1. 小学奥数华罗庚比赛每年哪时举行
华杯赛的考试时间及如何报考?
时间:初赛在每年3月的第二个星期六;复赛在每年4月的第二个星期六。总决赛在7月进行;
进入总决赛的另一途径:报名参加华杯赛冬令营(在每年1月份进行,一等奖可以直接进入华杯赛全国个人总决赛)
2. 华罗庚杯是几年级的奥数竞赛华罗庚杯是不是全国赛
“华罗庚金杯”少年数学邀请赛(以下简称“华杯赛”)是以华罗庚名字命名的数学竞赛。始于1986年,是为了纪念我国著名数学家华罗庚才创建的,是全国性大型少年数学竞赛活动,目前已经有20届。
华杯赛分为小学中(不高于小学四年级)、高年级组(不高于小学六年级)和中学组。
“华杯赛”的宗旨是:教育广大青少年从小学习和弘扬华罗庚教授的爱国主义思想、刻苦学习的品质、热爱科学的精神;激发广大中小学生对学习数学的兴趣、开发智力、普及数学科学。
“华杯赛”至今已成功地举办了二十届,全国有100多个城市,4000多万名少年儿童参加了比赛。“华杯赛”已经成为教育、鼓舞一代又一代青少年勇攀科学高峰和奋发向上的动力,深受广大学生、教师、家长的喜爱。日本、韩国、马来西亚、新加坡、蒙古国等国家和香港、澳门、台湾地区也相继派队参赛。
“华杯赛”一贯坚持“普及性、趣味性、新颖性”相结合的命题原则。赛制为每年一届,每两年举办一次总决赛。
赛程
初赛:每年3月19日中下旬
决赛:每年4月16日中旬
总决赛:每年7月到8月
3. 华罗庚杯数学竞赛小学几年级可以参加
4. 第十六届华罗庚数学竞赛奥数公开题 复赛(小学组) 火速回答 一小时以内
1.若连续的四个自然数都是合数,那么这四个数之和的最小值为_____。
A.100 B。101 C。102 D。103
2.用火柴棍摆放数字0~9的方式如下:
现在,去掉“ ”的左下侧一根,就成了数字“ ”,我们称“ ”对应1;去掉“ ”的上下两根和左下角一根,就成了数字“ ”,我们称“ ”对应3。规定“ ”本身对应0,按照这样的规则,可以对应出____个不同的数字。
A.10 B。8 C。6 D。5
3.两数之和与两数之商都为6,那么这两数之积减这两数之差(大减小)等于_____。
A. B. C。 D。
4.老师问学生:“昨天你们有几个人复习数学了?”
张:“没有人。”
李:“一个人。”
王:“二个人。”
赵:“三个人。”
刘:“四个人。”
老师知道,他们昨天下午有人复习,也有人没复习,复习了的人说的都是真话,没有复习的人说的话都是假话。那么,昨天这5个人中复习数学的有____个人。
A.0 B。1 C。2 D。3
5.如右图所示,在7×7方格的格点上,有7只机器小蚂蚁,它们以相同的速度沿格线爬行到格点M、N、P、Q(图中空心圆圈所表示的四个位置)中的某个上聚会。 所用时间总和最小的格点是_____。
A.M B。N C。P D。Q
6.用若干台计算机同时录入一步书稿,计划若干小时完成。如果增加3台计算机,则只需原定时间的75%;如果减少3台计算机,则比原定时间多用 小时。那么原定完成录入这部书稿的时间是_____小时。
A. B。 C。 D。
二、填空题(每小题10分,满分40分)
7.右图由4个正六边形组成,每个面积是6,以这4个正六边形的顶点为顶点,可以连接面积为4的等边三角形有_____个,
8.甲、乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。甲到达A地后掉头往B行驶,半小时后和乙相遇。那么乙从B到A共需____分钟。
9.如右图所示,梯形ABCD的面积为117平方厘米。AD‖BC,EF=13厘米,MN=4厘米,又已知EF⊥MN于O。那么阴影部分的总面积为_____平方厘米。
10.在右边的加法竖式中,如果不同的汉字代表不同的数字,使得算式成立,那么四位数 的最大值是______。
1.雪帆奥数王老师分析与提示:如果你知道任何四个连续自然数之和被4除一定余2,你很快就能确定只有102满足条件。曾经有一道足球比赛的题就涉及到这个知识点。
C
2. 雪帆奥数王老师分析与提示:这道题的难度在于你要理解题意。这道题的意思就是,从数字8上去掉几根火柴,就对应几。0-9每个数字所需要的火柴数目2,3,4,5,6,7六种情况,从数字8上可以去掉1-6根火柴,所以有六种对应。
C
3. 雪帆奥数王老师分析与提示:这道题比较简单,属于基础的和倍问题,只是题目中出现了分数而已。
D
4. 雪帆奥数王老师分析与提示:这道题比较简单,从五个人说话的不同,可知,五个人中只有一个人是对的。
B
5. 雪帆奥数王老师分析与提示:适当比较即可
B
6. 雪帆奥数王老师分析与提示:第一步根据时间比,可求出计算机台数比,根据台数之差,可求出原计划的台数。第二步根据台数之比,可求出时间比,然后根据时间差,求出原计划的时间。雪帆老师提示:比和比例对解决这类题非常简单。
A
7. 雪帆奥数王老师分析与提示:这道题并不是那么简单。首先要了解正六边形的一些性质,和面积的求法。这里我给大家一个提示,正六边形的中心到各边连线段都相等,都等于边长,即正六边形可分为6个相等的正三角形。所以每个小的三角形面积为1.。而题目要求得到的等边三角形面积为4,所以边长就要为刚才小的等边三角形的2倍才行(这一点是根据“相似三角形的面积比等于边之比的平方”)。很明显,2个正六边形的公共点都可画出2个这样的正三角形,而面积刚好是4,4×2=8个。
8
8. 雪帆奥数王老师分析与提示:感觉这道题有严重的问题。缺乏严谨性。读起来很别扭。首先,速度应该保持不变,其次,乙在整个过程中有无掉头。根据题意,我理解成不掉头,最后3小时和半小时到底是指哪一段时间。我理解为3小时为甲出发到第一次相遇时的时间,而半小时是指甲返回A从A开始出发到第二次相遇时的时间。通过画图,我们可以得出,第一次相遇时,甲乙走了一个全程,第二次相遇时,包括第一次,一共走了三个全程。所以甲一共走了9小时。去掉半小时,即8.5小时,是甲来回,所以甲单趟需要4.25小时。而那从第一次相遇点到B点需要1.25小时,这段路程乙需要3个小时,所以甲乙速度比为12:5,甲用4.25小时走完全程,乙就用4.25÷5×12=10.2小时=612分钟。
网上有这么一种理解,第一次相遇后,甲还需要3小时返回A地(雪帆老师注:如果这么理解,那应该说“相遇三个小时后”)。第二次相遇时,甲距离相遇点的距离等于甲2.5小时的路程,乙用了3.5小时走这些路程,所以甲乙速度比为7:5。甲乙相遇需要3小时,那么乙单独到需要180×12÷5=432分钟。
432
9. 雪帆奥数王老师分析与提示:这道题是典型的梯形面积的应用,即梯形的两条对角线把梯形分成四个三角形,两个腰上的三角形面积相等。再结合四边形的两条对角线垂直,可根据这两条对角线的长度求出其面积,从而很容易求出阴影部分的面积。
65
10. 雪帆奥数王老师分析与提示:
1)易知华=1。
2)有0-9十个数字,而题目中只有9个汉字,所以有一个数字不能用。即5不能用。这是“弃九法”的应用。也可以根据余数考虑。
3)数字之和减少36,说明进位4次。百位一定进位1次,个位和十位共进位3次
4)十至少是2,那杯最大=7,根据数字之和十位只需进位1次,数字之和为9,个位进位2次,数字之和为21,从十位数分析,这样十位数的初只能等于6,赛等于9.
所以答案为
1769
5. 华罗庚杯是几年级的奥数竞赛华罗庚杯是不是全国赛
“华罗庚金杯”少年数学邀请赛(以下简称“华杯赛”)是以华罗庚名内字命名的数学竞赛容。始于1986年,是为了纪念我国著名数学家华罗庚才创建的,是全国性大型少年数学竞赛活动,目前已经有20届。
华杯赛分为小学中(不高于小学四年级)、高年级组(不高于小学六年级)和中学组。
“华杯赛”的宗旨是:教育广大青少年从小学习和弘扬华罗庚教授的爱国主义思想、刻苦学习的品质、热爱科学的精神;激发广大中小学生对学习数学的兴趣、开发智力、普及数学科学。
“华杯赛”至今已成功地举办了二十届,全国有100多个城市,4000多万名少年儿童参加了比赛。“华杯赛”已经成为教育、鼓舞一代又一代青少年勇攀科学高峰和奋发向上的动力,深受广大学生、教师、家长的喜爱。日本、韩国、马来西亚、新加坡、蒙古国等国家和香港、澳门、台湾地区也相继派队参赛。
“华杯赛”一贯坚持“普及性、趣味性、新颖性”相结合的命题原则。赛制为每年一届,每两年举办一次总决赛。
赛程
初赛:每年3月19日中下旬
决赛:每年4月16日中旬
总决赛:每年7月到8月
6. 华罗庚数学竞赛每年都举行吗几月份小学、初中都有吗
每年都举行4月左右,小学、初中都有,
华罗庚数学竞赛和奥林匹克数学竞赛不一样
7. 华罗庚数学竞赛
您好!
1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为 。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利 元。
3、求多位数111……11(2000个)222……22(2000个)333……33(2000个)被多位数333……33(2000个)除所得商的各个数上的数字的和为 。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+……+9/(1×2×3×……×10)的值为 。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为( )千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前( )天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有( )种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有( )页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。当张强加工200个零件的任务全部完成时,王充还有__个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月 日 时。
12、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?( )
13、清华大学附中共有学生1800名,若每个学生每天要上8节课,每位教师每天要上4节课,每节课有45名学生和1位教师,据此请推出清华大学附中共有教师 名?
14、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有 人?
15、一个数先加3,再除以3,然后减去5,再乘以4,结果是56,这个数是_______。
16、一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积是_________cm³。
17、六年级某班学生中有的学生年龄为13岁,有的学生年龄为12岁,其余学生年龄为11岁,这个班学生的平均年龄是__________岁。
18、将25克白糖放入空杯中,倒入100克白开水,充分搅拌后,喝去一半糖水。又加入36克白开水,若使杯中的糖水和原来的一样甜,需要加入_______克白糖。
19、六年级一班的所有同学都分别参加了课外体育小组和唱歌小组,有的同学还同时参加了两个小组。若参加两个小组的人数是参加体育小组人数的,是参加歌唱小组人数的,这个班只参加体育小组与参加唱歌小组的人数之比是________。
20、熊猫他*的小宝宝——小熊猫今年2岁了,过若干年以后,当小熊猫和熊猫妈妈当年年龄一样大时,熊猫妈妈已经18岁了。熊猫妈妈今年是_______岁。
21、果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价3.6元;其次是尔等苹果。每千克售价2.8元;最次的是三等苹果每千克售价2.1元。这三种苹果的数量之比为2:3:1。若将这三种苹果混在一起出售,每千克定价________元比较适宜。
22、某班学生不超过60,在一次数学测验中,分数不低于90分的人数占,得80----89分的人数占,得70-----79分的人数占,那么得70分以下的有______人。
23、有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,……这列数的第200个数是__________.
24、某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是___________。
25、从3、13、17、29、31这五个自然数中,每次取两个数分别作一个分数的分子和分母,一共可组成__个最简分数。
26、北京一零一中学由于近年生源质量不断提高,特别是师生们的共同努力,使得高考成绩逐年上升。在2001年高考中有59%的考生考上重点大学;2002年高考中有68%的考生考上重点大学;2003年预计将有74%的考生考上重点大学,这三年一零一中学考上重点大学的年平均增长率是____________。
27、右图,过平行四边形ABCD内一点P画一条直线,将平行四边形分成面积相等的两部分(画图并说明方法)。
28、某学校134名学生到公园租船,租一条大船需60元可乘坐6人;租一条小船需45元可积坐4人,请设计一种租船方案,使租金最省。
29、一列火车驶过长900米的铁路桥,从车头上桥到车尾离桥共用1分25秒钟,紧接着列车又穿过一条长1800米的隧道,从车头进隧道到车尾离开隧道用了2分40秒钟,求火车的速度及车身的长度。
30、有一个六位数,它的二倍、三倍、四倍、五倍、六倍还是六位数,并且它们的数字和原来的六位数的数字完全相同只是排列的顺序不一样,求这个六位数。
31、50枚棋子围成圆圈,编上号码1、2、3、4、……50,每隔一枚棋子取出一枚,要求最后留下的枚棋子的号码是42号,那么该从几号棋子开始取呢?
32、计算(1.6-1.125 + 8(3/4))÷37(1/6) + 52.3×(3/41)
33、 1999年2月份,我国城乡居民储蓄存款月末余额是56767亿元,&127;比月初余额增长18%,那么我国城乡居民储蓄存款2月份初余额是( )亿元 (精确到亿元)。
34、 环形跑道周长400米,甲乙两名运动员同时顺时针自起点出发,甲速度是 400米/分,乙速度是375米/分。( )分后甲乙再次相遇。
35、 2个整数的最小公倍数是1925,这两个整数分别除以它们的最大公约数, 得到2个商的和是16,这两个整数分别是( )和( )。
36、 数学考试有一题是计算4个分数(5/3) ,(3/2) ,(13/8) ,(8/5)的平均值,小明很粗心,把其中1个分数的分子和分母抄颠倒了。抄错后的平均值和正确的答案 最大相差( )。
37、果品公司购进苹果5.2万千克,每千克进价是0.98元,付运费等开支1840 元,预计损耗为1%,。如果希望全部进货销售后能获利17%。每千克苹果 零售价应当定为( )元。
38、计算:19+199+1999+……+19999…99
└1999个9┘
39、《新新》商贸服务公司,为客户出售货物收取3%的服务费,代客户购物 品收取2%服务费。今有一客户委托该公司出售自产的某种物品和代为 购置新设备。已知该公司共扣取了客户服务费264元,客户恰好收支平衡,问所购置的新设备花费了多少元?
40、一列数,前3个是1,9,9以后每个都是它前面相邻3个数字之和除以3所得 的余数,求这列数中的第1999个数是几?
41、一根长方体木料,体积是0.078立方米。已知这根木料长1.3米,宽为3分米,高该是多少分米?孙健同学把高错算为3分米。这样,这根木料的体积要比0.078立方米多多少?
42、有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米。小正方形的面积是多少平方厘米?
43、有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形的面积是45平方厘米,求这个大长方形的周长。
44、 77×13+255×999+510
45、a=8.8+8.98+8.998+8.9998+8.99998,a的整数部分是____。
46、1995的约数共有____。
47、等式“学学×好好+数学=1994”,表示两个两位数的乘积,再加上一个两位数,所得的和是1994。式中的“学、好、数”3个汉字各代表3个不同数字,其中“数”代表____。
48、如图1,“好、伙、伴、助、手、参、谋”这7个汉字代表1~7这7个数字。已知3条直线上的3个数相加、2个圆圈上3个数相加所得的5个和都相等。图中间的“好”代表____。
49、农民叔叔阿根想用20块长2米、宽1.2米的金属网建一个*墙的长方形鸡窝(如图2)。为了防止鸡飞出,所建鸡窝高度不得低于2米。要使所建的鸡窝面积最大,BC的长应是 米。
50、小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。甲数是____。
51、1994年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。在小组赛中,这4支队中的每支队都要与另3支队比赛一场。根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得1分。已知:
(1)这4支队三场比赛的总得分为4个连续奇数;
(2)乙队总得分排在第一;
(3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。
根据以上条件可以推断:总得分排在第四的是____队。
52、一块空地上堆放了216块砖(如图3),这个砖堆有两面*墙。现在把这个砖堆的表面涂满石灰,被涂上石灰的砖共有____块。
53、南方某城市的一家企业有90%的员工是股民,80%的员工是“万元户”,60%的员工是打工仔。那么,这家企业的“万元户”中至少有____%是股民;打工仔中至少有____(填一个分数)是“万元户”。
54、方格纸(图4)上有一只小虫,从直线 AB上的一点 O出发,沿方格纸上的横线或竖线爬行。方格纸上每小段的长为1厘米。小虫爬过若干小段后仍然在直线AB上,但不一定回到O点。如果小虫一共爬过2厘米,那么小虫的爬行路线有____种;如果小虫一共爬过3厘米,那么小虫爬行的路线有____。
55、自然数按一定的规律排列如下:
从排列规律可知,99排在第____行第____列。
56、如图5,AF=2FB,FD=2EF,直角三角形ABC的面积是36平方厘米,求平行四边形EBCD的面积。
57、利民商店从日杂公司买进一批蚊香,然后按希望获得的纯利润,每袋加价40%定价出售。但是,按这种定价卖出这批蚊香的90%时,夏季即将过去。为加快资金周转,商店以定价打七折的优惠价,把剩余蚊香全部卖出。这样,实际所得纯利润比希望获得的纯利润少了15%。按规定,不论按什么价钱出售,卖完这批蚊香必须上缴营业税300元(税金与买蚊香用的钱一起作为成本)。问利民商店买进这批蚊香用了多少元?
58、A、B、C三个油桶各盛油若干千克。第一次把A桶的一部分油倒入B、C两桶,使B、C两桶内的油分别增加到原来的2倍;第二次从B桶把油倒入C、A两桶,使C、A两桶内的油分别增加到第二次倒之前桶内油的2倍;第三次从C桶把油倒入A、B两桶,使A、B两桶内的油分别增加到第三次倒之前桶内油的2倍,这样,各桶的油都为16千克。问A、B、C三个油桶原来各有油多少千克?
59、园林工人要在周长300米的圆形花坛边等距离地栽上树。他们先沿着花坛的边每隔3米挖一坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一棵树。这样,他们还要挖多少个坑才能完成任务?
60、一个学雷锋小组的大学生们每天到餐馆打工半小时,每人可挣3元钱。到11月11日,他们一共挣了1764元。这个小组计划到12月9日这天挣足3000元,捐给“希望工程”。因此小组必须在几天后增加一个人。问:增加的这个人应该从11月几日起每天到餐馆打工,才能到12月9日恰好挣足3000元钱?
61、有男女运动员各一名在一个环形跑道上练长跑,跑步时速度都不变,男运动员比女运动员跑得稍快些。如果他们从同一起跑点同时出发沿相反方向跑,那么每隔25秒钟相遇一次。现在,他们从同一起跑点同时出发沿相同方向跑,经过13分钟男运动员追上了女运动员,追上时,女运动员已经跑了多少圈?(圈数取整数)
62、在555555的倍数中,有没有各位数字之和是奇数的?如果有,请举出一个例子;如果没有,请说明理由。
63、右图是一个直角梯形。请你画一条线段,把它分成两个形状相同面积相等的四边形。(请标明表示线段位置的数据及符号或写出画法)。
64、下面5个图形都具有两个特点:(1)由4个连在一起的同样大小的正方形组成;(2)每个小正方形至少和另一个小正方形有一条公共边。我们把具有以上两个特点的图形叫做“俄罗斯方块”。
如果把某个俄罗斯方块在平面上旋转后与另一个俄罗斯方块相同(比如上面图中的B与E),那么这两个俄罗斯方块只算一种。
除上面4种外,还有好几种俄罗斯方块,请你把这几种都画出来。
65、在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=1992
66、一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。那么,这个等腰梯形的周长是__厘米。
67、一排长椅共有90个座位,其中一些座位已经有人就座了。这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。原来至少有__人已经就座。
68、用某自然数a去除1992,得到商是46,余数是r,a=__,r=__。
69、“重阳节”那天,延龄茶社来了25位老人品茶。他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。其中年龄最大的老人今年____岁。
70、学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。那么,至少____个学生中一定有两人所借的图书属于同一种。
71、五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。那么得分最少的选手至少得____分,至多得____分。(每位选手的得分都是整数)
72、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。那么,只有当锯得的38毫米的铜管为____段、90毫米的铜管为____段时,所损耗的铜管才能最少。
73、甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。现由甲工程队先修3天。余下的路段由甲、乙两队合修,正好花6天时间修完。问:甲、乙两个工程队每天各修路多少米?
74、一个人从县城骑车去乡办厂。他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。
75、一个长方体的宽和高相等,并且都等于长的一半(如图12)。将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米。求这个大长方体的体积。
76、有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输。问:保证一定获胜的对策是什么?
77、有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒。现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米?
78、个体铁铺的金师傅加工某种铁皮制品,需要如图13所示的(a)、(b)两种形状的铁皮毛坯。现有甲、乙两块铁皮下脚料(如图14、图15),图13、图14、图15中的小方格都是边长相等的正方形。金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品(“成套”,指(a)、(b)两种铁皮同样多),并且一点材料也不浪费。问:(1)金师傅应当从甲、乙两块铁皮下脚料中选哪一块?(2)怎样裁剪所选用的下脚料?(请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯)
79、只修改21475的某一位数字,就可以使修改后的数能被225整除。怎样修改?
80、(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?
(2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?
http://www..com/s?wd=%BB%AA%C2%DE%B8%FD%BE%BA%C8%FC%CC%E2+%B4%F0%B0%B8
8. 华罗庚数学竞赛网站
一、填空题(1~7题每题7分;8~10题每题9分,共76分。)1、今年(公元2008 年)的中国农历年生肖属鼠。请问公元3000 年的中国农历年生肖是 猴 。(注:中国农历年有十二生肖,依次为鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12 年一轮)解:3000-2008=992992/12=82......8所求:牛、虎、兔、龙、蛇、马、羊、猴2、B 逝世于A 生日之后129 年,A 逝世于公元1900 年,A、B两人在世的年龄总和为150 岁。B 出生于公元1879年。解:AB生年ax逝世年1900a+129(1900-a)+(a+129-x)=150x=18793、3 。解(略)4、一列火车于中午12时离开A地驶往B地,另一列火车则于40分钟后离开B地驶往A地。若两列火车以相同的匀速在同一路线上行驶,全程各需3.5小时。则这二列火车在 下午2 点 05 分相遇。 5、甲、乙两人合伙开设一家公司,甲的股份是乙的1.5 倍。现有丙欲入股此公司,三人协议由丙拿出1500万元购买甲、乙二人的部份股份,使得三人的股份都各占三分之一。那么,丙付给甲 1200 万元。 6、某国政府更换教育部长,其他各部部长不变。某周刊报道了一个有趣的现象:教育部长更换后,政府所有部长的平均年龄上升0.2岁,他们的平均智商则下降2点。已知卸任的教育部长年龄为53岁、智商为108点,新任教育部长的年龄为58岁。请你算一算该国新任的教育部长智商为 58 点。 7、在3×5的棋盘上,一个棋子每次可以沿水平或垂直方向移动一小格,但不可以沿任何斜对角线移动。从某些特定的格子开始,要求棋子经过全部的小正方格恰好一次,但不须回到原来出发的小方格上。在这15个小方格中,有 8 个小方格可以作为棋子出发的小方格。8、连接正立方体各面的中心构成一个正八面体(如图所示)。已知正立方体的边长为12厘米,那么,正八面体的体积为 288 立方厘米。解:八面体由两个棱锥组成,棱锥的底面积为:(12/2)
9. 14界小学华罗庚六年级数学竞赛答案
时间:2009年3月14日10:00~11:00)
一、 选择题。每小题10分,满分60分。以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英语字母写在每题的圆括号内)
1. 下面的表情图片中。
没有对称轴的个数为()
(A) 3 (B) 4 (C) 5 (D) 6
2. 开学前6天,小明还没做寒假数学作业,而小强已完成了60道题。开学时,两人都完成了数学作业,在这6天中,小明做的题的数目是小张的3倍,他平均每天做了()道题。
(A) 6 (B) 9 (C) 12 (D) 15
3. 按照中国篮球职业联赛组委会的规定,各队队员的号码可以选择的范围是0~55号,但选择两位数的号码时,每位数字均不能超过5。那么,可供每支球队选择的号码共有()个。
(A) 34 (B) 35 (C) 40 (D) 56
4. 在19,197,2009这三个数中,质数的个数是()。
(A) 0 (B) 1 (C) 2 (D) 3
5. 下面有四个算式:
① 0.6+0.1(●)33(●)=0.7(●)33(●)
② 0.625=
③ +===
④ 3×4=14
其中正确的算式是( )
(A)①和②(B)②和④(C)②和③(D)①和④
6. A、B、C、D、E五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A→C,B→E,C→A,D→B,E→D,开始时A、B拿着福娃,C、D、E拿着福牛,传递完5轮时,拿着福娃的小朋友是( )。
(A)C与D(B)A与D (C)C与E (D)A与B
二、 填空题(每小题10分,满分40分)
7.下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字。
团团×圆圆=大熊猫
则“大熊猫”代表的三位数是()。
8.从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:4、6、5和4,则原来给定的4个整数的和为()。
9.如下图所示,AB是半圆的直径,O是圆心,弧AC=弧CD=弧DB,M是弧CD的中点,H是弦CD的中点,若N是OB上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是( )平方厘米。
10.在大于2009的自然数中,被57除后,商与余数相等的数共有( )个。
答案:
题号
1
2
3
4
5
6
7
8
9
10
答案
C
D
C
C
B
A
968
10
2
22
10. 华罗庚数学竞赛每年都举行吗几月份小学、初中都有吗
每年四月份举行
小学和初中都有
华罗庚数学竞赛和奥林匹克数学竞赛不一样