『壹』 请简述小学数学课程
第一学段(~3年级)
一、数与代数
1.数的认识
(1)能认、读、写万以内的数,会用数表示物体的个数或事物的顺序和位置。
(2)认识符号<,=,>的含义,能够用符号和词语来描述万以内数的大小。[参见例1]
(3)能说出各数位的名称,识别各数位上数字的意义。
(4)结合现实素材感受大数的意义,并能进行估计。[参见例2和例3]
(5)能结合具体情境初步理解分数的意义,能认、读、写小数和简单的分数。
(6)能运用数表示日常生活中的一些事物,并进行交流。[参见例4]
2.数的运算
(1)结合具体情境,体会四则运算的意义。【1】
【1】关于乘法:3个5,可以写作3×5,也可以写作5×3。3×5读作3乘5 ,3和5都是乘数(也可以叫因数)。关于除法:不给出"第一种分法""第二种分法"等名称。
(2)能熟练地口算20以内的加减法和表内乘除法,会口算百以内的加减法。
(3)能计算三位数的加减法,一位数乘三位数、两位数乘两位数的乘法,三位数除以一位数的除法。
(4)会计算同分母分数(分母小于10)的加减运算以及一位小数的加减运算。
(5)能结合具体情境进行估算,并解释估算的过程。[参见例5]
(6)经历与他人交流各自算法的过程。
(7)能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。[参见例6]
3.常见的量
(1)在现实情境中,认识元、角、分,并了解它们之间的关系。
(2)能认识钟表,了解24时记时法;结合自己的生活经验,体验时间的长短。[参见例7]
(3)认识年、月、日,了解它们之间的关系。
(4)在具体生活情境中,感受并认识克、千克、吨,并能进行简单的换算。
(5)结合生活实际,解决与常见的量有关的简单问题。
4.探索规律
发现给定的事物中隐含的简单规律。[参见例8]
二、空间与图形
在本学段中,学生将认识简单几何体和平面图形,感受平移、旋转、对称现象,学习描述物体相对位置的一些方法,进行简单的测量活动,建立初步的空间观念。
在教学中,应注重所学知识与日常生活的密切联系;应注重使学生在观察、操作等活动中,获得对简单几何体和平面图形的直观经验。
(一)具体目标
1.图形的认识
(1)通过实物和模型辨认长方体、正方体、圆柱和球等立体图形。
(2)辨认从正面、侧面、上面观察到的简单物体的形状。[参见例1]
(3)辨认长方形、正方形、三角形、平行四边形、圆等简单图形。
(4)通过观察、操作,能用自己的语言描述长方形、正方形的特征。
(5)会用长方形、正方形、三角形、平行四边形或圆拼图。
(6)结合生活情境认识角,会辨认直角、锐角和钝角。
(7)能对简单几何体和图形进行分类。
2.测量
(1)结合生活实际,经历用不同方式测量物体长度的过程;在测量活动中,体会建立统一度量单位的重要性。
(2)在实践活动中,体会千米、米、厘米的含义,知道分米、毫米,会进行简单的单位换算,会恰当地选择长度单位。[参见例2]
(3)能估计一些物体的长度,并进行测量。
(4)指出并能测量具体图形的周长,探索并掌握长方形、正方形的周长公式。[参见例3]
(5)结合实例认识面积的含义,能用自选单位估计和测量图形的面积,体会并认识面积单位(厘米2、米2、千米2、公顷),会进行简单的单位换算。[参见例4]
(6)探索并掌握长方形、正方形的面积公式,能估计给定的长方形、正方形的面积。
3.图形与变换
(1)结合实例,感知平移、旋转、对称现象。[参见例5]
(2)能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
(3)通过观察、操作,认识轴对称图形,并能在方格纸上画出简单图形的轴对称图形。
4.图形与位置
(1)会用上、下、左、右、前、后描述物体的相对位置。
(2)在东、南、西、北和东北、西北、东南、西南中,给定一个方向(东、南、西或北)辨认其余七个方向,并能用这些词语描绘物体所在的方向;会看简单的路线图。
三、统计与概率
在本学段中,学生将对数据统计过程有所体验,学习一些简单的收集、整理和描述数据的方法,能根据统计结果回答一些简单的问题,初步感受事件发生的不确定性和可能性。
在教学中,应注重借助日常生活中的例子,让学生经历简单的数据统计过程;应注重对不确定性和可能性的直观感受。
『贰』 小学数学课程内容的构成
一、 课要树立新的课程理念
所以,在备课时同样体现在“理念决定思路,思路决定出路”.任何一次教育改革,无不以教育观念的变革为先导,教育每前进一步,无不依赖教育观念的突破,备课的改革也是一样.首先教师在思想观念上必须有突破和创新,可以说,没有教师教育思想上的一次重大转变,就不会有整个备课内容方法上的突破,真正树立.我们不仅要对学生今天的数学学习负责,更要对学生一生的发展和幸福.教师若真正确立了这样的理念,就会在备课上关注学生,只有将以上这些理念烂熟于心,教师们在备课中才能给自己的课堂教学重新定位,才能使我们的课堂教学与时俱进.
二、 课要明确学生的学习目标
“课标”在具体课程目标中提出了:“知识与技能、数学思考、解决问题、情感态度与价值观”四个方面的数学课程目标.通过知识与技能、态度的结合,知识与情感的结合,来实现课程的总体目标.在基础教育中,实施情感、态度与价值观的教育,是课程标准向我们提出的新目标要求.大家知道,数学枯燥无味.因此,在制定课时教学目标的把握上,除了“双基”目标外,还要注重:(1)每一节课都要重视对学生进行学习兴趣、习惯、方法的培养目标,落实这一主要目标比教学生掌握所学知识更为重要.它体现的是一种态度、一种情感,最后才是一种结果.例如:在教《“10以内数”的认识》这节课时,让孩子们认识了“10以内数”之后,迅速地将孩子们引进了一个精彩的世界-----
同学们,你们能用身边的事物说说你心目中的数字吗?老师用期待的目光扫视着全班同学,小手一个个地举起来了.x0d“我们教室里有‘1’块黑板.”
“ 我有一双勤劳的手,一共是10个手指头.”
“我的衣服上有5颗纽扣.”-------
老师巧妙的一问,让学生自然地把数学与身边的事物联系起来,科学的价值与意义就在生活之中,学生在不知不觉中接受了这一深奥的道理.在这种和谐的交流中,教师与学生之间,学生与学生之间的感情,得到了融洽与升华.
三、 课要提供丰富的学习资源.
为了适应新教材的编排特点是“具有基础性、丰富性和开放性”.给不同层次的学生留有学习空间,从而激发他们的学习兴趣.x0d教师必须深入钻研教材,充分挖掘蕴涵在数学知识中的数学思想.我们知道小学教材体系有两条线索:第一条是数学知识,这是写在教材上的明线;第二条是数学思想方法,这是教材编写的指导思想.是不很明确地写在教材中,是一条暗线.前者容易理解,后者不易看明.前者是教材写什么,后者是明确为什么要这样写.例如:“进位加法”的进位问题.从教材的表层不仅是出现几种不同的算法,在鼓励算法多样化的基础上,要提倡学习用“凑十法”进行计算,而深层次挖掘,我认为更重要的恐怕还是引导学生掌握以“十”为单位的计算的思想.这也更是后续学习的需要.
因为在人类历史的长河里,人类的认识经过两次飞跃.从逐一计数到按群计数是第一次飞跃.从按群计数到以“十”为单位计数是第二次飞跃.
三、 备课要找准教学的切入点.
《课程标准》明确指出:“数学教学活动必须建立在学生的认识发展水平和已有的知识经验基础上”,因此,备课时教师要能想到以下几个问题:
1、学生已经知道了什么?
2、学生自己已经解决了什么?
3、学生还想知道什么?
4、想知道这些问题,学生是否能通过合作来解决?
5、哪些问题需要教师的点拨和引导?
6、哪些疑难问题还需要拓展与延伸等.把这些问题弄清楚了,也就明确本节课中教学的切入点和主要完成的目标了.
以上所谈的几个方面,落到实处那就是:在课堂上,“学生的思路就是我们教学的线索,我们只是引导学生前进.过去以传授知识技能为主,现在我们以促进学生的终身发展为己任。
『叁』 小学数学阶段课程目标是怎样描述的
一、总体目标
通过义务教育阶段的数学学习,学生能够
● 获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
●初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
●体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
●具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展.
具体阐述如下:
知识与技能
●经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题.
●经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单的问题.
●经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题.
数学思考
●经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维.
●丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维.
●经历运用数据描述信息、作出推断的过程、发展统计观念.
●经历观察、实验、猜想.证明等数学活动过程,发展合情推理能力和初
步的演绎推理能力、能有条理地、清晰地阐述自己的观点.
解决问题
●初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识和技能解决问题,发展应用意识.
●形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.
●学会与人合作,并能与他人交流思维的过程和结果.
●初步形成评价与反思的意识.
情感与态度
●能积极参与数学学习活动,对数学有好奇心与求知欲.
●在数学学习活动中获得成功的体验.锻炼克服困难的意志,建立自信 心.
●初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
●形成实事求是的态度以及进行质疑和独立思考的习惯.
以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它们是在丰富多彩的数学活动中实现的.其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提.
二、学段目标
第一学段(1~3年级) 第二学段(4~6年级) 第三学段(7~9年级)
知识与技能
●经历从日常生活中抽象出数的过程,认识万以内的数、小数、简单给分数和常见的量;了解四则运算的意义,掌握必要的运算(包括估算)技能.
●经历直观认识简单几何体和平面图形的过程,了解简单几何体和平面图形,感受平移、旋转、对称现象,能初步描述物体的相对位置、获得初步的测量(包括估测)、识图、作图等技能.
●对数据的收集、整理、描述和分析过程有所体验、掌握一些简单的数据处理技能;初步感受不确定现象.
●经历从现实生活中抽 象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分数、负数的意义.掌握必要的运算(包括估算)技能;探索给定事物中隐含 的规律,会用方程表示简单的数量关系,会解简单的方程.
●经历探索物体与图形的形状、大小、运动和位置关系的过程,了解简单几何体和平面图形的基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图、作图等技能.
●经历收集、整理、描 述和分析数据的过程,掌握一些数据处理技能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性.
●经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括 估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函 数等进行描述.
●经历探索物体与图形基本性质、变换、位置关系的过程,掌握三角形、四边形、圆的基本性质以及平移、旋转、轴对称、相似等的基本 性质,初步认识投影与 视图、掌握基本的识图、作图等技能;体会证明的必要性、能证明三角形和四边形的基本性质,掌握基本的推理技能.
●从事收集、描述、分析 数据,作出判断并进行 交流的活动,感受抽样的必要性,体会用样本估计总体的思想,掌握必要的数据处理技能;进一步丰富对概率的认识,知道频率与概率的关系,会计算一些事件发生的概率.
数学思考
●能运用生活经验,对有关的数字信息作出解释,并初步学会用具体的数描述现实世界中的简 单现象.
●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念.
●在教师的帮助下,初步学会选择有用信息进行简单的归纳与类比.
●在解决问题过程中,能进行简单的、有条理的思考.
●能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描述并解决现实世界中的简单问题.
●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念.
●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力.
●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明.
●能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数刻画事物间的相互关系.
●在探索图形的性质、图形的变换以及平面图形与空间几何体的相互转换等活动过程中,初步建立空间观念,发展几何直觉.
●能收集、选择、处理数学信息、并作出合理的推断或大胆的猜测.
●能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推翻猜想.
●体会证明的必要性.发展初步的演绎推理能力.
解决问题
●能在教师指导下,从日常生活中发现并提出简单的数学问题.
●了解同一问题可以有不同的解决办法.
●有与同伴合作解决问题的体验.
●初步学会表达解决问题的大致过程和结果.
●能从现实生活中发现并提出简单的数学问题.
●能探索出解决问题的有效方法、并试图寻找其他方法.
●能借助计算器解决问题.
●在解决问题的活动中,初步学会与他人合作.
●能表达解决问题的过程,并尝试解释所得的结果.
●具有回顾与分析解决问题过程的意识.
●能结合具体情境发现并提出数学问题.
●尝试从不同角度寻求解决问题的方法并能有效地解决问题,尝试评价不同方法之间的差异.
●体会在解决问题的过程中与他人合作的重要性.
●能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果的合理性.
●通过对解决问题过程的反思,获得解决问题的经验.
情感与态度
●在他人的鼓励与帮助下,对身边与数学有关的某些事物有好奇心,能够积极参与生动、直观的数学活动.
●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心.
●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联系.
●经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性.
●在他人的指导下,能够发现数学活动中的错误并及时改正.
●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动. ●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有克服困难和运用知识解决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得不断的进步.
●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流.
●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性.
●对不懂的地方或不同的观点有提出疑问的意识、并愿意对数学问题进行讨论,发现错误能及时改正.
●乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用.
●敢于面对数学活动中的困难,并有独立克服困 难和运用知识解决问题的成功体验,有学好数学的自信心.
●体验数、符号和图形是 有效地描述现实世界的重要手段、认识到数学是解决实际问题和进行 交流的重要工具,了解数学对促进社会进步和 发展人类理性精神的作用.
●认识通过观察、实验、归纳、类比、推断可以获得数学猜想体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨 性以及结论的确定性.
●在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他 人的见解;能从交流中获益.
地区不一样要求也不尽然,不过可以参考,希望对你有帮助.
『肆』 求小学数学教学课程标准
开课专业:
小学教育专业;开课学期:第五学期;
课程总学时:
72
学时(讲授学时:
44
学时;研讨与实践学时:
28
学时;每学期两
周校外实训基地实训)
;
学分:
4
学分。
一、课程地位、性质和任务
《小学数学课程与教学》是初等教育专业的一门专业必修课程,是以研究小学数学
教学的规律、小学数学教学的艺术等问题的一门核心课程。
《小学数学课程与教学》以“基础教育课程改革纲要”和“全日制义务教育数学课
程标准”为指导,以现代教育学和心理学为基础,根据数学课程发展的趋势,研究小学
数学课程及其教学的规律,主要介绍小学数学教材编写思想、小学数学学科概述,小学
数学课程内容,儿童的数学学习过程,小学数学的主要教学理论及模式分析,小学数学
课堂教学,小学数学教学的组织、设计和评价,数学概念、数学规则、空间几何、统计
与概率数学问题解决的教学研究等。它以哲学、教育学、心理学、数学为基础理论、吸
收逻辑学、美学、社会学、文化学、历史学等相邻相关学科的科研成果,在多视角,多
侧面的交叉中形成自己的理论体系。
《小学数学教学法》体现理论性,应用性。一方面
提供学生未来进行小学数学教学所需要的最基础的科学理论和技能,
培养学生运用理论
知识和科学方法探寻和解决小学数学教学中诸多问题;
另一方面引导学生用科学理论去
指导实践创新,用实践创新去丰富理论。不断提高学生小学数学教学能力,并最终形成
终身发展能力。
二、课程目标
通过本课程的学习,使学生较全面、较系统地掌握小学数学课程与教学的基本理
论和基本方法,树立正确的数学教育观,明确小学数学课程的目标和内容,掌握小学数
学学习规律和教学规律,具有初步的教学与研究能力,为今后的教学工作奠定更为坚实
的理论和技能基础。具体为:
1
、
从课程论、教学论和学习论三个方面认识小学数学教学;
2
、
从小学数学发展的历史来认识当前我国小学数学教学;
3
、
掌握小学数学教学的一般原理和基本的教学技能;
4
、产生对小学数学教学与研究的兴趣;
三、
课程教学的基本要求
认真钻研教材,
明确本课程的具体特点和学习要求。
引导学生在全面系统学习的基
础上,掌握基本理论、基本知识和基本方法。重视教育教学理论与小学数学教学实际相
结合的原则。把课程的教学内容与小学数学教育的实际紧密联系起来,通过案例的形式
进行理论分析和解剖,让学生生动形象地理解教学内容,不断提高小学数学教学与研究
『伍』 小学数学课程的含义
通过义务教育阶段的数学学习,学生能:
1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
『陆』 小学数学的课程标准是什么
1、获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
2、初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
3、体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心
4、具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。
(6)小学数学课程介绍扩展阅读:
义务教育阶段的数学学习目标:
1、获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
2、体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
3、了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
『柒』 小学数学的课程内容
数学是日常生活和进一步学习必不可少的基础和工具。掌握一定的数学基础知识和基本技能,是我国公民应当具备的文化素养之一。
小学数学是义务教育的一门重要学科。从小给学生打好数学的初步基础,发展思维能力,培养创新意识、实践能力和学习数学的兴趣,养成良好的学习习惯,对于贯彻德、智、体全面发展的教育方针,培养有理想、有道德、有文化、有纪律的公民,提高全民族的素质,具有十分重要的意义。
二、教学目的和要求
教学目的
(1)使学生理解、掌握数量关系和几何图形的最基础的知识。
(2)使学生具有进行整数、小数、分数四则计算的能力,培养初步的思维能力和空间观念,能够探索和解决简单的实际问题。
(3)使学生具有学习数学的兴趣,树立学好数学的信心,受到思想品德教育。教学要求
使学生获得有关整数、小数、分数、百分数和比例的基础知识;常见的一些数量关系和解答应用题的方法;用字母表示数和简易方程、量与计量、简单几何图形、统计的一些初步知识。
使学生能够正确地进行整数、小数、分数的四则运算,对于其中一些基本的计算,要达到一定的熟练程度,并逐步做到计算方法合理、灵活。具有估算意识和初步的估算能力。
结合有关内容的教学,引导学生进行观察、操作、猜测,培养学生会进行初步的分析、综合、比较、抽象、概括,对简单的问题进行判断、推理,逐步学会有条理、有根据地思考问题;同时注意思维的敏捷和灵活。
使学生逐步形成简单几何形体的形状、大小和相互位置关系的表象,能够识别所学的几何形体,并能根据几何形体的名称再现它们的表象,培养初步的空间观念。
培养学生观察和认识周围事物间的数量关系和形体特征的兴趣和意识,使学生感受数学与现实生活的密切联系,通过观察、操作、猜测等方式,培养学生的探索意识,使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。
『捌』 小学数学新课程理念
小学数学新课程的基本理念
1、数学课程生活化
数学教学要从学生的生活经验和已有的知识出发,以学生从体验的和容易理解的现实问题为素材,并注意与学生已经了解和学生过的教学知识相联系,让学生在熟悉的事物和具体情境中,通过自主活动理解教学知识,建构数学知识结构。
2、让学生亲历数学知识的形成
学习数学唯一正确的方法是实行“再创造”,探究性学习强调学生通过自己参与类似于科学研究的学习活动,获得亲身体验,就是“再创造”。必须让学生看到数学知识形成和发展过程,亲身体验如何“做数学”。
3、转变学生的学习方式
《课程标准》指出:“学生的数学学习和活动应当是一个生动的,主动和具有个性的过程”。“动手实践,自主探索,与合作交流是学生学习数学的重要方式”。这是此次课改的核心理念。
4、教师要转变教学的方式
《课程标准》指出:“教师是数学学习的组织者,引导者与合作者”。在教学中,教师应精心组织课堂教学,有效地引导学生参与数学活动,真诚地与学生合作,共同创造一种新的课堂文化。
5、评价的根本是要促进学生的发展
新课程评价是关注学生的全面发展。评价的主要目的是为了全面了解学生的数学学习历程,激励学生的教学和改进教师的教学,应建立评价目标多元化,评价方法多样化的评价体系。评价要关注学生的学习结果,更要关注他们在教学活动中所表现出来的情感与态度帮助学生认识自我,建立信心。
6、重视现代信息技术的应用
『玖』 简述小学数学课程
第一学段(1~3年级)
一、数与代数
1.数的认识
(1)能认、读、写万以内的数,会用数表示物体的个数或事物的顺序和位置。
(2)认识符号<,=,>的含义,能够用符号和词语来描述万以内数的大小。[参见例1]
(3)能说出各数位的名称,识别各数位上数字的意义。
(4)结合现实素材感受大数的意义,并能进行估计。[参见例2和例3]
(5)能结合具体情境初步理解分数的意义,能认、读、写小数和简单的分数。
(6)能运用数表示日常生活中的一些事物,并进行交流。[参见例4]
2.数的运算
(1)结合具体情境,体会四则运算的意义。【1】
【1】关于乘法:3个5,可以写作3×5,也可以写作5×3。3×5读作3乘5 ,3和5都是乘数(也可以叫因数)。关于除法:不给出"第一种分法""第二种分法"等名称。
(2)能熟练地口算20以内的加减法和表内乘除法,会口算百以内的加减法。
(3)能计算三位数的加减法,一位数乘三位数、两位数乘两位数的乘法,三位数除以一位数的除法。
(4)会计算同分母分数(分母小于10)的加减运算以及一位小数的加减运算。
(5)能结合具体情境进行估算,并解释估算的过程。[参见例5]
(6)经历与他人交流各自算法的过程。
(7)能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。[参见例6]
3.常见的量
(1)在现实情境中,认识元、角、分,并了解它们之间的关系。
(2)能认识钟表,了解24时记时法;结合自己的生活经验,体验时间的长短。[参见例7]
(3)认识年、月、日,了解它们之间的关系。
(4)在具体生活情境中,感受并认识克、千克、吨,并能进行简单的换算。
(5)结合生活实际,解决与常见的量有关的简单问题。
4.探索规律
发现给定的事物中隐含的简单规律。[参见例8]
二、空间与图形
在本学段中,学生将认识简单几何体和平面图形,感受平移、旋转、对称现象,学习描述物体相对位置的一些方法,进行简单的测量活动,建立初步的空间观念。
在教学中,应注重所学知识与日常生活的密切联系;应注重使学生在观察、操作等活动中,获得对简单几何体和平面图形的直观经验。
(一)具体目标
1.图形的认识
(1)通过实物和模型辨认长方体、正方体、圆柱和球等立体图形。
(2)辨认从正面、侧面、上面观察到的简单物体的形状。[参见例1]
(3)辨认长方形、正方形、三角形、平行四边形、圆等简单图形。
(4)通过观察、操作,能用自己的语言描述长方形、正方形的特征。
(5)会用长方形、正方形、三角形、平行四边形或圆拼图。
(6)结合生活情境认识角,会辨认直角、锐角和钝角。
(7)能对简单几何体和图形进行分类。
2.测量
(1)结合生活实际,经历用不同方式测量物体长度的过程;在测量活动中,体会建立统一度量单位的重要性。
(2)在实践活动中,体会千米、米、厘米的含义,知道分米、毫米,会进行简单的单位换算,会恰当地选择长度单位。[参见例2]
(3)能估计一些物体的长度,并进行测量。
(4)指出并能测量具体图形的周长,探索并掌握长方形、正方形的周长公式。[参见例3]
(5)结合实例认识面积的含义,能用自选单位估计和测量图形的面积,体会并认识面积单位(厘米2、米2、千米2、公顷),会进行简单的单位换算。[参见例4]
(6)探索并掌握长方形、正方形的面积公式,能估计给定的长方形、正方形的面积。
3.图形与变换
(1)结合实例,感知平移、旋转、对称现象。[参见例5]
(2)能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
(3)通过观察、操作,认识轴对称图形,并能在方格纸上画出简单图形的轴对称图形。
4.图形与位置
(1)会用上、下、左、右、前、后描述物体的相对位置。
(2)在东、南、西、北和东北、西北、东南、西南中,给定一个方向(东、南、西或北)辨认其余七个方向,并能用这些词语描绘物体所在的方向;会看简单的路线图。
三、统计与概率
在本学段中,学生将对数据统计过程有所体验,学习一些简单的收集、整理和描述数据的方法,能根据统计结果回答一些简单的问题,初步感受事件发生的不确定性和可能性。
在教学中,应注重借助日常生活中的例子,让学生经历简单的数据统计过程;应注重对不确定性和可能性的直观感受。