⑴ 小学数学找规律题技巧
小学只学过加减乘除,小学生理解力不强
一般只考虑一种运算
相邻的规律
间隔的规律
最多两层次,每个层次只有一种运算
间隔排列规律,最好画图
⑵ 如何有效培养小学生数学解题技巧用
“问题”是数学的心脏,美国数学家哈尔莫斯认为,“数学的真正的组成部分是问题和解,掌握数学就是意味着善于解题”。解题是使学生牢固掌握数学基础知识和基本技能的必要途径,也是检验知识、运用知识的基本形式。数学学习的好与坏,集中表现在解题能力上。有效地培养数学解题能力,有助于学生独立的有创造性的认识活动,也可以促进学生数学能力的发展。
而我们要明确的是学生的数学解题能力并非通过传授可以直接获得的,而是需要通过长期培养逐步发展并且提高的。那么如何在数学课堂教学中循序渐进的培养学生的解题能力呢?结合我多年的教学实践,我认为我们可以从以下几个方面做起:
1:要重视例题的典范作用
解题教学的本质是“思维过程”,受年龄等因素的限制,学生思维发展有其特定的规律,这需要解题教学遵循学生认知特点,进行有针对性的训练。因为现在学生的解题仍较依赖例题的解题模式、思路和步骤,从而实现解题的类化。所以在平时的课堂教学中,我非常重视例题的典范作用。
记得在《梯形》这部分内容的一节复习课中,我只讲了一道例题:
如图,梯形ABCD中,AB∥CD,以AD、AC为边作平行四边形ACED,延长DC交EB于F,求证:EF=FB。
通过分析、讨论,进行一题多解,总共概括了8种解法,这8种证明方法将梯形问题中重要辅助线添法、中位线的知识等都囊括其中。由此可见,一道好例题的教学,对学生思维品质和解题能力的提高有着积极的促进作用。
2:要重视“数学思想方法”的渗透
实际上数学思想方法较之数学基础知识,有更高的层次和地位.它蕴涵在数学知识发生、发展和应用的过程中,它是一种数学意识,属于思维的范畴,用以对数学问题的认识、处理和解决.数学方法是数学思想的具体体现,具有模式化与可操作性的特征,可以作为解题的具体手段.只有对数学思想与方法概括了,才能在分析和解决问题时得心应手;只有领悟了数学思想与方法,书本的、别人的知识技巧才会变成自已的能力.在讲题过程中,我也坚持不懈地对学生进行数学思想方法的培养,并注意思路点拨,收到了较好的效果。
比如:ΔABC中,AB=AC=12cm,BC=6 cm,D为BC的中点,动点P从B点出发,以每秒1 cm的速度沿B-A-C的方向运动,设运动时间为t,那么当t为何值时,过D、P两点的直线将ΔABC的周长分成两部分,使其中一部分是另一部分的2倍?
对于这类动态问题,难度较大,多数同学都很茫然,我这样引导他们思考,首先确定它是哪种类型的题目?学生可以看出这是个动点问题。再接着问动点问题关键要考虑什么?学生能明确说要看动点移动的特殊位置。然后问有特殊位置可以确定哪些问题?可以确定情况的分类。这样逐步把学生引入分类讨论的思维中,学生就可以根据题意来列方程解决本题了。等学生做完之后,我又问了,如果我们再考虑加入整体思想,会不会有更为简便的方法?这样学生通过思考能会有更大的收获。
由此引导,把数学中重要数学思想方法穿插在课堂上,潜移默化,有意识的培养他们思维的广度,不仅达到事半功倍的效果,还可激发学生学习数学的兴趣。我们老师要在解题过程中足够重视,学生才能在潜移默化中提高解题的能力.
3:要重视“通性通法”的教学
在中考复习阶段,我们会接触到综合性比较强的题目,学生的能力在此时就有所体现。同样的问题学生可能会有多种精彩的解法,多数同学只能是看别人在讲台上激情飞扬,自愧不如。这时作为老师一定要把通法交给学生,因为多数同学在面对题目的时候只能从一般思维入手,而能够得出奇思妙想的学生毕竟是极少数。所以解题中我们可以对想出最简方法的学生大加表扬和鼓励,但一定不能忘了最基本的思路和方法。
比如关于实际情境中一次函数求交点的问题中有这样一题:公共汽车和出租车每天往返于A、B两地,其距离A地的路y(km)与时间x(小时)的关系如图所示,利用图像解决下列问题 1:途中两车相遇几次?2:求最后一次相遇时距离A地的路程?
本题在求解时多数同学都能考虑到利用一次函数的解析式来构造方程,求图像的交点坐标,进而求出结果。当时课堂上有学生提出有更为简便的方法。当时我没有让他讲,而是让学生用常规的方法先写出过程。等完成之后我们又听这位学生讲了利用相似来求解的方法,确实比前一种方法要简单的多。学生们当时就自发给这位学生鼓掌。我之所以没有让他先讲是因为多数学生当听到最简方法之后就没有心思再听其他的方法,但是这种简便方法不是所有的函数问题都可以用的,而第一种方法是通法,多数学生的思维能力可以完成的,虽然稍显复杂一点。通过这段时间复习,对于有多种方法的题目,我会先强调通法,之后让学生介绍奇思妙想,因为学生善于表现自我,所以他们很乐意去思考,想用其他方法来和老师的通法比。这样,钻研探究的氛围就形成了。
当然,在适当时机,我也不介意暴露自己或故意引导学生在解题过程中的思维受阻、失败的探索过程。甚至有时学生都急的都不知道怎么才能给我讲明白。这种情况在部分重点问题上是故意的,想让多数同学有正确的思路和方法。当然有时是自己真的不会。但是我不认为这样会让学生对老师的教学权威产生怀疑,反而我觉得更容易让学生进行有效的思维。
4:要重视错题的再利用
对于数学学科,做题是必须的。教师要指导学生做一定数量的数学习题,积累解题经验、总结解题思路、形成解题规律、催生解题灵感、掌握学习方法。
平时教学中我主要是要求学生对错题进行详解。不管填空、选择还是解答题,对于错题我会在课堂上留出一定的时间要求学生用红笔写出解题过程。一个单元以后抽出时间来进行错题回顾。考试前对章节错题就行讨论、反思。
数学教学中题目之多可谓层出不穷,题型之多可谓千变万化,在这种背景下,我们解题的目的不应该仅仅在于满足解题的数量、过程和结果,我们更应该加强解题后指导学生对错题的精心分析与反思,重视错题题的辐射作用,理解潜藏于错题题本身的其他功能。
5:重视学生非智力因素,培养学生良好的思维品质
布鲁纳在《教育过程》一书中写到:学生的学习兴趣、动机、态度、好奇心以及情感在促进智慧发展中起重大作用。作为教师要了解学生的心理活动,用自己的热情和细心去点燃学生的热情,对学生的点滴进步给予充分肯定,使学生体验到成功的快乐,从而产生向上的力量,以充分调动学生的积极主动性,发挥其内在动力,掌握正确的思维方法,形成良好的思维品质。
每次考试结束,我都会留出时间进行考试分析和小结。不管成绩好与不好,我都会告诉学生通过考试我们的优势是什么?我们的不足是什么?我们今后努力地方向是什么?并且有针对性的进行表扬和鼓励。通过表扬让学生知道,只要能够勤学好问、持之以恒的努力,谁都可以学好数学。
总之,学生解题能力的提高,不是一朝一夕能做到的,也不是仅靠教师的潜移默化和学生的自觉行动就能做好的,而需要我们在数学解题指导中,一定要讲求一个“活”字,要牢牢树立“只看书不做题不行,埋头做题不总结积累不行”的思想,对待数学题要既能钻进去,又要能跳出来,要坚持有目的、有计划地进行培养和训练。只有这样,才能使学生的解题能力得到发展和提高!
⑶ 数学几何题怎么做,有什么技巧
数学的几何题解题技巧第一就是要证明两线段相等,第二个就是全等三角形中对应边相等,第三个就是同一个三角形,中等角对边等。第四个就是等腰三角形顶角的平行线和底边的高平分底边。第五个直角三角形斜边的中点到三顶点距离相等。第六个线段垂直平分线上任意一点到线段两端距离相等地七点角平分线上任意点到角的两边距离相等,第八个、过三角形一边的中点且平行于第三边的直线分第二边所成的线段香的。
⑷ 怎样提高小学生数学操作题的答题技巧
要出类型题,如果他不会,就给他讲,要他认真听,而且听完后,给他两到专三道差不多的题属,然后给他出源于这道题,但深于、高于这道题的变式,让他会举一反三,深记解这类题的技巧。
类型题和变式很重要,要出好一点。
不能死做题,这样学生会很烦,反而记不进去。
⑸ 小学生学好数学的方法和技巧
学会主动预习
新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
在老师的引导下掌握思考问题的方法
一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。如有这样一道题让学生解“把一个长方体的高去掉2_厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形→正方形;从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。有的学生很快解答出来:设原长方体的底面长为X,则2X×4=48得:X=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。
及时总结解题规律
解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:(1)本题最重要的特点是什么?(2)解本题用了哪些基本知识与基本图形?(3)本题你是怎样观察、联想、变换来实现转化的?(4)解本题用了哪些数学思想、方法?(5)解本题最关键的一步在那里?(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,学生解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。
拓宽解题思路
在教学中老师会经常给学生设置疑点,提出问题,启发学生多思多想,这时学生要积极思考,拓宽思路,以使思维的广阔性得到较好的发展。如:修一条长2400米的水渠,5天修了它的20%,照这样计算剩下的还需几天修完?根据工作总量、工作效率、工作时间三者的关系,学生可以列出下列算式:(1)2400÷(2400×20%÷5)-5=20(天)(2)2400×(1-20%)÷(2400×20%÷)=20(天)。教师启发学生,提问:“修完它的20%用5天,还剩下(1-20%要用多少天修完呢?”学生很快想到倍比的方法列出:(3)5×(1-20%)÷20%=20(天)。如果从“已知一个数的几分之几是多少,求这个数”的方法去思考,又可得出下列解法:5÷20%-5=20(天)。再启发学生,能否用比例知识解答?学生又会想出:(6)20%∶(1-20%)=5∶X(设剩下的用X天修完)。这样启发学生多思,沟通了知识间的纵横关系,变换解题方法,拓宽学生的解题思路,培养学生思维的灵活性。
善于质疑问难
学启于思,思源于疑。学生的积极思维往往是从有疑开始的,学会发现和提出问题是学会创新的关键。著名教育家顾明远说:“不会提问的学生不是一个好学生。”现代教育的学生观要求:“学生能独立思考,有提出问题的能力。”培养创新意识、学会学习,应从学会提出疑问开始。如学习“角的度量”,认识量角器时,认真观察量角器,问自己:“我发现了什么?我有什么问题可以提?”通过观察、思考,你可能会说说:“为什么有两个半圆的刻度呢?”“内外两个刻度有什么用处?”,“只有一个刻度会不会比两个刻度更方便量呢?”,“为什么要有中心的一点呢?”等等,不同的学生会提出各种不同的看法。在度量形状如“V”时,你可能会想到不必要用其中一条边与量角器零刻度线重合的办法。学习中要善于发现问题,敢于提出问题,即增加主体意识,敢于发表自己的看法、见解,激发创造欲望,始终保持高昂的学习情绪。
⑹ 数学几何体一般怎么提高
数学的考察主要还是基础知识,难题也不过是在简单题的基础上加以综合。所以课本上的内容是很重要的,如果课本上的知识都不能掌握,就没有触类旁通的资本。
1、对课本上的内容,上课之前最好能够首先预习一下,课后针对性的练习题一定要认真做,不能偷懒,也可以在课后复习时把课堂例题反复演算几遍,毕竟上课的时候,做好课堂笔记。“好记性不如赖笔头”。对于数理化题目的解法,光靠脑子里的大致想法是不够的,一定要经过周密的笔头计算才能够发现其中的难点并且掌握化解方法,最终得到正确的计算结果。
2、其次是要善于总结归类,寻找不同的题型、不同的知识点之间的共性和联系,把学过的知识系统化。举个具体的例子:高一代数的函数部分,我们学习了指数函数、对数函数、幂函数、三角函数等好几种不同类型的函数。但是把它们对比着总结一下,你就会发现无论哪种函数,我们需要掌握的都是它的表达式、图象形状、奇偶性、增减性和对称性。那么你可以将这些函数的上述内容制作在一张大表格中,对比着进行理解和记忆。在解题时注意函数表达式与图形结合使用,必定会收到好得多的效果。
3、最后就是要加强课后练习,除了作业之外,找一本好的参考书,尽量多做一下书上的练习题(尤其是综合题和应用题)。熟能生巧,这样才能巩固课堂学习的效果,使你的解题速度越来越快。
4、学习过程中难免会做错题目,不管你是粗心或者就是不会,都要习惯性的把这些错题收集起来,每个科目都建立一个独立的错题集,当我们进行考前复习的时候,它们是重点复习对象,因此你既然错过一次,保不准会错第二次,只有这样你才不会在同样的问题上再次失分。
⑺ 数学几何体解题方法
首先要对常见几何体熟悉,例如柱体、椎体、台体、球体;这些要会自己画图,能自己画出侧面展开图是关键点!!还要能记住表面积和体积计算公式。这是最基本的。
二、要学会平行和垂直的定理和性质定理,这样再学会进行证明。
加油,祝你好运!
⑻ 初一数学题怎样打够60分 还有几何体怎麽做 要领 技巧方法 懂的人来!
“读书破万卷,下笔如有神”你上课要认真听讲,课后多加练习,不懂就问,多做脑力活动,这样你的成绩会升得很快,祝你取得好成绩
⑼ 数学立体几何解题技巧
把定理记住是一定的,并且在做题的过程中要善于总结各个定理的使用及配合,比如求二面角,首先找两面的交线,然后找垂直这个直线的其它相关直线,一般求二面角的题会跟三垂线定理联系在一起,再比如证平行的问题,一般在一些相似三角形里,如果题目没有,就去构造。还有建议把空间向量学一学,如果实在没思路的话,也可以利用空间向量解决
⑽ 求高手解一数学几何体题...小学五年级...请不要用太深奥知识...
设直线AD与BE交与O,且S△AOE=s1,S△BOD=s2,则易知S□CDOE=s1+s2/2,故S△ACD+S△BCE=s1+2×(s1+s2/2)+s2=3s1+2s2=5/3+5/2,S△ABD-S△ABE=s2-s1=10/3-5/2;得出s1=1/2,s2=4/3。所求阴影部分面积为s1+s2=11/6!答案与LZ所给答案不同,望LZ看过程!