距离是84千米。
8 追及问题
【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】 追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解 (1)劣马先走12天能走多少千米? 75×12=900(千米)
(2)好马几天追上劣马? 900÷(120-75)=20(天)
列成综合算式 75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用〔40×(500÷200)〕秒,所以小亮的速度是 (500-200)÷〔40×(500÷200)〕=300÷100=3(米)
答:小亮的速度是每秒3米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解 敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是〔10×(22-6)〕千米,甲乙两地相距60千米。由此推知
追及时间=〔10×(22-6)+60〕÷(30-10)=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。
例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为 16×2÷(48-40)=4(小时)
所以两站间的距离为 (48+40)×4=352(千米)
列成综合算式 (48+40)×〔16×2÷(48-40)〕=88×4=352(千米)
答:甲乙两站的距离是352千米。
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的距离为 90×12-180=900(米)
答:家离学校有900米远。
例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。
解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用〔9-(10-5)〕分钟。所以
步行1千米所用时间为 1÷〔9-(10-5)〕=0.25(小时)=15(分钟)
跑步1千米所用时间为 15-〔9-(10-5)〕=11(分钟)
跑步速度为每小时 1÷11/60=1×60/11=5.5(千米)
答:孙亮跑步速度为每小时5.5千米。
9 植树问题
【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】 线形植树 棵数=距离÷棵距+1
环形植树 棵数=距离÷棵距
方形植树 棵数=距离÷棵距-4
三角形植树 棵数=距离÷棵距-3
面积植树 棵数=面积÷(棵距×行距)
【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。
例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?
解 136÷2+1=68+1=69(棵)
答:一共要栽69棵垂柳。
例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?
解 400÷4=100(棵)
答:一共能栽100棵白杨树。
例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?
解 220×4÷8-4=110-4=106(个)
答:一共可以安装106个照明灯。
例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?
解 96÷(0.6×0.4)=96÷0.24=400(块)
答:至少需要400块地板砖。
例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?
解 (1)桥的一边有多少个电杆? 500÷50+1=11(个)
(2)桥的两边有多少个电杆? 11×2=22(个)
(3)大桥两边可安装多少盏路灯?22×2=44(盏)
答:大桥两边一共可以安装44盏路灯。
10 年龄问题
【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。
例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?
解 35÷5=7(倍) (35+1)÷(5+1)=6(倍)
答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。
例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?
解 (1)母亲比女儿的年龄大多少岁? 37-7=30(岁)
(2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年)
列成综合算式 (37-7)÷(4-1)-7=3(年)
答:3年后母亲的年龄是女儿的4倍。
例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?
解 今年父子的年龄和应该比3年前增加(3×2)岁,今年二人的年龄和为 49+3×2=55(岁)
把今年儿子年龄作为1倍量,则今年父子年龄和相当于(4+1)倍,因此,今年儿子年龄为
55÷(4+1)=11(岁)
今年父亲年龄为 11×4=44(岁)
答:今年父亲年龄是44岁,儿子年龄是11岁。
例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?
解
这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:
过去某一年 今 年 将来某一年
甲 □岁 △岁 61岁
乙 4岁 □岁 △岁
表中两个“□”表示同一个数,两个“△”表示同一个数。
因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 (61-4)÷3=19(岁)
甲今年的岁数为 △=61-19=42(岁)
乙今年的岁数为 □=42-19=23(岁)
答:甲今年的岁数是42岁,乙今年的岁数是23岁。
11 行船问题
【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】 (顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
顺水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-顺水速=顺水速-水速×2
【解题思路和方法】 大多数情况可以直接利用数量关系的公式。
例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
解 由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时 320÷8-15=25(千米)
船的逆水速为 25-15=10(千米)
船逆水行这段路程的时间为 320÷10=32(小时)
答:这只船逆水行这段路程需用32小时。
例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?
解由题意得 甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可见 (36-20)相当于水速的2倍,
所以, 水速为每小时(36-20)÷2=8(千米)
又因为, 乙船速-水速=360÷15,
所以, 乙船速为 360÷15+8=32(千米)
乙船顺水速为 32+8=40(千米)
所以, 乙船顺水航行360千米需要 360÷40=9(小时)
答:乙船返回原地需要9小时。
例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?
解 这道题可以按照流水问题来解答。
(1)两城相距多少千米? (576-24)×3=1656(千米)
(2)顺风飞回需要多少小时? 1656÷(576+24)=2.76(小时)
列成综合算式〔(576-24)×3〕÷(576+24)=2.76(小时)
答:飞机顺风飞回需要2.76小时。
㈣ 小学数学题库应用题 典型应用题
75/(6.5+6)*15=90(千米)
答:小辉共行了90千米。
解题思路:
三人行走的时间是相同的,根据公式:路程/速度和=相遇时间,75/(6.5+6),求出小明和小溪的相遇时间,也就是小辉的行走时间,然后用小辉的速度*时间,求出小辉的行走总路程。
㈤ 小学数学典型应用题类型练习题
工程问题(一)
【问题1】单独干某项工程,甲队需100天完成,乙队需150天完成。甲、乙两队合干50天后,剩下的工程乙队干还需多少天?
想:以全部工程量为单位1,两队合干的工作效率是(1100 +1
150 )。根据“工作时
间=工作总量÷工作效率”用剩下的工作总量除以乙队的工作效率。 解:1-(1100 +1150 )×50=16 16 ÷1150
=25(天)
答:剩下的工程乙队干还需25天。
【试一试】
1、一条水渠,甲乙两队合挖30天完工。现在合挖12天后,剩下的由乙队挖,又用24天挖完。这条水渠由乙单独挖,需要多少天?
2、一项工程,甲、乙两队合作60天可完成。如果甲、乙两队合作24天后,余下的工程由乙队再用48天才能完成。问:甲、乙两队单独完成这项工程各需多少天?
3、某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天?
【问题2】单独完成某工程,甲队需10天,乙队需15天,丙队需20天。开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。问:甲队实际工作了几天?
想:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的。
解:〔1-(115 +120 )×6〕÷1
10
=3(天)
答:甲队实际工作了3天。
【试一试】
1、某工程甲队单独做需48天,乙队单独做需36天。甲队先干了几天后乙队加入一起干,前后共用了了24天将工程做完。乙队工作了多少天?
2、有一条公路,甲队修 10天可完成,乙队修 12天可完成,丙队修15天可完成.现在三队合修,但中途甲队调到另外工地,结果共花6天才把公路修完。问甲队调走后,乙、丙两队又合修了多少天?
【问题3】一项工程,甲、乙两队合作需6天完成,现在乙队先做7天,然后甲队做4天,共完成这项工程的13
15 ,如果把其余的工程交给乙队单独做,那么还要几天才能完
成?
想:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作的工作效率是1
6 ,
但甲、乙两队一天也没有合作过。为了解决这个问题,我们把“乙队先做7天,然后甲队做4天”的过程转化为“甲、乙合做4天,乙再单独做3天”,这样,就可以把合作的工作效率16 用上了。甲、乙合做4天完成的工程量是16 ×4=2
3 ,乙再做3天就可完成
工程量的13
15
,由此可求出乙的工作效率。
解:(1315 -16 ×4)÷(7-4)=115 (1-1315 )÷115
=2(天)
答:还要2天才能完成。
【试一试】
1、师徒二人合作生产一批零件,6天可以完成任务.师傅先做5天后,因事外出,由徒弟接着做3天,共完成任务的7
10
。如果每人单独做这批零件各需几天?
2、一项工程,甲、乙合做8天可以完成,如果甲先做2天后,乙接着独做11天,正好完成工程的5
8 。若乙队独做要多少天完成?
3、一项工程,由甲、乙两队合做12天完成。现在由甲、乙两队合做4天后,余下的工程先由甲队单独做10天,再由乙队单独做5天,正好完成这项工程。求甲、乙两队单独做各需多少天完成?
【问题4】有一项工作,甲需要6天完成,乙需要30天完成。现在甲、乙合做这项工作,但是中途甲休息了一天,问完成这项工作用了几天时间?
想:甲、乙共同工作,但甲中途休息了一天,可以这样考虑:假设甲不休息,那么甲、乙两人完成的总的工作量为1+16 =7
6
。
解:(1+16 )÷(16 +130 )=55
6 (天)
答:完成这项工作用了55
6
天。
只要一个
㈥ 小学四年级数学经典应用题有哪些
西山小学四年级有3个班,每班48人,四年级一共有多少人?
2:五年级(2)班有男生26人,女生23人,五年级(2)班一共有多少人?
3:果园里种有荔枝和龙眼,荔枝50棵,每棵收果子150千克;龙眼收果子6000千克,果园里一共收果子多少千克?
① 请说说你是怎样思考的,先求什么,再求什么?
② 如果老师修改一下题目中的已知条件,你还会计算吗?
果园里种有荔枝和龙眼,荔枝50棵,每棵收果子150千克;龙眼有30棵,每棵收果子200千克,果园里一共收果子多少千克?
4:出示课题:三步计算应用题
二:探究学习
1:出示例题
新镇小学三年级有四个班,每班40人,四年级有三个班,每班38人。三年级和四年级一共有多少人?
① 学生合作完成
▲ 有几个已知条件?
▲ 问题是什么?
▲ 先求什么?
▲ 再求什么?
▲ 后求什么?
▲ 怎样列式计算?
▲ 怎样列式才算是规范的?
② 学生口述
▲ 你是怎样列式的?
▲ 根据你所列的算式说出你的解题思路。
2:集体讲评
解法一
① 先计算三年级的学生人数
40×4=160(人)
② 再计算四年级的学生人数
38×3=114(人)
③ 后求三年级和四年级一共有多少学生
160+114=274(人)
④ 答:三年级和四年级一共有274人。
▲ 列出综合算式
40×4+38×3
=160+114
=274(人)
解法二
① 先计算四年级的学生人数
38×3=114(人)
② 再计算三年级的学生人数
40×4=160(人)
③ 后求三年级和四年级一共有多少学生
160+114=274(人)
④ 答:三年级和四年级一共有274人。
▲ 列出综合算式
38×3+40×4
=114+160
=274(人)
3:小结:从问题入手,找出直接解决问题的两个已知条件,确定先求什么,再求什么,后求什么,最后列出算式正确计算,并把答语写完整。
三:课堂练习
1:西山学校三年级有___,每班45人;四年级有3个班,每个班有48人,三四年级一共有多少人?
2:工程车为建筑工地运输石料,大车有5辆,每辆装10吨;小车有8车,___。工程车一共运输了多少石料?
3:小红在菜园子里种菜,5畦种白菜,每畦种150棵;3畦种西红柿,每畦种60棵。_________?
㈦ 小学数学比与比例典型应用题详析
小学数学比和比例应用题典型题库
一、判断。
1.
某班男生有
8
人,女生有
10
人,男生与女生人数之比是
0.8
。
(
)
2.
甲、乙二人同时走同一条路,甲走完需
20
分钟,乙走完需
30
分钟,甲和乙的速
度比是
2
∶
3
。
(
)
3.
在比例尺是
8
∶
1
的图纸上,
2
厘米的线段表示零件的实际长
16
厘米。
(
)
4.
两个圆的周长比是
2
∶
3
,面积之比是
4
∶
9
。
(
)
二、选择题
1
、
固定电话先收座机费
24
元,
以后按一定标准时间加收通话费,
则每月应交电话
费与通话时间(
)
A.
成正比例
B.
成反比例
C.
不成比例
三、解答应用题。
1
、在一幅地图上,
5
厘米的长度表示地面上
150
千米的距离,求这幅地图的比例
尺。
2
、在比例尺是
1
∶
6000000
的地图上,量得甲地到乙地的距离是
25
厘米,求两地
间的实际距离。
若一架飞机以每小时
750
千米的速度从北京飞往南京,
大约需要多
少小时?
3
、
混凝土的配料是水泥∶黄沙∶石子
=1
∶
2
∶
3
。
现在要浇制混凝土楼板
40
块,
每
块重
0.3
吨,需要水泥、黄沙、石子各多少吨做原料?
4
、一艘轮船,从甲港开往乙港,每小时航行
25
千米,
8
小时可以到达目的地.从
乙港反回甲港,每小时航行
20
千米,几小时可以到达?
5
、某工人要做
504
个零件,他
5
天做了
120
个,照这样的速度,余下的还要做多
少天?
6
、一间大厅,用边长
6
分米的方砖铺地,需用
324
块;若改铺边长
4
分米的方砖,
需要多用几块?
7
、一根皮带带动两个轮子,大轮直径
30
厘米,小轮直径
10
厘米;小轮每分钟转
300
转,大轮每分钟转几转?
8
、一件工程,如果
34
人工作需
20
天完成,若要提前
3
天完工,现在需要增加几
名工人?
9
、一本文艺书,每天读
6
页,
20
天可以读完,要提前
8
天看完,每天要比原来多
看几页?
10
、羊毛衫厂共有工人
538
人,分三个车间,第一车间比第三车间少
12
人,已知
第二车间与第三车间的人数比是
3
∶
4
。三个车间各有多少人?
11
、学校把购进的图书的
60
%按
2
∶
3
∶
4
分配给四、五、六三个年级。已知六年
级分得
56
本,学校共购进图书多少本?
12
、小明居住的院内有
4
家,上月付水费
39.2
元,其中张叔叔家有
2
人,王奶奶
家有
4
人,李阿姨家有
3
人,小明家有
5
人,若按人口计算,他们四家各应付水费
多少元?
13
、某生产队由
15
个队员收割一块双季稻,
8
小时能割完,但割了
3
小时以后,
由于天气突然发生变化,增加了
10
个社员进行抢收,问还需多少小时才能割完这
块双季稻?