❶ 小学数学、、、工程问题
一个工作,师傅2天可以完成这件工作的3/8,徒弟3天只能完成这件工作的1/16。徒弟先做2天,剩下的工作由师徒两人共同完成,完成这件工作共用多少天?
解:设总工作量为1;师傅2天可以完成这件工作的3/8,因此师傅的工作效率为(3/8)÷2=3/16;
徒弟3天只能完成这件工作的1/16,故徒弟的工作效率为(1/16)÷3=1/48;
徒弟做2天完成的工作量为2×(1/48)=1/24,
那么徒弟做2天后剩下的工作量为1-(1/24)=23/24;
这剩下的23/24的工作量有师徒二人和作还需要(23/24)÷(3/16+1/48)=(23/24)×(48/10)=23/5(天)才能
完成。
因此完成这件工作一共需要2+23/5=2+4.6=6.6天。
❷ 小学数学工程问题
1、 一项工程,如果甲队独做,可6天完成,甲队3天的工作,乙要4天完成,两队合做了2天后由乙队独做,乙队还需要多少天才能完成?
乙:6÷3x4=8(天)
(1-1/6x2-1/8x2)÷1/8=10/3(天)
2、 一项工程,甲队单独做需30天完成,乙队单独做需要40天完天,甲队先做若干天后,由乙队接着做,共用35天完成了任务,甲、乙两队各做了几天?
甲:1÷【(1-1/40x35)÷(1/30-1/40)】=15(天)
乙:35-15=20(天)
❸ 小学数学各种工程问题的解答
应用题是很好玩的一种题型,工程问题掌握了一定的套路就可以了,但是一定要把题目读懂,这是做应用题的关键。
就我个人而言,把一项工程的总工程量设为1,各个队的工作效率和工作天数题意都会告诉,只不过有的明了点,有的含糊点
根据:
工作量=工作效率*工作天数
照着题意列式,就可以了。
❹ 小学数学工程问题及答案
负责根据项目的总体管理目标编制项目建设的总体实施计划、年度和分月度的实施计划;下达项目的建设实施计划,并对实施中的项目计划进行统计分析和计划调整等综合管理。
❺ 小学数学 解决工程问题的好方法有哪些
一相工程A、B和做要24天, A 单独先做6天,B接着做4天,这时刚好完成工程的1/5,问,B 单独做要多少天完成?
分析: A B 合做1天完成总工程的1/24,“A 单独先做6天,B接着做4天”相当于AB合做4天,A又独做2天.AB合做4天,完成总工程的1/6.那么,A2天完成总工程的(1/5-1/6)=1/30.
过程:
1/24=1/24
4*(1/24)=1/6
1/5-1/6=1/30
(1/30)/2=1/60
1/24-1/60=1/40
答:B单独做要40天完成.
工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满.
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成.如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九.现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效.
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成.只有这样才能“两队合作的天数尽可能少”.
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成.现在先请甲、丙合做2小时后,余下的乙还需做6小时完成.乙单独做完这件工作要多少小时?
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量.
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1.
所以1-9/10=1/10表示乙做6-4=2小时的工作量.
1/10÷2=1/20表示乙的工作效率.
1÷1/20=20小时表示乙单独完成需要20小时.
答:乙单独完成需要20小时.
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天.已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5.师徒俩人加工同样多的零件.当师傅完成了1/2时,徒弟完成了120个.当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个.
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵.单份给男生栽,平均每人栽几棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一个池上装有3根水管.甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完.现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
答案45分钟.
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数.
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水.
1/2÷18=1/36 表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟.
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
答案为6天
由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3
时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
答案为40分钟.
设停电了x分钟
根据题意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40
❻ 小学数学工程问题!急!
首先是“差倍问题”
乙比甲要多用时间:2+3=5天
从题中可知乙3天做的,甲只要2天完成,甲的效率是乙的效率3÷2=1.5倍,根据任务一定,工作时间与工作效率成反比。所以乙完成整个任务的时间是甲的1.5倍。
甲完成任务要
5÷(1.5-1)=5÷0.5=10天
乙单独完成任务要:
10x1.5=15天
再就是“工程问题”
把任务看成“1”,甲单独做每天完成1/10,乙单独做每天完成1/15,两人合做每天完成1/10+1/15
合做完成任务的天数
1÷(1/10+1/15)
=1÷(3+2)/30
=1×30/5
=6天。
❼ 小学数学工程问题及答案
1.一件工程,甲独做10天完工,乙独做15天完工,二人合做几天完工?
1÷(1/10+1/15)
=1÷(1/6)
=6天
2.一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完?
1÷(1/8-1/24-1/36)
=1÷(1/18)
=18天
3.一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完?
[1-(1/18+1/15)*6]÷(1/15)
=(1-11/15)÷(1/15)
=(4/15)÷(1/15)
=4天
4.一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/3 ?
(2/3)÷(1/12+1/18)
=(2/3)÷(5/36)
=24/5
=4.8天
5.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?
[1-(1/24)*9]÷(1/16+1/24)
=(5/8)÷(5/48)
=6天
例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?
答:乙需要做4天可完成全部工作.
解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是
(18- 2 × 3)÷ 3= 4(天).
解三:甲与乙的工作效率之比是
6∶ 9= 2∶ 3.
甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).
例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?
解:共做了6天后,
原来,甲做 24天,乙做 24天,
现在,甲做0天,乙做40=(24+16)天.
这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率
如果乙独做,所需时间是
如果甲独做,所需时间是
答:甲或乙独做所需时间分别是75天和50天.
例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?
解:先对比如下:
甲做63天,乙做28天;
甲做48天,乙做48天.
就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的
甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做
因此,乙还要做
28+28= 56 (天).
答:乙还需要做 56天.
例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?
解一:甲队单独做8天,乙队单独做2天,共完成工作量
余下的工作量是两队共同合作的,需要的天数是
2+8+ 1= 11(天).
答:从开始到完工共用了11天.
解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作
(30- 3 × 8- 1× 2)÷(3+1)= 1(天).
解三:甲队做1天相当于乙队做3天.
在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量.
4=3+1,
其中3天可由甲队1天完成,因此两队只需再合作1天.
例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?
解一:如果16天两队都不休息,可以完成的工作量是
由于两队休息期间未做的工作量是
乙队休息期间未做的工作量是
乙队休息的天数是
答:乙队休息了5天半.
解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.
两队休息期间未做的工作量是
(3+2)×16- 60= 20(份).
因此乙休息天数是
(20- 3 × 3)÷ 2= 5.5(天).
解三:甲队做2天,相当于乙队做3天.
甲队休息3天,相当于乙队休息4.5天.
如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是
16-6-4.5=5.5(天).
例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?
解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.
设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.
8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要
(60-4×8)÷(4+3)=4(天).
8+4=12(天).
答:这两项工作都完成最少需要12天.
例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他
要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?
解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.
两人合作,共完成
3× 0.8 + 2 × 0.9= 4.2(份).
因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是
(30-3×8)÷(4.2-3)=5(天).
很明显,最后转化成“鸡兔同笼”型问题.
例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时快
如果这件工作始终由甲一人单独来做,需要多少小时?
解:乙6小时单独工作完成的工作量是
乙每小时完成的工作量是
两人合作6小时,甲完成的工作量是
甲单独做时每小时完成的工作量
甲单独做这件工作需要的时间是
答:甲单独完成这件工作需要33小时.
这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每
有一点方便,但好处不大.不必多此一举.
例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?
解:设这件工作的工作量是1.
甲、乙、丙三人合作每天完成
减去乙、丙两人每天完成的工作量,甲每天完成
答:甲一人独做需要90天完成.
例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?
例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?
解:甲做1天,乙就做3天,丙就做3×2=6(天).
说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了
2+6+12=20(天).
答:完成这项工作用了20天.
❽ 小学数学工程问题求解
假设全由甲作,甲的工作效率为每天完成总工作量的1/18,则21天可以完成总工作量的21/18
比实际完成的总工作量多了21/18-1
将其中的若干天换成乙,每换一天可以少完成的工作量是总工作量的1/18-1/21
所以需要换掉(21/18-1)÷(1/18-1/21)天,即乙实际的工作天数
❾ 小学数学工程问题
1.一件工程,甲独做10天完工,乙独做15天完工,二人合做几天完工?
1÷(1/10+1/15)
=1÷(1/6)
=6天
2.一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完?
1÷(1/8-1/24-1/36)
=1÷(1/18)
=18天
3.一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完?
[1-(1/18+1/15)*6]÷(1/15)
=(1-11/15)÷(1/15)
=(4/15)÷(1/15)
=4天
4.一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/3 ?
(2/3)÷(1/12+1/18)
=(2/3)÷(5/36)
=24/5
=4.8天
5.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?
[1-(1/24)*9]÷(1/16+1/24)
=(5/8)÷(5/48)
=6天
❿ 小学数学工程问题
1、有一项工程,甲队独做40天完成,乙队独做60天完成,现在已知两队合做了这项工程,但中间甲队因另有任务调走几天,所以经过27天才完成全部工作,甲队离开了几天?
2、师徒二人加工一批零件,师父单独做15小时完成,徒弟单独做20小时完成,若两人合做,当任务完成时师父比徒弟多做80个,问这批零件多少个?
3、修一条公路,甲队单独修要8天完成,乙队单独修要12天完成,丙队单独要6天完成,现由甲乙两队合修2天后,余下的有乙丙两队继续修,问还需要几天完成?
4、水箱上装有甲、乙两个注水管,单开甲管,20分钟可以注满全箱,现在两管同时注水2.5分钟,注满水箱的24分之5,如果单开乙管,需多少分钟注满水箱?
5、2个蟹将和4个虾兵能打扫龙宫的10分之3,8个蟹将和10个虾兵在同样的时间内能打扫完全部龙宫,如果单让蟹将去打扫与单让虾兵去打扫进行比较,那么要打扫完全部龙宫,虾兵比蟹将多几个?
6、做一批儿童玩具,甲组单独10天完成,乙组单独12天完成,丙组每天可生产64件。如果让甲乙两组合作4天,则还有256件没完成,现在决定三个组合做这批玩具,问需要多少天完成?
7、学校有一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门),安全检查时,对这道门进行了测试;当同时开启一道正门和一道侧门时,2分钟别可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生。 求平均每分钟一道正门和一道侧门个可以通过多少名学生?
8、一项工程,甲队独做要15天完成,乙队独做要20天完成,丙队独做要12天完成
(1)三个队每天各完成这项工程的几分之几?
(2)三队合做多少天可以完成这项工程?
(3)三队合做多少天可以完成这项工程的?
(4)甲乙合做3天后还余下工程的几分之几?
(5)三队合做多少天后可余下这项工程的?
(6)三队合做两天后余下的由甲队独做,还要多少天可以完成?
(7)甲乙合做2天后余下的由乙丙合做,还要多少天可以完成?
(8)甲队先做3天后,余下的由三队合做还要多少天可以完成?
(9)甲丙合做2天后,余下的由乙队独做,还要多少天可以完成?
9.一项工程甲独做需15天完成,乙独做需天完成,现甲先做若干天后,甲乙再合做
天全部完成,甲乙合做前,甲独做了几天?
10.一项工程,甲乙丙三人合做8天完成。现由甲乙合做1天后,剩下的由丙独做15天完成。求丙的工作效率。
11.一个蓄水池有两根水管,单开出水管,10分钟可注满全池,单开出水管15分钟可将全池水放完。两管同时打开,多少分钟可注满全池?
12.一列慢车从甲站到乙站要8小时,一列快车从乙站到甲站要6小时。两车相向而行,慢车从甲站先开出2小时后,快车才由乙站开出,快车开出几小时后才能和慢车相遇?
13.快车从甲城开往乙城要8小时,慢车从乙城开往甲城要12小时,两车同时从两程相对开出,相遇时快车比慢车多行180千米。甲乙两站相距多少千米?
14.一份稿件,甲每小时打这份稿件的,乙单独打完这份稿件要4小时,如果两人合打这份稿件,几小时能完成?
15.一项工程甲队独做要40天完成,甲队工效是乙队的,若两队合做,完成这项工程要多少天?
16.修一条公路,单独修甲要8天完成,乙要10天完成,甲乙合做4天后,还余下72米没有修,这条公路全长多少米?
17.一项工程,甲独做75天完成,乙独做50天完成,在合做过程中,甲中途离开了一些天数,结果整个工程40天才完成。甲中途离开了几天?
18.一批货物单独运 ,甲要10小时运完,乙要15小时运完,甲先运一段时间后,乙接着运。这样全部运完用了小时,问甲运了多少小时?
19.一份稿件甲乙合打要12小时完成,甲独打要20小时完成,现由两人合打直至完成任务,甲比乙多打0.9万字。这份稿件共有多少万字?
20.一件工程甲独做20天完成,乙独做30天完成。现由二人合做,中途甲先休息1天,乙接着休息6天,工程完成时,两人同时工作了几天?
21.一支细长蜡烛4小时点完,一支粗短蜡烛6小时点完,两支蜡烛同时点2小时后,剩下的长度正好相等。原来短粗蜡烛是长细蜡烛的几分之几?
22.一个水池装有一个进水管和一个排水管。单开进水管4分钟可以把水池注满,单开排水管6分钟可把满池水排完。现池内有1/3的脏水,李师傅要先排尽脏水,但放清水时他忘了关排水管,那么共需多少时间才能放满清水?