导航:首页 > 小学学科 > 小学数学重点

小学数学重点

发布时间:2020-11-26 07:09:18

小学数学重点性质

小学数学公式大全,
第一部分: 概念.
1,加法交换律:两数相加交换加数的位置,和不变.
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.
3,乘法交换律:两数相乘,交换因数的位置,积不变.
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.
如:(2+4)×5=2×5+4×5
6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. 0除以任何不是0的数都得0.
简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾.
7,什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式.
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8,什么叫方程式 答:含有未知数的等式叫方程式.
9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.
13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15,分数除以整数(0除外),等于分数乘以这个整数的倒数.
16,真分数:分子比分母小的分数叫做真分数.
17,假分数:分子比分母大或分子和分母相等的分数叫做假分数.假分数大于或等于1.
18,带分数:把假分数写成整数和真分数的形式,叫做带分数.
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.
20,一个数除以分数,等于这个数乘以分数的倒数.
21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
分数的乘法则:用分子的积做分子,用分母的积做分母.
22,什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变.
23,什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:18
24,比例的基本性质:在比例里,两外项之积等于两内项之积.
25,解比例:求比例中的未知项,叫做解比例.如3:χ=9:18
26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k( k一定)或kx=y
27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系. 如:x×y = k( k一定)或k / x = y
28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.
29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.
30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.
31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了.
32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.
33,要学会把小数化成分数和把分数化成小数的化发.
34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数.(或几个数公有的约数,叫做这几个数的公约数.其中最大的一个, 叫做最大公约数.)
35,互质数: 公约数只有1的两个数,叫做互质数.
36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.
37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分.(通分用最小公倍数)
38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分.(约分用最大公约数)
39,最简分数:分子,分母是互质数的分数,叫做最简分数.
40,分数计算到最后,得数必须化成最简分数.
41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行约分.个位上是0或者5的数,都能被5整除,即能用5进行约分.在约分时应注意利用.
43,偶数和奇数:能被2整除的数叫做偶数.不能被2整除的数叫做奇数.
44,质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).
45,合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.1不是质数,也不是合数.
46,利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47,利率:利息与本金的比值叫做利率.一年的利息与本金的比值叫做年利率.一月的利息与本金的比值叫做月利率.
48,自然数:用来表示物体个数的整数,叫做自然数.0也是自然数.
49,循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数.如3. 141414
50,不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数.如圆周率:3. 141592654
51,无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数.如3. 141592654……
52,什么叫代数 代数就是用字母代替数.
53,什么叫代数式 用字母表示的式子叫做代数式.如:3x =ab+c
小学数学公式大全,第二部分:计算公式.
数量关系式:
1, 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2, 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3, 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4, 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5, 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6, 加数+加数=和 和-一个加数=另一个加数
7, 被减数-减数=差 被减数-差=减数 差+减数=被减数
8, 因数×因数=积 积÷一个因数=另一个因数
9, 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数小数×倍数=大数(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数小数×倍数=大数(或 小数+差=大数)
植树问题:
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣〈1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
面积,体积换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1公顷=10000平方米 1亩=666.666平方米
(5)1升=1立方分米=1000毫升 1毫升=1立方厘米
重量换算:
1吨=1000 千克1千克=1000克1千克=1公斤
人民币单位换算
1元=10角1角=10分1元=100分
时间单位换算:
1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分1分=60秒 1时=3600秒
小学数学公式大全,第三部分:几何体.
1、正方形
正方形的周长=边长×4 公式:C=4a
正方形的面积=边长×边长 公式:S=a×a
正方体的体积=边长×边长×边长 公式:V=a×a×a
2、长方形
长方形的周长=(长+宽)×2 公式:C=(a+b)×2
长方形的面积=长×宽 公式:S=a×b
长方体的体积=长×宽×高 公式:V=a×b×h
3、三角形三角形的面积=底×高÷2. 公式:S= a×h÷2
4、平行四边形平行四边形的面积=底×高 公式:S= a×h
5、梯形梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2
6、圆直径=半径×2 公式:d=2r半径=直径÷2 公式:r= d÷2
圆的周长=圆周率×直径 公式:c=πd =2πr圆的面积=半径×半径×π 公式:S=πrr
7、圆柱
圆柱的侧面积=底面的周长×高. 公式:S=ch=πdh=2πrh
圆柱的表面积=底面的周长×高+两头的圆的面积. 公式:S=ch+2s=ch+2πr2
圆柱的总体积=底面积×高. 公式:V=Sh
8、圆锥
圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh
三角形内角和=180度.
平行线:同一平面内不相交的两条直线叫做平行线
垂直:两条直线相交成直角,像这样的两条直线,
我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足.

⑵ 如何突破小学数学教学中的重点和难点

类比;4=6/,老师的目的就是想让学生在不断的重复中体会这一规律的存在、六十一,如( (3)直观演示、七和十一、二三,这些方法当然也可以联合使用。因此,分数的大小不变,通过实际操作,以上介绍的方法是针对一些知识点的教学单独使用的情况1.抓住知识间的衔接,最小公倍取较大,他所掌握的前期知识是牢固的:圆的面积的推导(2)通过画图、七三,如除数是两位数的除法。教学中突破教学重难点的方法还有很多;两数倍数关系时:二,用一句比较简练。如果、多媒体计算机等教学用具,十九,乘数是多位数的乘法是在学习一位数乘法的基础上迁移,以旧引新,七一。 2.抓住知识间的联系。教学时,一遍又一遍的叙述由谁到谁的变化过程,通过新问题的求解,激发学生的学习兴趣。再如、分析、五,那就在交流汇报这个环节不至于浪费时间了,单去死记硬背一个一个的数相当困难,发展思维能力,八三,学会用同一语式去表达。再如求最大公因数和最小公倍数也可以用下面歌谣来记、旧中蕴新、九十七,最终达到融汇贯通、七十九,教师如能做到“化新为旧”,也就可以转化为旧知识来认识和理解,最小公倍乘一圈,将原问题转化为一个新问题(相对来说,旧知识就是新知识的基础和生长点、分析新问题才能使他们对知识的理解不断深刻,就不难实现教学重:两数互质要记牢最大公因就是1。因此:用课件演示物体的平移和旋转,就会找到与它的叙述非常相似的“商不变的性质”和沟通两者联系的“分数与除法的关系”,概念又多又易混淆。这种方法得以实施的关键在于学生对旧知识的掌握应该是熟练的,在数学教学过程中,这一思想方法我们称之为“化归与转化的思想方法”一个新知识往往是旧知识的发展和结果,使他们能用转化的观点去学习新知识,运用迁移的方法来突破重难点、从右到左的逐一变化,就可以在课前的复习环节安排对于“商不变的性质”的叙述和 “分数与除法的关系”的练习,帮助学生理解和掌握数学知识,强调我们每一年段的老师都要把自己视为“把关教师”,就用短除来试商、四七、五十三,促进学生对知识的理解,三一。 3.强化感知参与、在学习长正方体的体积计算时。(1)动手操作;12从左到右、模型,最小公倍是乘积。由此可见,抓住知识间的“纵横联系”,只是增加试商和调商且难度增大、四十一、方法更加灵活,解决重点难点问题如,通过观察1/。运用好直观方法的关键是化抽象为具体,解决重点难点问题比如,如果利用课件演示来帮助学生体会体积实际上就是一个形体中含有体积单位的个数、用课件演示钟表一天的转动,最大公因乘半边,达到解决原问题的目的,通过观察。例如。案例一。教师可以引导学生自编歌谣来帮助记忆,要重视揭示和建立新旧知识的内在联系、八九,就可以引导学生把这些数分组变成歌谣来记,运算方法相同;两数关系不明显,让学生“走稳每一步”:分数的基本性质分数的基本性质是这样叙述的,每项新知识往往和旧知识紧密相连,就要深入研究教材和学生,四三,可同时它又成为后续知识的基础;2=2/。(4)编制歌诀,对自己较熟悉的问题),学生理解了教学重点24时计时法的含义、六十七。直观教学是小学数学教学活动中的一种最常用的也是最为有独立自主的教学方法。在教学中,促进学生的思维发展、观察,五九,数学知识点就像一根根链条节节相连,但是到最后学生也未必能够结合自己的理解,自觉地以“迁移”作为一种帮助学生学习的方法:分数的分子和分母同时乘或除以相同的数(0除外)、圆面积公式的推倒,运用直观的方法突破教学重难点直观——是指在教学过程中充分运用实物,采用转化的策略突破重点和难点转化——是指解决数学问题时;此时我们为了突破“引导学生归纳概括出分数的基本性质” 教学难点,它在学习了除数是一位数的除法笔算的基础上迁移学习,贵在得法”,新知识就是旧知识的延伸和发展,选择运用恰当的数学方法进行变换、三。还有教学五年级因数和倍数单元、二十九。有时新知识可以由旧知识迁移而来,帮助学生直观的记忆如教学的年月日进行歌诀记忆,常遇到一些问题直接求解较为困难,我们要做到在教学中切实提高课堂效率。如让学生背100以内质数表,运用迁移的方法突破重点和难点我们先来关注数学的学科特点,如果把它作为一个孤立知识点来教学、梯形面积:三角形面积。小学数学学科的特点之一就是系统性很强,最大公因取较小。可以运用迁移方法教学的知识点还很多,我们在教学前先来分析一下分数的基本性质的知识基础、环环相扣,努力实现“教无定法、联想等思维过程。由此可以看出,解决重点难点问题可以用图帮助解决问题、准确地数学语言来描述出分数的基本性质,帮助学生形成知识网络、思考的活动,如果老师能够善于捕捉数学知识之间的衔接点,逐步教给学生一些转化的思考方法,从已有的知识和经验出发。总之,组织积极的迁移,十三后面是十七、三七、难点的突破了

⑶ 如何突破小学数学教学中的重点和难点

1.抓住知识间的衔接,运用迁移的方法突破重点和难点
我们先来关注数学的学科特点。小学数学学科的特点之一就是系统性很强,每项新知识往往和旧知识紧密相连,新知识就是旧知识的延伸和发展,旧知识就是新知识的基础和生长点。有时新知识可以由旧知识迁移而来,可同时它又成为后续知识的基础。因此,数学知识点就像一根根链条节节相连、环环相扣。
由此可见,如果老师能够善于捕捉数学知识之间的衔接点,自觉地以“迁移”作为一种帮助学生学习的方法,以旧引新、旧中蕴新,组织积极的迁移,就不难实现教学重、难点的突破了。
案例一:分数的基本性质
分数的基本性质是这样叙述的:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
教学时,如果把它作为一个孤立知识点来教学,通过观察1/2=2/4=6/12从左到右、从右到左的逐一变化,一遍又一遍的叙述由谁到谁的变化过程,老师的目的就是想让学生在不断的重复中体会这一规律的存在,学会用同一语式去表达,但是到最后学生也未必能够结合自己的理解,用一句比较简练、准确地数学语言来描述出分数的基本性质。
如果,我们在教学前先来分析一下分数的基本性质的知识基础,就会找到与它的叙述非常相似的“商不变的性质”和沟通两者联系的“分数与除法的关系”;此时我们为了突破“引导学生归纳概括出分数的基本性质” 教学难点,就可以在课前的复习环节安排对于“商不变的性质”的叙述和 “分数与除法的关系”的练习。
可以运用迁移方法教学的知识点还很多,如除数是两位数的除法,它在学习了除数是一位数的除法笔算的基础上迁移学习,只是增加试商和调商且难度增大、方法更加灵活。再如,乘数是多位数的乘法是在学习一位数乘法的基础上迁移,运算方法相同。
由此可以看出,在数学教学过程中,要重视揭示和建立新旧知识的内在联系,从已有的知识和经验出发,运用迁移的方法来突破重难点。这种方法得以实施的关键在于学生对旧知识的掌握应该是熟练的,他所掌握的前期知识是牢固的。因此,强调我们每一年段的老师都要把自己视为“把关教师”,让学生“走稳每一步”。
2.抓住知识间的联系,采用转化的策略突破重点和难点
转化——是指解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”一个新知识往往是旧知识的发展和结果,也就可以转化为旧知识来认识和理解。在教学中,教师如能做到“化新为旧”,抓住知识间的“纵横联系”,帮助学生形成知识网络,逐步教给学生一些转化的思考方法,使他们能用转化的观点去学习新知识、分析新问题才能使他们对知识的理解不断深刻,最终达到融汇贯通。
例如:三角形面积、梯形面积、圆面积公式的推倒。
3.强化感知参与,运用直观的方法突破教学重难点
直观——是指在教学过程中充分运用实物、模型、多媒体计算机等教学用具,通过实际操作、观察、思考的活动,帮助学生理解和掌握数学知识,促进学生的思维发展。直观教学是小学数学教学活动中的一种最常用的也是最为有独立自主的教学方法。
(1)动手操作,解决重点难点问题
如:圆的面积的推导
(2)通过画图,解决重点难点问题
可以用图帮助解决问题,如(
(3)直观演示,解决重点难点问题
比如:用课件演示物体的平移和旋转、用课件演示钟表一天的转动,学生理解了教学重点24时计时法的含义、在学习长正方体的体积计算时,如果利用课件演示来帮助学生体会体积实际上就是一个形体中含有体积单位的个数,那就在交流汇报这个环节不至于浪费时间了。
(4)编制歌诀,帮助学生直观的记忆
如教学的年月日进行歌诀记忆。还有教学五年级因数和倍数单元,概念又多又易混淆。教师可以引导学生自编歌谣来帮助记忆。如让学生背100以内质数表,单去死记硬背一个一个的数相当困难,就可以引导学生把这些数分组变成歌谣来记:二、三、五、七和十一,十三后面是十七,十九、二三、二十九,三一、三七、四十一,四三、四七、五十三,五九、六十一、六十七,七一、七三、七十九,八三、八九、九十七。
再如求最大公因数和最小公倍数也可以用下面歌谣来记:
两数互质要记牢最大公因就是1,最小公倍是乘积;
两数倍数关系时,最大公因取较小,最小公倍取较大;
两数关系不明显,就用短除来试商,最大公因乘半边,最小公倍乘一圈。
运用好直观方法的关键是化抽象为具体,激发学生的学习兴趣,促进学生对知识的理解,发展思维能力。
教学中突破教学重难点的方法还有很多,以上介绍的方法是针对一些知识点的教学单独使用的情况,这些方法当然也可以联合使用。总之,我们要做到在教学中切实提高课堂效率,就要深入研究教材和学生,努力实现“教无定法,贵在得法”。

⑷ 小学数学教学重点确定的依据是什么

小学生数学素质多维评价指标,并不是独立存在,而是相互渗透、融为一体的:学生在“知识与技能”指标上的发展,促进其情感、态度、价值观的养成,也促进其综合应用数学能力的发展;而“情感、态度、价值观”的养成又直接影响着学生在知识与技能方面的发展水平及综合应用数学进行思考、解决问题的达成。由此可见,小学生数学素质多维评价指标构建了一个良性循环体系,实现了“情感态度与价值观” “知识与技能"‘数学思考”“解决问题”四个目标的整合,促进,了学生在数学学习上的全面发展。
在新课程环境下,教师是学生学习活动的组织者、引导者、合作者,所以教师在教学评价中也仍然是不容忽视的评价主体之一。在教师的评价上,我们着重关注的是如何让教师既全面、客观地评价学生的数学学习水平,又善于捕捉每个孩子的闪光点,评出每个学生的个性。基于此认识,我们在“情感态度与价值观”“知识与技能”“数学思考”“解决问题”四个目标:要求教师用简洁精炼、富于激励的语言评出学生在情感态度价值观的独特个性;从平时、期末、总评三个时段里评出学生在知识与技能方面的发展情况;在应用数学解决实际问题的情景里评出学生数学综合能力水平。
学生的发展是教师发展、学校发展的根本出发点和最后归宿,教育过程中,培养学生的创新精神,无疑是教学工作中的重中之重。只有学生敢“创”,乐意去 “创”,思维才会异常活跃,才会利用丰富的想象探究问题、解决问题。而这思维活跃的产生,要教师给予他们良好、充足的活动空间,足以支持思维的活跃性和持续性。

⑸ 小学数学教学中如何抓住重点突破难点

数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.

(同学们开讲)

学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.

⑹ 在教学中如何解析小学数学重点难点的

数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.

(同学们开讲)

学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.

⑺ 小学数学1到6年级全部重点

小学生数学复习考试全图
这些知识归结了小学全部数学重点。这些知识可能在每次考试中以不同形式(填空、选择、判断、连线、解答应用题等)出现,也是学生将来进入初中、高中的基础,所以一定要牢固掌握。
一、 小学生数学法则知识归类
(一)笔算两位数加法,要记三条:
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条:
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则:
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序去处;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法:
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;末位不管有几个0都不读。
(五)四位数写法:
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(六)四位数减法也要注意三条:
1、相同数位对齐;
2、从个位减起;
3、位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则:
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则:
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则:
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则:
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,再试除前三位数;
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则:
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个0都只读一个“零”。

(十二)多位数的读法法则:
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个“零”。
(十三)小数大小的比较:
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则:
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数简洁的计算法则:
计算小数乘法,先按照简洁的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则:
除数是整数的小数除法,按照整数除法的法则却除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则:
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤:
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。

(十九)列方程解应用题的一般步骤:
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;检验、写出答案。
(二十)同分母分数加减的法则:
同分母分数相加减,分母不变,只把分子相加减。
(二十一)同分母带分数加减的法则:
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则:
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(二十三)分数乘以整数的计算法则:
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则:
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(二十五)一个数除以分数的计算法则:
一个数除以,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法:
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

二、 小学教学口诀定义归类
1、 什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、 什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、 加法各部分之间的关系:
一个加数=和-另一个加数
4、 减法各部分之间的关系:
差数=被减数-差,被减数=差数+差
5、 乘法各部分之间的关系:
一个因数=积÷另一个因数
6、 除法各部分之间的关系:
除数=被除数÷商,被除数=商×除数
7、 角:
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角叫直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。

(6)什么是锐角?
小于90°的角叫锐角。
(7)什么是钝角?
大于90°而小于180°的角叫做钝角。
(8)什么是周角?
一条射线绕它的闪电战旋转一周所在的角叫周角,一个周角是360°。
8、
(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、 三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?
每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
在等腰三角形里,相等的两个边叫等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫做等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?
什么叫三角形的底?从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形的内角和是180°。
10、 四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平行四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平行的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平行的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、 什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、 什么是四舍五入法?
求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。
这种求近似数的方法,叫做四舍五入法。
13、 加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、 什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、 什么是被减数?
什么是减数?什么叫差?在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、 加法各部分之间的关系:
和=加数+加数,加数=和-另一加数
17、 减法各部分之间的关系:
差=被减数-减数,减数=被减数-差,被减数=减数+差
18、 乘法:
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、 除法:
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中已知的一个因数叫除数。
(4)什么是商?
在除法中求出的未知因数叫商。
20、 乘法各部分之间的关系:
积=因数×因数,一个因数=积÷另一个因数。
21、(1)除法各部分之间的关系:
商=被除数÷除数,除数=被除数÷商,被除数=商×除数。
(2)有余数的除法各部分之间的关系:
被除数=商×除数+余数。
22、 什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、 什么是单名数?
只带有一个单位名称的数叫单名数。
24、 什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、 什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26、 什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、 什么是而有限小数?
小数部分的位数是有限的小数叫有限小数。
28、 什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、 什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、 什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、 什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、 什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、 什么是方程?
含有未知数的等式叫方程。
34、 什么是解方程?
求方程解的过程叫解方程。
35、 什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数。b就叫a的约数(或a的因数)。
36、 什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、 什么是偶数?
能被2整除的数叫偶数。
38、 什么是奇数?
不能被2整除的数叫奇数。
39、 什么样的数能被5整除?
个位上是“0”或是“5”的数能被5整除。

40、 什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、 什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、 什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、 什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、 什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、 什么是公约数?
什么叫最大公约数?几个数公有的约数叫公约数,其中最大的一个叫最大公约数。
46、 什么是互质数?
公约数只有1的两个数叫互质数。
47、 什么是公倍数?
什么叫最小公倍数?几个数公有的倍数叫这几个数的公倍数,其中最小的一个叫这几个数的最小公倍数。
48、 分数:
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是分数线?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位“1”平均分成若干份,表示其中的一份叫分数单位。
49、 怎么比较分数大小?
(1)分母相同两个分数,
分子大的分数比较大。
(2)分子相同的两个分数,
分母小的分数较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
50、 比:
(1)什么是比?
两个数相除又叫两个数的比。

(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
51、 长方体和正方体:
(1)什么是棱?
两个面相交的边叫棱。
(2)什么是顶点?
三条棱相交的点叫顶点。
(3)什么是长方体的长、宽、高?
相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。
(4)什么是正方体(立方体)?
长宽高都相等的长方体叫正方体(立方体)。
(5)什么是长方体的表面积?
长方体六个面的总面积叫长方体的表面积。
(6)什么是物体的体积?
物体所占空间的大小叫做物体的体积。
52、 圆
(1)什么是圆心?
圆中心的点叫圆心。

(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心,并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是弧?
在圆上两点之间的部分叫弧。
(8)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
53、 什么是百分数?
表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。
54、 比例:
(1)什么是比例?
表示两个比相等的式子叫比例。
(2)什么是比例的项?
组成比例的四个数叫比例的项。
(3)什么是比例外项?
两端的两项叫比例外项。
(4)什么是比例内项?
中间的两项叫比例内项。
(5)什么是比例的基本性质?
在比例中两个外项的积等于两个内项的积。
(6)什么是解比例?
求比例中的未知项叫解比例。
(7)什么是正比例关系?
两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。
(8)什么是反比例关系?
两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。
55、 圆柱:
(1)什么是圆柱底面?
圆柱的上下两个面叫圆柱的底面。
(2)什么是圆柱的侧面?
圆柱的曲面叫圆柱的侧面。
(3)什么是圆柱的高?
圆柱两个底面的距离叫圆柱的高。

三、 小学数学量的计算单位及进率归类
(1)长度计量单位及进率:千米(公里)、米、分米、厘米、毫米
1千米=1公里,
1千米=1000米,
1米=10分米,
1分米=10厘米,
1厘米=10毫米
(2)面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷,
1平方千米=1000000平方米
1公顷=10000平方米,
1平方米=100平方分米,
1平方分米=100平方厘米
(3)体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米,
1立方分米=1000立方厘米,
1升=1000毫升
1立方分米=1升,
1立方厘米=1毫升
(4)质量单位及进率:吨、千克、公斤、克
1吨=1000千克,
1千克=1公斤,
1千克=1000克

(5)时间单位及进率:世纪、年、月、日、小时、分、秒
1世纪=100年,
1年=12个月
(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天),
1天=24小时,
1小时=60分,
1分=60秒
四、 常用计算公式表
(1)长方形面积=长×宽,计算公式:S=a×b
(2)正方形面积=边长×边长,计算公式:S=a×a
(3)长方形周长=(长+宽)×2,计算公式:C=(a+b)×2
(4)正方形周长=边长×4,计算公式:C=4a
(5)平行四边形面积=底×高,计算公式:S=ah
(6)三角形面积=底×高÷2,计算公式:S=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式:S=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式:V=abh
(9)圆的面积=圆周率×半径平方,计算公式:S=πr2
(10)正方体体积=棱长×棱长×棱长,计算公式:V=a3
(11)长方体和正方体的体积都可以写成:底面积×高,计算公式:V=sh
(12)圆柱的体积=底面积×高,计算公式:V=sh
(13)圆锥的体积=底面积×高÷3,计算公式:V=s×h÷3
等底等高的圆柱体积是圆锥体积的3倍。

⑻ 小学数学的重点是什么

、毫米、分米的认识:
(1)会用厘米估计常见物体的长度,并在实际测量中引出长度单位毫米和分米.
(2)通过测量活动,实际感受1毫米和1分米大约有多长,会用毫米和分米作为长度单位进行估计.
(3)知道米、分米、厘米、毫米之间的进率,能根据具体情境选择恰当的长度单位,会用这些长度单位进行测量.
(4)能完成有关的计算和应用,发展空间观念和动手操作能力.
2、千米的认识:
(1)了解"千米"是比"米"大很多的长度单位,知道1千米大约有多长,并初步了解千米在生活中的应用.
(2)掌握千米和米之间的进率,能正确换算和计算,并能解决相关的实际问题.
3、吨的认识:
(1)了解"吨"是比"千克"大很多的质量单位,知道1吨大约有多重,了解质量单位"吨"在生活中的应用.
(2)掌握吨、千克、克之间的进率,能正确换算和计算,并能解决相关的实际问题.
(3)能估计一些常见物品的质量,能根据具体情境选择恰当的质量单位.
第二单元:万以内的加法和减法(二)
1、加法:
(1)能结合具体情境,发展搜集信息、提出问题、解决问题的意识和能力.
(2)能在解决问题的过程中探索并掌握两位数、三位数的连续进位加法的计算方法,知道笔算的算理和注意事项.
(3)能熟练完成两位数、三位数的连续进位加法的计算,并能解决相关的实际问题.
(4)能结合具体情况进行估算,逐步掌握估算的基本方法,养成对计算结果的大致范围进行估计的习惯.
2、减法:
(1)能从实际的情境中提取有用的数学信息,能根据信息提出恰当的数学问题.
(2)在解决问题的过程中经历估算的过程,并逐步学会合理、恰当的估算,能用估算的结果判断计算结果的对错.
(3)在解决问题的过程中探索并掌握三位数的连续退位减法的计算方法,知道笔算的算理和注意事项.
(4)能熟练完成三位数的连续退位减法的计算,并能解决相关的实际问题.
3、加减法的验算:
(1)在解决实际问题的过程中理解加减法验算方法的数学依据和意义,并熟练掌握加减法的验算方法.
(2)能选择恰当的方法对加减法进行验算,并逐步养成对自己的计算进行验算的好习惯.
第三单元:四边形
1、四边形:
(1)通过观察、比较,直观认识四边形的特征,能利用特征辨别哪些图形是四边形.
(2)能在点子图或方格纸中画四边形,能在钉子板上围四边形.
2、平行四边形:
(1)结合生活情境,初步感知平行四边形的特征,能辨别哪些图形是平行四边形.
(2)能在点子图或方格纸中画平行四边形,能在钉子板上围平行四边形.
(3)渗透平行四边形和长方形的联系和区别.
3、周长:
(1)结合具体实物和图形理解并准确掌握周长的概念,并能用数学语言描述给定图形的周长.
(2)能用不同的方法测量或计算给定图形的周长,能比较两个图形周长的大小.
4、长方形和正方形的周长:
(1)结合具体情境,探索并掌握长方形和正方形周长的计算方法,感受数学在生活中的应用.
(2)能选择恰当的方法熟练计算长方形和正方形的周长,并能在具体情境中解决相关的实际问题.
5、估计:
(1)在准确掌握长度单位的前提下,能合理、恰当的估测某线段或物体的长度(包括周长).
(2)能利用估测的相关知识解决生活中的实际问题.
第四单元:有余数的除法
1、例1
(1)在解决问题的过程中回顾除法的含义,并回顾除法各部分的名称及含义,体会除法与生活的密切联系.
(2)结合具体情境,经历除法竖式抽象的过程,体会除法竖式每一步的实际含义,能正确掌握商是一位数的除法竖式的书写格式.
2、例2
(1)在具体情境中体会有余数除法与生活的密切联系,理解有余数除法的意义,理解余数的含义.
(2)探索并掌握有余数除法的试商方法,积累有余数除法的试商经验.
(3)能口算或用竖式计算有余数的除法,并能解决简单的有余数除法的实际问题.
3、例3
(1)在解决问题中进一步理解有余数除法和余数的含义,并进一步巩固有余数除法的计算方法.
(2)经历对许多有余数除法算式的观察、分析过程,探索并掌握余数和除数之间的关系.
(3)能利用余数和除数之间的关系直接判断有余数除法计算的正确性.
4、例4
(1)能灵活利运用有余数除法的知识解决生活中的实际问题,发展应用意识.
(2)在解决实际问题的过程中理解"最多"、"至少"等词语的含义,并学会用"去尾法"和"进一法"解决生活中的实际问题.
第五单元:时、分、秒
1、秒的认识:
(1)认识秒针,知道秒是比分更小的时间单位,体会时、分、秒的实际意义.
(2)知道:秒针走1小格是1秒,1分=60秒;能够准确读写出钟面上的时刻,能熟练进行时间单位的换算.
(3)体验1秒钟和1分钟分别有多长,逐步养成遵守和珍惜时间的好习惯.
2、时间的计算:
(1)能利用时、分、秒之间的关系正确完成相关比较、换算和计算.
(2)能解决生活中的关于时间计算的实际问题,体会时刻和经过时间两者之间的区别与联系.
实践活动(一):填一填、说一说
1、学会从不同的渠道、利用不同的方法搜集有用的数学信息.
2、在具体活动中学会记录、学会交流、学会倾听.
3、利用活动对学生进行习惯养成教育(遵守时间、珍惜时间,早睡早起等).
第六单元:多位数乘一位数
1、口算乘法:
(1)能从具体情境中搜集有用的数学信息,能根据数学信息提出恰当的数学问题,感受数学在实际生活中的应用.
(2)探索并掌握整十、整百、整千数乘一位数的口算方法,体验算法多样化,并能熟练、正确的进行计算.
(3)能完成两位数或三位数乘一位数的估算,培养估算的意识和能力.
(4)能解决相关的实际问题,提高提出问题、分析问题、解决问题的能力.
2、笔算乘法:
(1)在具体情境中进一步理解乘法的意义,感知乘法与生活的密切联系,激发学习数学的兴趣.
(2)能结合具体情景,探索并理解两位数、三位数乘一位数的算理,掌握笔算算法(包括不进位的、一次进位的、连续进位的、有一个因数的中间或末尾有0的).
(3)能结合具体情境进行估算,并解释估算的过程,并能用估算结果验证计算结果的正确性.
(4)在正确掌握运算顺序的前提下,能正确完成包含两位数、三位数乘一位数的混合运算.
(5)能解决与本节内容相关的实际问题,提高解决问题的能力.
(6)在探索规律的习题中培养孩子的观察能力、思维能力和表达能力.
第七单元:分数的初步认识
1、分数的初步认识:
(1)在主题图中进一步理解和掌握平均分的含义.
(2)在具体情境中感受学习分数的必要性和数学符号的优越性,理解分数的意义.
(3)结合具体操作,理解并掌握几分之一的含义、写法和读法,并能完成几分之一的大小比较(整体1必须相同).
(4)结合具体操作,理解并掌握几分之几的含义、写法和读法,并能完成同分母分数的大小比较(整体1必须相同).
(4)知道什么样的数是分数,能指出分数的各部分的名称,会用折纸、涂色等方式表示简单的分数.
2、分数的简单计算:
(1)在具体情境中理解分数加减法的意义,利用图示理解并掌握同分母分数加减法的算理和算法,并能熟练、正确的计算.
(2)理解并掌握和是1或被减数是1的同分母分数加减法的算理和算法,并能熟练、正确的计算.
(3)能解决相关的实际问题,提高分析问题、解决问题的能力,体会数学的价值性.
第八单元:可能性
1、通过具体活动,感受有些事件的发生是确定的,有些事件的发生是不确定的,理解事件发生的确定性和不确定性.
2、结合具体情境理解"一定"、"可能"、"不可能"的意义,能根据生活经验对一些事物作出恰当的判断,并能用相关词语进行表达和交流.
3、利用活动让学生感受某些事件发生的可能性是不确定的,体会事件发生的可能性有大有小,并能根据生活经验和试验经验正确判断简单事件发生可能性的大小(包括最大、最小).
3、利用试验培养学生科学、严谨的精神,利用活动培养学生的观察能力和探索精神.
第九单元:数学广角
1、通过具体操作,让学生掌握最简单的排列和组合的一些基本方法(图解、连线、列表、计算等),并能解决比较简单的排列、组合问题.
2、通过活动培养学生有序的、全面的思考问题的习惯,训练学生的思维能力,提高学生分析问题、解决问题的能力.
3、培养数学学习的兴趣和利用数学方法解决问题的意识.
实践活动(二):掷一掷
1、在掷色子的活动中进一步理解可能性的种类是如何确定的,可能性的大小是怎样判断的.
2、培养学生的合作意识和科学、严谨的探究精神.
3、提高学生的动手操作能力和对数学学习的兴趣.

⑼ 小学数学教学重点如何处理

小学数学教学重点如何处理?如果老师能够善于捕捉数学知识之间的衔接点,自觉地以迁移作为一种帮助学生学习的方法,以旧引新、旧中蕴新,组织积极的迁移,就不难实现教学重、难点的突破了。 今天,朴新小编得大家带来数学教学方法。
小学数学教学方法一

培养小学生良好的数学学习习惯

良好习惯不是与生俱来的,它是人在生活实践中培养出来的。培养小学生良好的数学学习习惯是小学阶段的重要环节。首先教师和家长要正确引导学生分辩好习惯和坏习惯,指导学生养成自主学习,特别是预习的好习惯。课前预习是在数学中发现问题的方法,课前预习能了解本课的学习知识是什么,重难点在哪里,特别是预习时能发现解决不了的问题或是疑点。在进行学习新内容的时,在具体的学习过程中就容易突破重点、难点,准确把握数学学习内容,充分提高数学课堂学习效率;其次,引导学生克服课堂上不能专心听讲的坏习惯。

学生只有先形成一种专心的习惯,才有可能在日后的学习中全身心的投入。这就需要教师及时提醒和评判,同时要不断优化课堂教学过程,激发学生专心听课的兴趣和主动参与意识,以建立起良好的专心听课习惯;最后,引导学生去掉粗心大意的坏习惯,养成认真仔细的数学学习习惯。
充分调动多种器官参与学习,着力营造和谐的教学氛围

学习者在主动建构的过程中必须要借助一定的操作对象,也就是说,总有一定的事情让孩子们去做。教师要充分调动孩子们的多种感觉器官,鼓励学生动口、动手、动脑,在活动中、在解决问题的过程中进行学习。在传统的教学中,教师一般先讲授所要学习的概念和原理,然后再让学生做一定的练习,尝试去解决有关的问题,其潜在的假设是:学和做是两个独立的过程,只有先学会了,才能去做,去解决有关的问题。建构主意所倡导的教学理念,正好用相反的思路来设计教学。先鼓励学生去做,在做中学。

因为在做的过程中,学生要充分借助自己的生活平台,综合运用所有的生活经验,甚至可能还要查阅有关的资料,从而做出合理的综合和推论,分析解决当前的问题,形成自己的思考和认识。在这一过程中,学习者便可以建构起与此相应的知识经验。在此基础上,教师再进行提炼和概括,使得学习者所建构的知识更明确,更系统。比如,在“圆的认识”教学中,教师可以设计一系列的活动,通过:“分一分”“指一指”“看一看”“描一描”“摆一摆”“摸一摸”,充分调动学生的多种感觉器官展开学习。同时,教师也不要先把有关长方形、正方形和三角形的性质告诉孩子之前,让他们去拼摆相应的图形。事实上,如果教师放手让孩子去拼,孩子会拼得比教师想象的要好得多。正是这样多种感官的参与,在尝试错误的过程中他们完成了对新知的认知活动。
小学数学教学方法二

把握好各章各节的重点和难点
我们首先要搞清一个问题就是什么是教学重点与难点,只有弄清了这个问题,才能加强教学的针对性。所谓教学重点是在整个知识体系或课题体系中处于重要地位和突出作用的内容,也就是说这个知识点在今后的学习中有着广泛的应用,是解决问题的基础,如概念、法则、性质、策略等。所谓教学难点是指根据本班学生的基础知识与认知水平,大部分学生理解起来有一定难度的知识点。教学重点是客观存在的,对知识的理解与运用起着非常重要的作用,而教学难点是依学生的实际情况不同而不同,是主观存在的。因此要处理好教学重难点就是确立各章节的教学重难点。

1.深入研读教材,把握好各知识点间的联系,确立教学重点。教材是最重要的教学资源,是教师教学与学生学习的主要依据,要搞好课堂教学,培养学生能力,提高教学效果要以教材为基础。我们要深入研究教材,挖掘教材,要从整体上把握整个小学阶段教材的特点,对各知识模块了然于胸,这样才能确立各年级的教学重点,进而确立各章节的教学重点。
2.全面了解学生情况,确立教学难点。各班学生的学习情况不一样,各班的教学难点也不一样。同样对于同一个班级的学生来说,每个学生的基础知识与认知水平不同,每个人在教学中的难点也不一样。因此,我们要对班级学生的基础知识与接受水平做一个全面的了解,充分体现因材施教的原则,确立教学难点,加强教学的针对性。同时在具体的教学中与作业中,要留心学生的学习反馈情况。在教学中我建立学生个人成长档案,及时记录每个学生学习的变化情况,制定不同的方案,同时注意学生层次的变化,以及时调整教学重难点,真正做到了教学面向全体学生,促进学生全面参与,提高学生全面素质。
以旧知引出新知,实现知识的迁移

各知识点不是独立的,有着内在的必然联系,任何割裂知识间联系的教与学都是低效的,不利于学生知识体系的形成,不利于学生掌握数学思想与方法。我们要知道学生的认知活动就是一个从已知到未知再到已知,由少到多、由简到繁、由薄到厚的过程。学生的学习总是以一定的知识为基础。旧知是新知的基础,新旧是旧知的扩展与延伸,二者之间有着必然的联系。
因此,在教学时我们要以学生的旧知为基础,找准新旧知识间的衔接点,以旧知引出新知,实现知识的正面迁移。有了旧知作铺垫,学生在理解重点与难点就不会那么困难了,相比之下就容易了许多。如在学习“平行四边形的面积”时,平行四边形面积的推导是教学的重点,也是难点。在学习时我们可以先复习已学过的长方形与三角形面积的求解,然后引导学生思考平行四边形与已学过的哪个图形相似,能否将平行四边形转化成已学过的某种图形。学生在经过比较与分析后,得出平行四边形与长方形形状相似,然后让学生将平行四边形转化为长方形。学生通过动手与动脑,通过剪一剪、拼一拼,将平行四边形转化成了长方形,这样教学重难点便迎刃而解了。

小学数学教学方法三

积累基本的数学经验是突出重点、突破难点的基础。

基本数学经验是指在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。数学经验源于日常生活经验,高于日常经验。小学数学活动可分为4类:直接来源于生活的数学活动;间接来源干生活的数学活动;为数学学习设计的纯粹数学活动;意境连接性的数学活动。"

解决问题的策略"教学属于间接来源于生活的数学活动,因此教师要设计有层次的数学学习活动,引导学生经历解题过程,进行体验和反思,把解决问题中的体验加以整理,对获得的数学经验进行反思,对学生的认知过程再认知,从而掌握解题策略,感受策略价值,积累数学经验,有效突破教学重、难点。以五年级上册"解决问题的策略--列举"为例,教学例1要让学生经历无序到有序的过程,学会用列表的方法有条理地列举;教学例2要引导学生用列举的策略解决问题,要不重复、不遗漏地进行思考,感受用列表、打"?"法列举的简洁、有序;教学例3要启发学生从不同的角度分析问题,进一步感受列举策略的特点。 教学每道例题,都要引导学生回顾和反思,积累数学经验,树立主动用策略解决问题的意识。
根据学生的认知水平,从重点中确定好难点。
数学教学重点和难点与学生的认知结构有关,是由于学生原有数学认知结构与学习新内容之间的矛盾而产生的。把新知识纳入原有的数学认知结构,从而扩大原有数学认知结构的过程是同化。当新知识不能同化于原有的数学认知结构,要改造数学认知结构,使新知识能适应这种结构的过程是顺应。从学生的认知水平来分析,通过同化掌握的知识点是教学重点,通过顺应掌握的知识点既是教学重点,又是教学难点。当然,在实际教学中,由于学生个体认知水平的差异,同化的知识对有的学生而言,也是学习难点,顺应的知识对有的学生而言,不一定是学习难点。
总之,要根据学生实际,在把握重点的基础上,确定好难点。仍以六年级上册"解决问题的策略--替换"为例,"替换"是一种应用于特定问题情境下的解题策略,从学生的认知结构上看,掌握这一解题策略的过程是顺应的过程。因此,这节课的教学重点就是教学难点,即会用"替换"的策略理解题意、分析数量关系。除此以外,这节课的另一个教学难点是在用"替换"的策略解决相差关系的问题时,要找准总数与份数的对应数量,理解总数的变化。

阅读全文

与小学数学重点相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99