㈠ 数学小论文600字左右,快快吧
初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
无意间在《初中生数学报》上看到一个很有意思的故事。故事的大概意思是讲3个人住旅馆,原本是3人每人10元住一间房,后来店长说今天优惠降价5元,然后服务员为使三人便于分配,就取走了2元,退还给每人1元,但是3×9+2=29(元),每人出九元,再加上取走的2元却是29元。可是30-29=1(元)那剩下的1元到哪里去了呢?
看到这个故事我马上眼前一亮,来了兴致,就在想对啊那1元跑到哪里去了呢?刚开始的时候我确实被文章中的算式搅乱了思维,想了很久也想不明白到底那1元跑到哪里去了呢?真是太奇怪了。于是我整理了一下头绪:原本是30元,降至25元,30-25=5(元)其中降了的5元再被服务员取走2元,剩下的3元再退还给3人。
那么我们来仔细想想,为什么我们大家刚开始时都错了呢?因为我们没有理清题目的意思,逻辑关系出现了混乱,所以会出现错误。看到题目我们要多想想每个事物之间的联系,而不是混乱的加在一起或是别的。总之要多思考。
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 <BR>在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小"!
㈡ 急求600字小学数学论文!!!!
初一是新课改年级,所以我对教学过程中存在的问题还缺乏意识或者有时候抓不住重点和本质,缺乏对教学诊断、调整、纠错的能力。提高对教学过程中问题的敏感度。养成一种对教学的自觉反思行为、习惯。冲破经验的束缚,从而使自己从“经验型”教师走向“学者型”教师。形成“学会教学”的能力。
从平时的练习和检测中可以看出,学生的惰性表现突出。在新授的知识中,理解的内容少,记忆的内容多,特别是学生对记忆,掌握不够,容易出现三天不记,几乎忘记的现象。另外家庭实验支手的少,上课提问鸦雀无声。所以在今后的教学中教师应注重引导学生对知识的记忆、理解、掌握,调动学生学习的积极性,以提高学生的学习效果。
作为一名数学教师,其首要任务是树立正确的数学观,积极地自觉地促进自己的观念改变,以实现由静态的,片面的、机械反映论的数学观向动态的,辩正的模式论的数学观的转变。特别是实现对上述问题的朴素的不自觉的认识向自觉认识的转化。
要以发展的眼光对待学生,做到眼中有人,心中有人。“眼中有人”是指关注现在的学生,培养学生的自主性、主动性和创造性。认识并肯定学生在教学过程中的主体地位,爱护尊重学生的自尊心与自信心。培养学生自觉自理能力,激发学生的兴趣和求知欲,主动参与性,要尊重学生的差异,不以同一标准去衡量学生,更不要以学生的分数论英雄。教师要多鼓励学生提出“为什么?”“做什么?”怎样做?”鼓励学生敢于反驳,挑战权威,挑战课本。培养学生的创新精神。
对于上一学期的初一数学教育教学工作,我对以下几个方面进行了反思:
一、对教学目标反思
教学目标是教学设计中的首要环节,是一节课的纲领,对纲领认识不清或制定错误必定注定打败仗。对于我们新分教师来说我自认为有以下几点不足:
1、对教学目标设计思想上不足够重视,目标设计流于形式。
2、教学目标设计关注的仍然只是认知目标,对“情感目标”、“能力目标”有所忽视。重视的是知识的灌输、技巧的传递,严重忽视了教材的育人功能。
3、教学目标的设计含混不可测,不足够具有全面性、开放性。
教学目标的制定要符合学生的认知程序与认知水平。制定的教学目标过高或过低都不利于学生发展。要让学生跳一跳摘到桃子。“这么简单的题都做不出来”“这道题都讲过几遍了还不会做”,碰到这样情况,教师不应埋怨学生,而要深刻反思出现这样状况到底是什么原因。是学生不接受这样的讲解方式,还是认识上有差异;是学生不感兴趣,还是教师点拨,引导不到位;是教师制定的难点与学生的认知水平上的难点出现了不合拍;是教师期盼过高,还是学生接受新知识需要一个过程;……教师在教学目标设计时要全面了解学生的现有认知水平,在学生现有认知水平的基础上,利用多媒体等多种有效手段调动学生的积极性,激发兴趣,让学生在教师的帮助下通过自己的努力向高一级的认知水平发展。让学生体会到成功的喜悦,形成良性发展。教师千万不能埋怨责怪学生,不反思自己,只会适得其反,以致把简单的问题都变成学生的难点。因此教学设计要能激发学生学习数学的热情与兴趣,要教给学生需要的数学。
二、对教学计划反思
在教学设计中,对教学内容的处理安排还存在以下几个缺乏:
(1)缺乏对教材内容转译;
(2)缺乏对已学知识的分析、综合、对比、归纳和整体系统化;
(3)缺乏对旧知识分析应用的螺旋上升的应用设计;
(4)缺乏对教学内容的教育功能的挖掘和利用;
(5)缺乏对自我上课的经验总结。
三、对听课的反思
听课决不是简单地评价别人之优劣,不是关注讲课者将要讲什么,而是思考自己如何处理好同样的内容,然后将讲课者处理问题的方式与自己的预想处理方式相对照,以发现其中的出入。
四、征求学生意见
潜心于提高自己教学水平的教师,往往向学生征询对自己教学的反馈意见,这是教师对其教学进行反思的一个重要的渠道。
若在课堂上设计了良好的教学情境,则整堂课学生的学习积极性始终很高.课后我总结出以下两点成功体会:
(1)抓住知识本质特征,设计一些诱发性的练习能诱导学生积极思维,刺激学生的好奇心
(2)问题的设计不应停留在简单的变式和肤浅的问答形式上,而应设计一些既能让学生动手触摸、又能动脑思考的问题,这样可使学生在"观察、实践、归纳、猜想和证明"的探究过程中,激发起他们对新知识的渴望.
学生在学习中遇到的困惑,往往是一节课的难点.将解决学生困惑的方法在教学后记中记录下来,就会不断丰富自己的教学经验。
五、记教学中学生的独特见解
学生是学习的主体,是教材内容的实践者,通过他们自己切身的感觉,常常会产生一些意想不到的好的见解。有时学生的解法独具一格,对此,教师应将这些见解及时地记录下来。
㈢ 六年级数学小论文600字
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。
例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。
再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。
六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。
七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。
由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。
我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。
例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形……
现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。
㈣ 数学论文600字左右
生活中的数学
其实我们生活中处处都有数学,比如说奇妙的圆
圆是生活中最常见的图形,人们几乎无处不在应用圆。在车上,在路上,在家里,甚至在空中,你总是能见到圆的踪迹。
圆有一个很大的好处,就是它们没有棱角。汽车为什么可以使汽车运行得快速,而又使坐在车里的人感到不颠簸?就是因为汽车的轮子是圆的。你在玩保龄球的时候,为什么保龄球是球体而不是正方体或长方体的?就是因为球体与地面的摩擦力最小,速度慢下来的时间最长,且速度并不容易改变。正因为没有棱角,人们才把圆形和球体称之为最美观的平面图形和最美观的立体图形。
圆是公认的最经济的图形。大家都知道,周长相同时,圆的面积比其他任何形状都要大。依据这个道理,人们设计出了圆形的窨井盖,因为圆形的窨井盖在与地面垂直放在窨井上时,不会像正方形或长方形窨井盖那样掉进窨井里,而是稳稳地卡在上面。这么可爱的图形,怎么能不受到人们的青睐呢?
除了圆,还有一些和圆相关的,诸如圆柱体和球体之类的立体图形也有着举足轻重的作用呢!在材料面积相同的情况下,圆柱体的容积是最大的,同样,它的支撑力也是最大的。树干,竹子,水桶等东西,无不应用了圆柱体。 还有小数点,数学,在我们生活中无处不在。高斯求积、植树问题……这一个个奇妙的数学定律令我们惊奇。下面让我们去寻找奇妙的数字之旅吧!
小数点不论在体重、价格上无处不有。无处不在它向右移动代表扩大,向左移动代表缩小,这个神奇的小数点揭开了我们今天的数字之旅。
在我们测量和计算中有时得不到整数,小数点就在这里登场了。小数点拥有巨大的“权利”它右边是小数部分,左边是整数部分。它在数字界拥有很大的威望,因为:它的移动就改变了数字的大小。它有两种方法改变数字的大小:1、数字调换位置,2、移动小数点。
在生活中,小数点变化多端一转身变成了单名数,一转身变成了复名数,小数点不仅移动小数点来改变数字的大小,还用乘除法改变数字的大小,乘表示向右移动,移动一位扩大10倍;除表示向左移动,移动一位缩小10倍。
小数点真神奇,在生活中还有很多神奇的定律,让我们一起探寻吧!
㈤ 六年级数学小论文(600字左右)
【容易忽略的答案】
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
㈥ 小学数学论文600字
托尔斯泰抄曾经说过:“成功的教学,所需的不是强制,而是激发学生学习的兴趣。”。我认为小学数学教学的主要任务之一就是努力激发、培养学生学习数学的兴趣,使学生享受到学习的乐趣。那么怎样才能激发培养学生的学习兴趣呢?现将自己的点滴体会浅谈如下:
一、在游戏活动中,轻松自如的学习
二、在数学情境中,趣味盎然的学习
三、在竞赛中,紧张积极的学习
具体的内容去小学数学辅导网,小学数学论文里找。里面很多的,既然不想找别人写的,那就把内容整合一下。
㈦ 小学数学论文大全六百字
论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献和附录和致谢。
下面按论文的结构顺序依次叙述。
题目
(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。
署名
(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。
引言
(三)论文——引言是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。
材料方法
(四)论文——材料和方法按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。
实验结果
(五)论文——实验结果应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据、不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。
实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。
㈧ 数学论文600字以上,急啊
这是我的博客中的一篇文,复制给你做参考:
自然数的因数
我们知道,每个自然数(不包括0和1)都有2个以上的因数,因数最少的是质数(也叫素数),质数的因数是1和它本身。非质数的自然数也叫合数,它们都含有3个以上(含3个)的因数。
1、怎样求一个数有多少个因数?
对于一个已知的自然数,要求出它有多少个因数,可用下列方法:
首先将这个已知数分解质因数,将此数化成几个质数幂的连乘形式,然后把这些质数的指数分别加一,再相乘,求出来的积就是我们要的结果。
例如:求360有多少个因数。
因为360分解质因数可表示为:360=2^3×3^2×5,2、3、5的指数分别是3、2、1,这样360的因数个数可这样计算出:
(3+1)(2+1)(1+1)=24个。
我们知道,360的因数有 1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180,360正好24个,可见上述计算正确。
2、怎样求出有n个因数的最小自然数?
同样拥有n个(n为确定的数)因数的自然数可以有多个不同的数,如何求出这些数中的最小数?
这是与上一个问题相反的要求,是上一题的逆运算。
比如求有24个因数的最小数是多少?
根据上一问题解决过程的启示,可以这样做,先将24分解因式,把24表示成几个数连乘积的形式,再把这几个数各减去1,作为质数2、3、5、7......的指数,求出这些带指数的数连乘积,试算出最小数即可。具体做法是:
因为:24=4×6, 24=3×8, 24=4×3×2,
现在分别以这三种表示法试求出目标数x:
(1)、24=4×6,4-1=3,6-1=5
X=2^5×3^3=864
(2)、24=3×8,3-1=2,8-1=7
X=2^7×3^2=1152
(3)24=4×3×2,4-1=3, 3-1=2, 2-1=1
X=2^3×3^2×5=360
综合(1)、(2)、(3)可知360是有24个因数的最小数。
㈨ 小学六年级数学与生活小论文(600字以上)
我在家里用纸筒做了一个“篮筐”,用小时候玩的小球作为篮球来
打篮球。 一天,我在投篮,球落下后滚到了床底下,在用竹竿把它勾出来时,我还得到了一个意外的收获:一个弹球。它几乎只有“篮球”的十分之一大。用小球投久了,不免觉得乏味,便突发奇想用那弹球来投,意外的,那似乎非常容易投进,虽然刚开始时很不容易进球,但随着投的次数增加,投进的几率比原来大多了,甚至超过了投小球的准确率,几乎百发百中。这绝不是运气,更不是碰巧,也不是我的水平突飞猛进了。 那是为什么呢?
于是我开始思考:弹球的质量比小球重多了,因此扔相同距离所需的力也较扔小球时增大不少。而以前扔小球居多,习惯上所用的力也不同,因此,这不是习惯或熟能生巧造成的,准确率的提高跟球的质量无关。而“篮筐”未变,故只可能是人或球的问题,而我方才没有那么高的进球率,故是球的问题。而进球率越来越高应该是渐渐习惯了投弹球时所用的力了。那么应该就是球体积的大小的改变造成的。
于是我便开始验证了。用尺子测量出“篮筐”的上截面直径约为25厘米,小球的直径约为10厘米,而弹球的直径约为5厘米。因此,
“篮筐”的上截面的面积约为:25* 25/2/2*3.14=490.625平方厘米,小球的最大横截面的面积约为:10*10/2/2*3.14=78.5平方厘米,
弹球的最大横截面的面积约为:5*5/2/2*3.14=19.625平方厘米。
而若要进球,则球的重心应偏向篮筐,及至少有一半的最大横截面的面积在篮筐内,而弹球的一半的最大横截面的面积小于小球的一半的最大横截面的面积,故弹球进球的几率大于小球进球的几率,且应为小球进球的几率的4倍。
通过计算我搞清了这个小问题,可见生活中处处有数学。
这是一篇小学生在玩球时的发现,而他用弹球往球蓝里投球得到了收获,这就是一个弹球,改用弹球来投结果,似乎非常容易投进,随着次数的增加,投进的几率比原来大多了,甚至超过了投小球的准确率,几乎百发百中,于是小作者就想探个究境,结果通过计算小作者明白了,这是球的重心偏向篮筐,及至少有一半的最大的横截面的面积在篮筐内,而弹球的一半的横截面的面积小于小球的一半的最大横截面的面积,所以弹球的几率大于小球的几倍,所以容易进。
通过这个事例,我明白了教学生学数学就要教给学生数学要和生活实际联系起来,学了就要会用,因为数学无处不在,只有这样,数学才不会乏味,学生才愿意学数学,学生才有兴趣学数学,数学才能真正地为社会服务,为人类造福。
望采纳
㈩ 小学500字数学小论文
从一年级开始接触数学;从一个什么也不懂的孩子时开始接触数学;从1+1=2、1+2=3…… 开始学习数学,直至今天还在学习数学。学数学不是一两天的事,而是一条漫长的道路!在学习数学的道路上,你会不知不觉的发现学数学的乐趣,数学的奥妙,你也会发现数学在生活中无处不在!学数学就是为了能在实际生活中应用,其实,数学就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋要画图纸.......
同学们,你们肯定知道商人们批发商品吧,而且,商人们为了赚钱,会不停地把商品卖出买进,这样就能获得更多利润了。
一次,我和爸爸在文具店买东西,爸爸拿起一个7元的笔盒对我说:“如果一个商人买了50个这种笔盒,以每个8元卖给文具批发商,又以每只9元收购回来,再以每只10元卖出去,那么他是亏了还是赚了?”
我不假思索地回答道:“这么简单的题还想考我!他肯定是赚了,而且是赚了一大笔钱呢!”
“那他到底赚了多少利润?”爸爸追问道。
我毫不犹豫地说:“他一个笔盒以7元买进,8元卖出,9元买进,10元卖出,一共可得利润(8+10)—(7+9)=2(元)。就是说一个笔盒就可以赚得2元,50个笔盒按这种方式买进卖出,共得利润100元。他是个很精明的商人。”
“不错!”爸爸微笑着说。“也可以这样算:买进时用了(7+9)×50=800(元)。卖出时得了(8+10)×50=900(元)。则这个商人赚了900—800=100(元)。”不过,爸爸话锋一转,“你知道为什么要问你一个这么简单的问题吗?”
“不知道。”我摇摇头,惊奇地说。
“一般来说,计算一道题有很多种方法。只要思考方式和推理过程是对的,结果就是一样的。计算和预测利润或损失就是用卖出商品得到的钱减去买入花的钱,结果是正数,就是赚了;结果是负数,就是亏了。就像刚才那个笔盒,如果商人用7元买走笔盒,用6元卖给另一个人,他就亏了1元。而商人用8元卖给另一个人后,他就赚了1元。”
“这就是说,生活中数学的影子无处不在,在商场里、交易所里都要广泛运用到数学。”我恍然大悟。
在六年的小学生涯里我学到了许多许多,及将需要我探讨是初中、高中、大学……的知识,我一定要努力学习!