① 有关于新课标下小学数学的好的论文课题(只需要一个标题,范围)
一、一题多问
一题多问是就相同条件,启发学生通过联想,提出不同问题,以此促进学生思维的灵活性。
例如:三年级有女生45人,比男生少1/10。
问:(1)男生有多少人?
(2)男生比女生多几分之几?
(3)男生占全年级总人数的几分之几?
二、一题多变
这种练习,有助于启发引导学生分析比较其异同点,抓住问题的实质,加深对本质特征的认识,从而更好地区分事物的各种因素,形成正确的认识,进而更深刻地理解所学知识,促进和增强学生思维的深刻性。一般可以采用“纵变”和“横变”两种形式。
1、“纵变”:使学生对某一数量关系的发展有一个清晰的认识。
例:某工厂原来每天生产40台机器,现在每天生产50台机器,是原来的百分之几?
变化题:
(1) 某工厂原来每天生产40台机器,现在每天生产50台机器,比原来增产了百分之几?
(2) 某工厂现在每天生产50台机器,比原来增产了25%,原来每天生产多少台机器?
(3) 某工厂原来每天生产40台机器,现在比原来增产了25%,现在每天生产多少台机器?
2、“横变”:训练学生对各种数量关系的综合运用。
例:粮店要运进一批大米,已经运进12吨,相当于要运进大米总数的75%。粮店要运进大米多少吨?
变化题:
(1) 粮店要运进大米16吨,用4辆汽车运一次,每辆运2.5吨,还剩下多少吨大米没有运到?
(2) 粮店要运进大米16吨,先用4辆汽车运一次,每辆运2.5吨,剩下的改用大车运,每辆大车运0.6吨。一次运完,需要大车多少辆?
(3) 粮店要运进大米16吨,先用4辆汽车运一次,每辆运2.5吨,剩下的改用大车运,每辆大车比汽车少运1.9吨。一次运完,需要大车多少辆?
(4) 粮店要运进大米16吨,先用汽车运进75%;剩下的改用大车运,每辆大车运的吨数是汽车已运吨数的1/24。一次运完,需要大车多少辆?
(5) 粮店要运进面粉14吨,是运进大米吨数的7/8。这些面粉和大米,用4辆汽车运,每辆运2.5吨,需要运几次?
这样,从“纵”、“横”两个方面进行练习,就不断加深了学生对数量关系的理解,使学生的思维从具体不断地向抽象过渡。发展了逻辑思维,提高了学生分析、解答应用题的能力。
三、一题多解
一题多解主要指根据实际情况,从不同角度启发诱导学生得到新的解题思路和解题方法,沟通解与解之间的内在联系,选出最佳解题方案,从而训练了思维的灵活性。
例1、某班有学生50人,男生是女生的2/3,女生有多少人?
(1)用分数方法解:50÷(1+2/3)=30(人)
(2)用方程方法解:X+2/3X=50 或X(1+2/3)=50X=30
(3)用归一方法解:50÷(2+3)×3=30(人)
(4)用按比例分配方法解:50×3/(3+2)=30(人)
例2、某工厂计划10天制造200台机器。结果2 天就完成了计划的25%。照这样计算,可以提前几天完成任务?
有以下几种解法:
(1)10-200÷(200×25%÷2)=2(天)
(2)把计划产量看作“1”。
Ⅰ、10-1÷(25%÷2)=2(天)
Ⅱ、10-2×(1÷25%)=2(天)
Ⅲ、10-(1-25%)÷(25%÷2)-2=2(天)
(3)把实际天数看作“1”。
10-2÷25%=2(天)
这样,培养学生从多种角度,不同方向去分析、思考问题,克服了思维定势的不利因素,开拓思路,运用知识的迁移,使学生能正确、灵活地解答千变万化的应用题。能做到大纲要求的“根据应用题的具体情况,灵活运用解答方法。”
通过以上形式多样的练习,不仅调动了学生浓厚的学习兴趣,更重要的是沟通了知识间的内在联系,使知识深化,而且可以达到以点带面,举一反三,触类旁通的目的。
② 小学数学论文
让学生学习生活中的数学
——我校开展数学实践活动的做法及体会
自主、合作、探究是新课程学习方式的三个基本维度,适时有效地开展数学实践活动,让学生在实践中自主、自悟、自得,从而将书本知识内化为自己的知识、技能,有利于培养学生学习数学的兴趣,促进学生个性、特长和谐发展,从而全面提高学生的综合素质。下面谈谈我校开展数学实践活动的做法及体会。
(一)一 选取内容要符合学生年龄特点,可操作性强。
数学实践活动是一项实践性较强的活动,是教师结合学生生活经验和知识背景。引导学生自主探索和合作交流的学习活动。这个活动必须建立在学生原有知识的基础上,是其年龄段感兴趣,做得了的。只有这样,学生才能在活动中更好地积累经验,感悟、理解数学知识的内涵。发展解决问题的策略,体会学习与现实生活的联系,调动学习情感,为今后更有效地学习打好基础。
本学期我们在一年级学生中开展了“问题银行”活动,提供探究性学习场所,让学生敢问、会问、善问,并以各自不同的方式理解和解答问题。学生通过同学间的合作、问爸爸妈妈、爷爷奶奶、找课外书等途径,让学生从以往什么都是“老师说”的怪圈中跳出来,从小养成积极思考,敢于探索的良好品质。活动中,同学共提出不同问题100多条,一年四班黄悦同学一人提出八个问题,表现出了良好的问题意识和求异思维能力。二年级开展了“我家的数字”活动,同学们通过度一度,量一量,对书本上介绍的长度单位的认识由抽象到直观。并通过电脑合成、手抄报等形式展示了各自的才能
三年级“寻找家中的周长”;四年级“生日派对方案”;五年级“我的设计”;六年级“走出课堂、走进银行”等,这些活动,符合学生的年龄特点,是课堂学习的延伸和拓展。反过来又给课堂教学带来了主动、生动、互动的效果,使课堂教学从“掌握型”走向“创新型”,为同学的自主学习探究学习开辟了广阔天地。
二活动过程中,及时交流,互相启发,逐步完善。
数学实践活动是一项综合性很强的活动过程。再小的活动都不可能一下子完成。要经历确定活动目标、内容——拟定活动计划——组织具体实施——交流反馈评价等程序。在活动过程中,既要放手让学生去体验,去创造,又要及时反馈、及时指导,还要有一定的时间保证。例如,在学完《圆的认识》后,为使学生能灵活、正确使用圆规画圆,进一步了解圆心、直径、半径等名词,鼓励学生画一幅以圆为主流的平面图。学生作业交上来后,有简笔画、水彩画、想象画、漫画等,种类繁多,色彩鲜艳。但构思比较简单,主题欠鲜明,只是大大小小圆的组合,寓意欠深刻。遇到这种情况,老师并不急于品头论足,而是适时组织同学在小组、全班范围交流创作的意念、创作过程及创作体会。从而感受别人思维的不同。互向启发,逐步完善自己的作品。最后,一批主题鲜明,构思新颖,时代感强的作品脱颖而出。这样,活动让学生经历了失败、尝试了方法、体验了过程,这就是收获!更重要的是,一次又一次的实践活动给学生带来了学习方式的变革以及知识、能力方面的提高与发展。
三关注过程与方法、情感与态度而不仅仅是结果。
综合实践活动是教师指导下的学生自己进行的合作学习活动。实践活动的开展,是让学生通过自己的亲身经历来了解、关注,并试着去分析解决自己所关注的问题。这些问题在我们看来可能是幼稚的,没有意义的,而有些问题是他们根本无法解决的。但我们更明白,综合实践活动的根本目的不是只为了让学生真正解决某个实际问题,更不是要一个完美的解决办法。而是注重在关注并试图解决这个问题的过程中,学生是怎样发现问题的,是怎样思考并试图解决问题的,在关注这个问题的过程中有所体验,有所感悟,学生的身心、情感、思维、态度都有了哪些变化。通过实践活动来认识自己,关爱生活、发展自己,这才是开展实践活动的目标所在。《数学课程标准》中指出:“教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现时生活中的应用价值。”在学习《统计表、统计图的整理和复习》时,我们组织学生,以小组为单位,通过网络、调查访问、翻阅书报、杂志、课外书获得信息,巧妙地制成统计图或统计表。在这一活动中,数学知识不再是脱离生活的各种练习,而是充分体现实践活动的再创造。情感体验伴随着活动的始终。
因此,他们敏锐的新闻触觉,扎实的数学基础知识、良好的审美观念等,展现了现代孩子超人的想象力和创造力,体现了学生的创新意识和创新品质。另外,在每次活动中,我们都十分关注学生的个体差异。注意保护每一个孩子的自尊心和自信心,让学生在活动中互相交流,在评价中点燃思维的火花,拓展知识的视野,了解斑斓的世界,共享成功的喜悦。
(二)一 师生互动,有助于教师观念更新
在综合实践活动中,居高临下的师道尊严受到冲击。综合实践活动毕竟是一个崭新的课题,它面向的不仅仅是学生,而是更广阔的生活世界,在纷杂的世界里,学生是学生,教师也是学生。而在某些方面,学生比老师更富有想象,创新能力更强。这就意味着老师要向学生学习,让师生关系真正走向平等。使老师对自己的教学认真反思,调整自己,以适应新的形势。六年级同学的《环市中路行车情况统计表》、《我国搜寻飞行员王伟派出舰船、飞机数量统计图》等,表现了现代孩子对社会的关注。他们已不再只是向老师学习加、减、乘、除运算的小不点,而是关注社会大家庭的一分子。
在综合实践活动中,老师作用的最大发挥,是为学生在自由空间的自由展现创设良好的氛围,提供广阔的空间。给学生信心,相信学生自己有能力,能做好。老师自己要虚心,不先入为主,不存偏见,设身处地,为学生着想,为学生的终身发展着想。尊重学生个性,尊重人与人的差异,使每个学生在自己原有的基础上,有所提高,有所发展,而不能强求一律,厚此薄彼,建立真正平等的师生关系。二 学身边的数学,学生有浓厚的兴趣
数学实践活动是数学活动的教学,是师生之间,生生之间互动与共同发展的过程。在这个过程中,要重视学生参与的情感体验,让学生在活动中感受数学,体验数学的作用,培养学生自觉地把数学应用于实际的意识和态度,使数学真正成为学生手中的工具,体会到数学巨大的应用价值。二年级学过长度单位厘米、分米、米后,通过量一量家人的身高,家用电器的长、宽等,培养了学生的数感,提高了学生应用知识的能力。三年级“寻找家中的周长”,五年级的“我的设计”等把现实生活中的实际问题转化为数学问题,使学生的实践应用能力得到提高。这样学生不仅可以把书本上的知识与实际联系,体会到数学的社会价值,还可以学到书本上学不到的知识,在实践中使知识得到升 华。学生觉得,他们今天的学习与生活密切相关,真正实现了愿学、乐学、会学。
三 综合利用知识,有助于学生综合能力的提高
《数学课程标准》指出:“有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”学生通过数学实践活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。综合起来。能培养学生这几方面的能力:一是收集信息、整理信息的能力;二是与他人合作交流的能力;三是利用所学知识解决实际问题的能力等。更重要的是,在数学实践活动中,学生经历观察、操作、实验、调查、推理等活动,在合作与交流的过程中,获得了良好的情感体验,感受数学知识间的相互联系,体会数学的作用。促进学生全面、持续和谐地发展。这是21世纪拔尖人才所必须的素质,也是《数学课程标准》所倡导的新的学习方式。学科实践活动作为一种新的学习内容及方式,对于我们来说是一个崭新的课题。在实践和探索中我们认识到,学生的学习不仅是知识的积累,更应在知识应用中强调灵活应用的意识;不仅要让学生主动地获取知识,还要让学生去发现和研究问题;不仅要让学生运用知识解决实际问题,更要在寻求问题解决的过程中激发学生的创新潜能,感悟学习思想和方法。
③ 关于小学数学的教育的论文
在教学时试图通过“提问——思考——发现”的方式调动学生学习的积极性和创造性,营造学生高参与的课堂氛围。但从课堂实施效果来看,喜忧参半!
一、 快节奏的课堂教学是引导学生高参与的基础
我相信,一个人在一支慢吞吞的队伍里排队等候自己感兴趣的东西,他的心理感受只可能用“焦急、厌倦、沮丧”来形容。在我们的教学中,由于受“希望学生尽快掌握所学知识”的心理影响,教师往往更乐意将知识嚼得碎碎的喂给学生,期望学生都能体会到获得知识的欣喜,所以突破难点时总爱唠叨几句,练习中总愿意等最慢的一个学生也把题目做完,哪怕减缓上课节奏都在所不惜,美其名曰:以学生为本,却不知这正是消磨学生学习积极性的症结所在。美国“启发策略研究所”的研究表明:当老师在整堂课里快节奏地讲解授课内容时,学生们通常更能全身心地投入。
教学是门永远带有遗憾地艺术。我们的课堂中应该以快节奏方式来维持一定的学生参与度,当我们感到学生参与程度在下降、学习活力在减弱、注意力在转移时,应尽快向下推进课程,让学生们感到课在不断地推进,总觉得有事要做、有问题要思考。老师讲解、问题解释和学生练习、答写只要有约一半的学生明白、完成就尽快变化,哪怕对反应相对迟缓的学生来说,我们也不能减慢速度去适应他们,而是用希望的力量和同伴高涨地学习积极性激励他们赶上教学的节奏。
④ 小学数学教学方面的论文,求一篇3000字左右的小学数学论文
解题策略
——探索→猜测→检验→探索→猜测→检验→……
2002年推出的小学数学新课程标准与原大纲相比,有很多新的内容,其中“培养创新意识和实践能力”、鼓励“猜测”和“探索”,可以说是“新课标”中的灵魂”。“新课标” 虽然仅在“培养学生的计算能力”中提到“重视学生检验的习惯”,但我认为,作为数学检验习惯和数学检验能力的培养,理应贯穿数学教学内容的全部,理应贯穿数学教学的始终。而且如果把探索、猜测和检验有机结合起来,将构成一种非常重要的数学解题策略。这种解题策略可公式化为:探索→猜测→检验→探索→猜测→检验→……,这种解题策略是“培养创新意识和实践能力”的重要途径。
解题策略中的“猜测”当然不是毫无依据的瞎猜,而是在探索(至少是初步探索)基础上有一定根据的猜测。既然是猜测,就不一定正确,就有必要进行检验。通过检验,又必然出现两种可能:猜测正确和猜测有误。如果猜测正确(经得起检验),则问题获得解决;倘若猜测有误,就应分析探索猜错的原因,探索改善的途径,并进一步作出新的较为合理的猜测。对新的猜测当然又必须进行新的检验,如此循环往复,直至求出问题的正确答案。这就是“探索→猜测→检验→探索→猜测→检验→……”的解题策略。
试看下面的例子:
一个笼子里有鸡兔两物,数一数有28个头,有100个足,问鸡兔各几只?
这种“鸡兔同笼”的问题,一般都是用“假设法”求解的,但“假设法”的思路(逻辑思维)难以被一般的小学生理解,如果我们运用“探索→猜测→检验→探索→猜测→检验→……”这一解题策略。那么我们可以得到小学低年级学生也能理解和掌握的下列解答。
探索:因为100÷4=25,所以0<兔的只数<25。
猜测:取0~25的中间数13作为兔的只数,则鸡的只数为28-13=15(只)
检验1:总足数=4×13+2×15=82
探索:因为82<100,所以13<兔只数<25。
猜测2:取13~25的中间数19作为兔只数,则鸡的只数为28-19=9(只)
检验2:总足数=4×19+2×9=94。
探索:因为94<100,所以19<兔只数<25。
猜测3:取19~25的中间数22作为兔的只数,则鸡的只数为28-22=6(只)
检验3:总足数=4×22+2×6=100,正好符合题意。
所以笼中有兔22只,有鸡6只。
上述解答虽然看似麻烦费时,但富含探索意识。其中的不断合理猜测与检验,并对检验结果进行校正,从而逐步逼近,直至找到正确答案的过程,符合人类探索、发现、发明、创造的认识过程,体现了“失败乃成功之母”的认识特点,对学生具有极高的教育价值,真正能使学生的创新意识和探索能力得到有效培养。选取中间数的方法,蕴涵了“中值”、“优选”等重要的数学思想方法,这对学生进一步学习数学是大有裨益的。通过这种解题锻炼,直接使学生掌握了探索→猜测→检验→探索→猜测→检验→……这一在实践中(在数学中当然也不例外)解决问题的重要策略,这将有效地培养学生运用数学从事实践工作的能力。
如果对第一次猜测导致的误差执果溯因,进行分析并稍作逻辑推理,则可快捷获得正确答案。
事实上通过探索和第一次猜测(13只兔、15只鸡)并检验,得知足数82比实际少了100-82=18。导致这一误差的原因虽然是猜测的兔子只数少于实际兔子只数。在总头数28不变的情况下,每增加1只兔,这时相应地减少1只鸡(或者理解为把1只鸡换成1只兔),总足数便增加2,要增加18只足,就需要增加18÷2=9(只)兔,因此,兔的只数应为13+9=22(只),从而鸡的只数为28-22=6(只),经检验,结论正确。
后一解法较前一解法多一点逻辑思维的含量,显然也是一种优秀的解题方法(策略),如果说前一种解法适合小学低年级的学生,那么后一种解法完全适合小学高年级学生的认知特点和水平。
在小学数学教学中,根据学生的认知特点和知识水平并结合学生生活实际,精心设计一些探索性和开放性的问题,引导学生运用“探索→猜测→检验→探索→猜测→检验→……”这一解题策略求解,将有利于对学生创新意识,探索意识和实践能力的培养。
⑤ 小学数学论文,给几篇例文
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
关于小学数学课堂教学评价的构想
素质教育要求教师充分挖掘每个学生的潜能,以促进学生素质的全面提高。为此,在小学数学课堂教学中 就要落实“掌握知识、发展智能、陶冶情操”的三维教学目标,使学生成为既有丰富的知识,又有高尚人格的 主体性的一代新人。这里的所谓人格,是指学生的能力特征和品德特征的总和。这不仅是小学数学课堂教学的 奋斗目标,也是督导评估小学数学课堂教学的依据。现就小学数学课堂教学评价问题,构想如下:
一、对小学数学课堂教学总体评价的构想
1.教学指导思想是否符合现代教学论原则;通过教与学双边活动是否充分调动全体学生的认识过程、情感 过程和意志过程。以促进每个学生掌握知识,培养和提高各种数学能力,完善人格,获得全面的发展。
2.教学目的要求和教学内容的确定是否有利于全体学生比较系统地掌握小学数学最佳知识结构。即,那些 最基本、最具有代表性的概念、法则、规律、公式和数学思想组成的知识系统,并且是按照小学生身心发展规 律,能被小学生所接受、理解、难易适度的知识系统。
3.教学过程的设计是否有利于学生对知识的理解、技能的形成、潜在智能的开发和提高;是否通过“获得 知识”和“应用知识”两种途径培养和形成学生良好的观察能力、思维能力、分析和解决问题的能力,以及动 手操作和数学语言表达能力。
4.在课堂教学中是否既突出“面向每一个学生,面向学生的每个方面”的落实,又兼顾“因材施教”的推 进。
5.课堂教学是否较好地体现了“认知结构”、“教材结构”、“教学结构”三者和谐一致的整体关系。
6.全体学生在求知的全过程中,兴趣、情感、信念、意志、性格等非智力因素投入的质量与程度如何,发 展趋向是否有利于学生形成良好的心理品质。
7.进行“知识”与“能力”方面的课时教学效果的量化测试和“智能”与“情意”方面相应的课外跟踪考 查结合。
二、小学数学课堂教学“三维教学目标”评价的构想。
(一)对“掌握知识”的评价构想。
实施素质教育,并不是要改变知识及其应用在课堂教学中的核心地位,并非要降低小学数学课堂教学的质 量,而是对小学数学课堂教学质量所涉及的内容提出了更高、更加广泛的要求。因此,在教学中应该把知识的 形成过程放在教学的首位,使学生经历真正的认知过程,获得具有生命力的有用的知识,掌握具有迁移的生动 的活泼的知识结构。那么,应该如何评价小学数学课“掌握知识”的教学,笔者认为应包括以下内容:
1.“感知、理解新知”的评价内容。
①为导入新知所提供的感知材料是否充实;
②感知材料的选择是否包罗新知的本质属性;
③感知阶段的诱导是否便于学生尽快进入新知的最近发现区,展开求知探索;
④新、旧知识交接点的确定,是否便于快速促成学生认知的正迁移,教师的点拨是否有助于激起学生“短 兵相接”的思维交锋,顺利完成认知的“同化”或“顺应”;
⑤教学辅助手段的使用,是否有利于学生省时优质地发现和理解新知的本质。
2.“抽象、概括新知”的评价内容。
①思维阶梯的铺设是否有助于学生在揭示新知本质的求知过程中,展开高效的观察与比较、分析与综合、 判断与推理、抽象与概括。
②学生在归纳总结新知的过程中是否经过了一个以具体形象思维为支柱,向抽象逻辑思维过渡,又将已理 解的抽象概念具体化的认知往返历程。
③学生对已概括的新知理解得是否正确、全面、深入;学生对新知本质抽象概括得是否正确、全面、深入 浅出,表述具体严谨;是否达到了课时教学规定的教学目标。
④学生在探求、获取新知中个性意识倾向性作用的发挥如何,全员参与的竞争质量与程度怎样。
⑤教师指导学生求知获取的“投入”与学生学会求知方法,得到收获的“产出”是否成正比。
(二)对“发展能力”的评价构想。
能力的发展只能在掌握知识的过程中获得,离开知识,能力就成了空中楼阁。“发展能力一定要结合知识 的传授过程去进行,知识有其能力价值,它凝聚在知识之中,不思则暗,深思则宽,不着重分析挖掘,不在知 识传授过程中充分发挥,就会落空。”发展能力必须结合知识体系有目的、有计划,有序列,有层次地由低级 向高级逐步提高。练,是形成和发展能力的主要途径。因此,就小学数学综合课“发展能力”的评价而言,应 包括下列内容:
1.对课堂“半独立性练习”层次的评价内容。
①给出的题目是否属于紧扣新知要点的基本型题目;是否便于全体学生直接运用新知,起到巩固理解,强 化记忆的作用。
②教师在指导学生运用新知的过程中,是否立足于学生主动积极地解决问题,以思维能力的训练为核心, 突出基本技能的形成,“扶”与“放”适度,不包办代替学生对新知的再现。
③学生运用新知解答基本型题目的技能和叙述算理,或法则或解题思路的语言表达能力是否达到规定的教 学目标。
④教师在本阶段的课堂小结是否切中由学生板演和课堂巡视所反馈问题的要害;“结语”是否有助于学生 对新知要点的再现和发展。
2.对课堂“独立性练习”层次的评价内容。
①本阶段习题设计是否由三类不同要求的题构成;这些题目的编排是否便于培养和提高学生独立运用知识 解决问题的能力。三类题目的要求如下:
低档题:比基本型题目稍有变化,其目的是让学生独立运用新知解题形成技能,加深对新知的理解和记忆 。
中档题:以新知为主体的综合型题目,题目的编排既突出适度的综合性,又带有一定的思考性色彩,用以 培养和训练学生解题的综合能力和灵活性。
高档题:思考性较强,略有难度的题目。这类题目不超越学生的知识范围和思维能力的限制,用以解决“ 吃不饱”学生的心理需求和“吃得饱”学生竞争意识的激励,推进学生的求知欲和好胜心。
②在本阶段中, 教师是否给予学生充足的独立练习时间(区间为10至15分钟);是否较好地完成本阶段课 时教学任务,达到规定的教学目标。
3.对“独立练习交流与课堂总结”层次的评价内容。
①教师在组织学生进行独立练习交流中,是否为学生创设了宽松、和谐、自信、民主的课堂氛围。
②教师对学生的解题交流与评定是否立足于培养学生思维的求异性、广阔性、创造性;是否致力于培养学 生勇于探索、不断进取、一丝不苟、精益求精的学习品质。
③师生合作的课堂总结是否提纲挈领,简明扼要,便于学生回顾求知过程,掌握新知要点,获得求知启迪 。
(三)对“陶冶情操”的评价构想。
人的智力商数是先天已有的,而情意商数却是后天的培养和努力的结果。科学界已提出:一个人的“智商 ”只占其成功要素的20%,真正决定人类智慧的不是“智商”,而是“情商”。因此,一个具有主体性的人, 其核心素质是高尚的人格。通过小学数学课堂教学去陶冶学生应具备的道德情操、科学品质,已是当务之急。 为此,学生在求知过程中情意因素投入的质量与程度,应当作为评价教师课堂教学水平的一项重要内容。应该 评价教师在课堂教学中,是否把“陶冶情操”与“掌握知识”、“发展能力”同步进行,有机结合;是否做到 为此不遗余力,持之以恒。
总括起来说,学生的“认识过程”、“情感过程”和“意志过程”是紧密联系在一起的三个方面。学生从 事学习的正确认识是情感活动和意志活动的基础;良好的情感又能推进学生的认识和行动;而坚强的意志则能 使学生锲而不舍地提高认识和陶冶情操,去完成既定的学习任务。评价学生的“认识过程”,旨在界定学生揭 示事物的本质以及事物间的关系和规律的水平,为教师提供课堂教学改革的信息,有助于在教学中更好地发挥 教师的主导作用和学生的主体性,促进学生掌握知识,获得智力技能和开拓学生的创造能力。评价学生的“情 感过程”,在于使教师在课堂教学中更加重视学生良好的情感和情操的培养。评价学生的“意志过程”,使教 师明确良好的意志品质是学生成才的必备素质,在教学中加强砥砺学生意志的教学力度,使学生具有高尚的学 习目的,在求知中胜不骄,败不馁,知难勇进,百折不挠,不达目的决不罢休。
据上所述,小学数学课堂教学应该围绕学生的“认识过程”、“情感过程”和“意志过程”去评价教与学的双边活动
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。