1. 小学新课程考题 关于算法多样化怎样理解与双基关系 面积公式
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
2. 小学数学算法多样化要解决那几个问题,达到什么目标
学习数学,重要的是理解,而不是像其它科目一样死背下来.数学有一个特点,那就是‘‘举一反三”.做会了一道题目,就可以总结这道题目所包含的方法和原理,再用总结的原理去解决这类题,收效就会更好.学习数学还有一点很重要,那就是从基本的下手,稳稳当当的去练,不求全部题都会做,只求做过的题不会忘,会用就行了.在做题的过程中,最忌讳的就是粗心大意.往往一道题目会做,却因粗心做错了,是很不值得的.所以在考数学的时候,一定不要太急,要条理清楚的去计算,思考;这样速度可能会稍慢,但却可以使你不丢分.相比之下,我会采取稍慢的计算方法来全面分析题目,尽量做到不漏.学习是一生的事情,不要过于着急,一步一个脚印的来,就一定会取得一想不到的效果傍晚时分,也许是下雨的缘故吧,一反往日的喧闹,街道上清冷得可怕,天空被乌云笼罩着,空气中也夹杂着几分阴森,一股股冷风伴着小雨袭面而来。我背着又大又沉的书包踏着沉重的步子走在回家的路上,心里想着今天的作业:英语记单词,明天要报听写;数学三面;物理,语文……一股无力感涌上心头,在这凄冷的夜色中越发显得沉重。脚步一步步向前,内心却充满了无奈与不愿,那是家的方向,因为我知道一回到家等待我的就是做也做不完的作业和永远说不尽的唠叨,父母那令我窒息的关心。雨,孤独地下着,下在人潮点点的街道也下在愁丝点点的心里。
3. 如何实现多元化的小学数学教学
《数学课程标准》指出:在小学数学中的计算教学,不仅要重视创设现专实情境,使学生感受学习数属与计算的必要性……而且要尊重学生的个性,鼓励算法多样化。那么如何实现小学数学教学中算法的多样化呢?下面我就这个问题谈谈体会。
4. 如何把握算法多样化和优化
随着课堂教学改革的深化和《数学课程标准》出台,对计算教学提出了新要求,“应重视口算,加强估算,提倡算法多样化”的理念,给计算教学的课堂带来了新的活力,在不少老师的课堂上,算法多样化的理念能得到很好的体现,一道计算题通过教师的悉心引导,同学们的积极思考,奇思妙想层出不穷,学生课堂表现异常活跃,“算法多样化”成为小学数学教学中关注的一个热点。在计算教学中,我们如何把握算法多样化和优化,不使教学流于形式呢?
围绕这个问题,我们宾阳县也开展了教研活动,教师们在把算法多样化具体落实在到教学实践时,出现了不少的困惑和误区;在我们学校,老师们也以此确立了一个校级课题,进行研究, 真正开展起来确实觉得对《数学课程标准》中提出的“算法多样化”这一理念的理解比较模糊,在操作上也有很多疑惑,难以把握好算法多样化教学的尺度;通过教研室组织的培训,不断学习、实践和反思,摸爬滚打中我们有了一些自己的体会:
一、算法多样化不等于算法全面化
算法多样化是一个学习共同体为解决某一个问题,通过动手实践、自主探索和合作交流后形成的多种计算方法的集合体。它是针对一个学习共同体而言的,绝不是针对某一学习个体而言。多样化并不意味着追求全面化。
首先,提倡算法多样化并不是把所有的算法都要想出来。如教学13减9得几时,学生只想到了以下四种方法:
(1)先摆13根小棒,再拿走9根,还剩4根;
(2)算减法想加法,因为9加4得13,把以13减9得4; (3)先从10里减9得1,1再加3得4;
(4)先算13减3得10,再算10减6得4。
除了学生想到的四种方法,还有其它方法,如:9减3得6,10再减6等于4。但学生没有说出,如果教师刻意追求,反复启发,千呼万唤才得了出来,说明这种方法远离儿童的认知最近发展区,强行让学生接受这种方法就会加重学生负担,无益于学生的发展。算法多样化教学,是教学生,不是教教材,不能为了追求全面而让学生把大量的时间花费在某些难懂的解题方法上,只要不影响后续的学习,最好淡化形式,注重实质。
其次,算法多样化不能要求每个学生都要想出一种或几种不同的计算方法,不能无原则地降低数学思考的要求。每个学生都有自己的特点,学生在学习数学方面的差异是客观存在的。在算法多样化教学中要针对不同的学生提出不同的要求。对已经想出一种方法的学生,教师应给予充分的肯定并鼓励他们继续探索;对于没有想出算法的学生,在肯定他们已经积极动脑、努力探索的基础上,要求他们学会倾听别人的想法、听懂别人的方法。同时要求他们在今后的学习中更加努力的探索,期望有更大的进步。
第三、算法多样化教学并非要求每个学生掌握多种算法。算法多样化教学鼓励学生用不同的方法探索和解决问题,但决不能要求每个学生都掌握多种算法。教学中,教师可在引导学生了解不同的解题方法,体验解题策略的多样性,引导学生对各种方法进行分析、比较的基础上,提出不同的要求。对学有余力的学生,可鼓励他们掌握两种或两种以上自己喜欢的方法,以开阔其视野;对学困生,只要他们能掌握一种适合自己的方法就可以了。
认识到算法多样化并非算法全面化、不是一定要达到预期的几种算法,更不是一定要呈现教材中出现的每一种算法;也不是让每一个学生都得掌握其中的每一种算法,而是从学生的自身认知水平出发,以开放、宽容的态度等待、处理算法多样化教学,让学生尽量获得成
功的体验,感受到自我探索的价值和数学学习的乐趣,促进学生的可持续发展,这才是倡导算法多样化的目的所在。
二、多中选优,择优而用
“多样化”后干什么?回答是肯定的:“优化!”因为算法多样化并不是单纯意义上的计算方法多样化,比之更重要的还有 相应的优化的过程,“多中选优,择优而用”的思想方法,是学生的学习和生活中不可缺少的,也是发展学生数学思维、培养学生创新意识的重要方法。在研究中我们有的教师片面的认为算法多样化就是学生讲的方法越多越好,刻意地追求算法的多样化,忽略了算法的优化,从一个极端走向另一个极端,造成了计算教学的低效;也有的教师认为,如果对算法进行优化,那就谈不上算法多样化了,似乎多样化与优化之间存在矛盾,其实不然,算法优化是学生个体的学习、体验和感悟的过程,如果不对算法进行优化,我们的学生就没有收获、没有提高。
1、构筑多样化与优化的桥梁。
算法多样化并不是单纯意义上的计算方法多样化,计算方法没有好坏之分,但有繁简之别,我们要清楚, 每一种看似复杂或简单的计算方法之后,跟我们所要最终优化的方案,有哪些潜在的联系。如教学9加几的计算方法中,有摆小棒、数数、用计数器、凑十法等,凑十法是最简单也是最实用的方法,而摆小棒、数数、计数器都与凑十法有一定联系,象摆小棒过程中,学生是一根一根数的,教师就可以引导学生凑足十根捆成一捆,再数剩下几根,让大家一眼就看出一共是几根,既简单形象又渗透了“凑十”的概念;计数器具更是对凑十法的应用,个位上凑足了十个珠,再加上个位剩下的珠子,9+3一共等于几。此时,教师如果能将这些方法的内在含义通过操作演示给学生,并适时小结9加几的加法怎么样算最简便,让学生对凑十法从直观到抽象都有深刻的理解,这样才能促使学生对自己所选择的方法。
5. 小学数学算法多样性与双基的关系
小学数学算法多样性与双基的关系:
传统教学的弊端之一是教学的标准化,针对这个弊端算法多样化便应运而生。那么它有何意义和作用。
1.不同的学生有不同的生活体验,对同一事物的观察与分析也会仁者见仁、智者见智。在现实生活和教学活动中,学生本来是从不同角度,以不同的方式方法,用不同的语言等表达形式,来观察、分析、猜测、解决数学问题,多种解法并存的现象时常出现,算法不止一个或一种,才是更真实、更接近实际的。尽管教者按传统教材那么教,学生也不一定跟着那种思路去想。教者认为好的方法,教材提供的好的方法,学生不一定能真正认识到它是最好的方法。因此,我们不能也没有必要强加给学生单一的思考方法,提倡算法多样化是符合学生实际的。
2.现代数学观认为,数学是现实的、充满智慧的、人人都能体会的,思考数学是很有乐趣的,遇到问题尝试着运用数学去解决是明智的。考察数学观的转变不难发现:将数学看成一种绝对真理的静态数学观,正向着承认数学是人类的一种经验或拟经验的活动过程的动态数学观转变。算法多样化是在学生群体中产生的,它使学生尝试用自己的经验解决某些数学问题,有利于增强信心,排除数学是令人生畏的心理障碍,使学生从小爱数学,使数学成为学生喜爱的学科。 3.学生的合作交流是学习方式变革的重要内容之一。既然算法多样化是在群体中产生的,这就为学生之间的交流与合作搭建了平台。在师生互动、生生互动的情况下,才可能有算法的多样化,即算法多样化与学生的合作交流可以融为一体,从而改变了学生的学习方式和教者的教学方式。 4.数学教育的目的并不是仅仅为了使学生形成高效、统一的固定运算方法和熟练的技能,也要发展学生的思维能力。不同的学生有不同的思维方式、不同的兴趣爱好以及不同的发展潜能。提倡算法多样化,就是允许学生思维方式的多样化和思维水平的不同层次,尊重学生多样化的独立思维方式,鼓励和提倡个性化的学习。
5.算法多样化的主要目的是培养学生的创新精神,提高创造性思维能力。发散思维是创造性思维的基本成分,是创造思维的中心环节。算法多样化把思考的时间和空间还给了学生,可以让学生进行发散思维,为他们尝试创新提供了机遇。
6. 体现算法多样化小学数学教学设计以每条船坐8人50人坐几条船
50÷8=6(条)……2(人);6+1=7(条)。
7. 如何看待数学解题的方法多样性
“解题方法多样化”在数学教学中有着重要的指导作用,新版的《数学课程标准》中提倡全新的教学理念,其中“问题解决策略多样化”就是对学生解决问题方式的诠释,提倡多策略解决问题旨在让学生开拓数学思维、优化思想、创新研究,让教师实施解题方法多样化教学,老师不要“死教学”,学生不能“读死书”,将重视结果教学转变成重视过程教学。“解题方法多样化”将重新构建师生关系,老师评价学生的准绳变得更加宽泛,学生分析问题、解决问题的形式多样化,使得教学过程中的理念在提升,真正让数学课堂变得高效,很准确地落实课堂教学。
下面我就从数与代数、图形与几何两方面对“解题方法多样化”作浅显的探索。
一、 数与代数方面落实“解题方法多样化”
我经常问自己:数学源自于哪里?为什么要学数学?听过很多名家的讲座,看过很多名师上课,我觉得别把数学看得深不可测,尤其是小学数学,就是来自于生活的,并且为了解决生活中的问题我们才去学习数学。所以,小学生们也是有各自不同的知识经验和生活积累的。正是有了这样那样的经验,学生们在解决问题的过程中都会有自己对问题的理解,并在此基础上形成自己解决问题的策略。因此,教师在教学中就要给学生提供自主探索的机会,引导学生去动手实践、自主探索,鼓励学生从不同的角度、不同的途径去观察、猜测、验证、从而解决问题,达到数学课堂的高效。
【教学实例1】教学《一个数乘一位数的口算乘法》时以6捆小棒引出课题,问学生:如何计算小棒的总数是多少?在一阵独立思考之后,组内进行交流,最后学生给出了这样一些方法:
① 数一数:
生1:我是一根一根地数,共60根。
生2:你那样数太慢了,我是十根十根数的,10根,20根,30根……一共60根。
生3:我是二十根二十根数的,20根,40根,60根,一共60根。
②加一加:10+10+10+10+10+10=60(根)
③乘一乘:
生1:10×6=60(根)
生2:20×3=60(根)师问:这个20表示什么意思?3又代表什么呢?
生3:30×2=60(根)师问:你来说说算式中的30和2分别表示什么意思?
老师在黑板上把学生的各种想法一一呈现,让更多的学生看到不同的方法解决这道题,开拓了学生的数学思维。在这三种方法的牵引下,学生会思考了,可以从加法、乘法两方面去解决这样的数学问题,当然老师会问:这三种方法你认为哪种方法最简便?这也是一个方法最优化的体现。
接下来,老师可以再出示一道问题:在6捆小棒的外面再加上6根小棒,问问现在有几根?让学生思考。仍然是运用多种方法解决。其实这个问题就是在刚才三种方法的基础上再加上6根小棒就可以了,又巩固了一遍本课的重点内容,使得学生学习知识扎实,达到高效课堂。
【教学实例2】教学《列方程解应用题》 时有这样一道题:红星小学组织学生给希望小学捐书,六年一班学生捐书78本,比一年一班的2倍还多12本,一年一班捐书多少本?老师要求学生用不同的方法解答本例题 。学生在本上计算,老师巡视,指导学习有困难的学生。学生汇报自己的想法,老师适时板书:
法一:算数法 (78-12)÷2
法二:用方程计算 解:设一年一班捐书x本,列方程如下:
2x+12=78
教师引导学生对这两种方法进行比较,让学生说说两种方法的相同点和不同点分析,在用方程解决问题的时候应注意什么?给学生充分地表达自己想法的时间。
上述两个教学实例,就是教学中最常见的例子。老师每抛出一个数学问题,都是又学生自主探究,形成了多种解题方式的呈现。如果给这两个案例细分的话,前者是算法多样化、后者则是一题多解。算法多样化所采用的教学策略主要是使学生能进行自主、合作、探究性的学习,而一题多解的教学策略主要是鼓励学生多角度思考。
无论是算法多样化还是一题多解,都是在学生灵活思维的牵引下,对于一个问题的多种解决方法,至于课堂上如果学生还有更多的解题思路,老师要鼓励学生表达,给学生展示的机会。正是由于每节课上孩子的生成性问题的不断涌现,才会使我们的课堂活动充满生机。学生思维活跃了,老师的情绪也会被带动,教者情绪高涨,学者自会信其理。
二、 图形与几何方面落实“解题方法多样化”
北师大版教材在图形与几何部分的编排特点就是从学生实际生活出发,用贴近学生生活的图片和实例走进学生心理,浅显的文字表述以及鲜亮的图片颜色都是促使学生快速找寻数学信息的因素。
其实数学学习的最终目的就是让学生运用所学的知识去解决生活中的问题,让学生在面对实际问题时,能主动尝试着从数学的角度、根据已有的知识经验寻求解决问题的策略,提高学生解决问题的意识与能力。多年的数学教学经验使我明白,最有效的方法是让学生有机会亲身实践。教学中,教师应该结合教学内容,设计现实的、富有挑战性的问题,让学生寻求解决方案。
【教学实例3】教学完《长、正方体的体积》后,教师在之后的一节练习课上让学生带来长、正方体的物体或容器,以及小石块、土豆等不规则形状的物体,让学生动手试一试,能测量并计算出哪些物体的体积或容积。在此基础上还可以向学生提出一个富有挑战性的问题,你能利用正方体的容器、水和直尺,想办法测量小石块的体积吗?学生在组内进行了激烈的谈论与探索,老师深入到学生的讨论中,指导启发学生运用更快更好更多的办法解决这类题。学生代表在汇报的时候有许多精彩的表现:
生1:我们组讨论的方法是这样的:把正方体容器装满水,量出水的高度。
师:为什么要量出水的高度?
生1:此时水的高度实际上就是正方形的棱长,只有知道水的高度才会计算出小石块的体积。然后把小石块放进这个容器中,水就会马上溢出来,这溢出来的水的体积就是小石块的体积。
师:大家觉得这个方法怎么样?有什么要说的吗?
其他学生表达自己的想法。
生2:这个溢出来的水的体积到底是多少呢?怎么计算了?我认为还要把溢出来的水放进跟这个正方体一样的容器中,再量出这个水的高度,计算出水的体积,这个水的体积就是小石块的体积了。
师:对了!你说的非常精彩!这个方法的计算过程就是你们两个人的说法捏到一起去,就是解决问题的方法了。大家这么喜欢动脑筋解决生活中的问题,在你们充满智慧的表达中老师简俨然看到了一个个小科学家的诞生! 那么其他小组还有背别的方法吗?
生3:我们组是这样做的:把正方体容器装一点水,不用装满,然后量出水的高度。再把小石块放进去,这时水面就上升了,然后再量出水的高度,这时上升的水的体积就是小石块的体积。最后用“正方体的底面积×上升了的水的高度”就可以计算出小石块的体积了。
师:大家给他鼓鼓掌吧!这第二种方法大家听懂了吗?谁来说说你对于这两种计算方法的看法?
在交流的过程中教师对每一种方法都表现出极大的兴趣,给予了充分的肯定。最后请学生自己谈谈对这些方法的感受:更喜欢哪一种方法,为什么喜欢这种方法?大部分学生已认识到第二种最简便,因为它的思路很清晰,操作起来也不是很复杂。教师再小结。
在解决图形与几何方面的习题时,经常会出现这个教学实例中的现象,学生要通过自己的研究,动手操作,实际演练,汇报交流,总结出解决问题的方法。这样的呈现方式气氛热烈活跃,学生踊跃参与,大部分学生积极地争取机会发言,通过交流来发现各种不同算法之间的区别和本质联系。
以上三个教学实例中,老师都注重方法的多样性指导,而非总结出哪种方法好,哪种方法不好,这也是很多老师疑惑的地方,就是说:到底用不用告诉学生哪种方法刚好?其实我认为:只要学生能掌握顺手的方法就可以了,不用非得说必须用哪种方法解决。
教师在课堂上让学生通过自主探究,合作交流,研究出“不规则物体体积”的基本方法。这样的算法使学生理解、掌握,知其然而知其所以然。因此对于此类的特殊题型,教师要合理把握教学中生成的问题,切忌急于给学生一种正确的方法,而是在学生不断的练习,交流,体验中引发思维震动,真正理解和掌握最适合自己的方法。
教学中对于“解决方法多样化”是有很多研究价值的,课堂的时效性也不是空穴来风,教师要抓住课堂的生成性问题,灵活应对各种意料之外的问题。当学生的回答贴合课堂的节奏,老师就要及时引导,尊重学生的主体认知,学生的潜力很大,很喜欢用别人没用过的方法解决问题,这就是孩子们特有的对新鲜事物的探究欲望。老师在课堂上要给足学生探究的时间,让孩子们在小组内尽量多交流,迸发出思维的火花来,这样我们的数学课堂就活跃了,这样做也是符合《新课标》的理念:“尊重学生的个性特点,关注学生的思维发展”,真正做到“以学生为本”。但是千万不可以为了“方法多样化”而方法多样化,一味的追求多种方法,这样也是不对的。机械的罗列出一大堆方法,如果老师不适时总结和归纳,找寻它们的共同点,提升思维,创建高效课堂,那么再多的方法罗列也是徒劳,这样只会让我们的课堂内容看起来太满太多,却抓不住重点,反而起了“反作用”。所以,老师要把握好这个度,真正让“解决方法多样化”对教学有指导意义,而不是一件“浮夸的外衣”。
8. 如何实现小学数学教学中算法的多样化
《数学课程标准》指出:在小学数学中的计算教学,不仅要重视创设现实情境,使学生内感受学习数与容计算的必要性……而且要尊重学生的个性,鼓励算法多样化。那么如何实现小学数学教学中算法的多样化呢?下面我就这个问题谈谈体会。
9. 关于数学教学中提倡的算法多样化应怎样去理解,谁能结合自己的教学实践具体谈一谈:
《数学课程标准》在基本理念中指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”从这样的角度出发,《数学课程标准》在教学建议中明确提出:“鼓励算法多样化与解决问题策略的多样化。”
在平时的实际教学中,我也很注重体现算法的多样化。如教学18+7时,学生有的用摆小棒的形式边演示边说讲解;有的用18凑成整十再相加;还有的把7凑成整十来进行计算,方法很多。又如在教学减法15-9时,学生又用了近五种方法来计算,促进了学生思维的发展。
但是,算法多样化是不是就等同于一题多解,是不是算法越多越好呢?这是值得所有的小学数学老师思考的一个问题。作为教师,我们不应忽视学生的认知基础和思维水平,一味地强调算法多样化。我们教师在实施算法多样化的过程中,必须解决好两个问题:
1. 要正确理解算法多样化的实质。
算法多样化是数学课程改革倡导的一种新的教学理念,是教师鼓励学生独立思考,用自己的方法解决问题,培养学生的创新思维,促进学生个性发展的体现。它是针对计算过程中,不同的学生会从各自的生活经验和思考角度出发,产生不同的思考方法而提出的一种教学策略,也是尊重学生个性化学习、促进学生个性化发展的有效途径,其实质是尊重学生对计算方法的自主选择。让他们在计算中感受计算方法和解决问题策略的多样性。为此,教学中教师不能为了算法的多样化,而将算法形式化、教条化。
2. 处理好算法多样化和算法优化的关系。
每个学生的生活经验和思维发展水平不同,对相同的教学内容往往表现出个性化的认识和理解,所使用的计算方法必然多样性,因此在解决数学问题的过程中就会形成多种方法。在这些方法中,有些算法比较简便,有些算法比较麻烦;有些算法思维水平较低,有些算法层次较高,这就会产生算法优化的问题。算法优化的过程应是学生学生不断体验和感悟的过程,而不是教师强制规定和主观臆断的过程,教师要让学生自己逐步找到适合自己的最优算法。例如,解决“18+7”这样的计算问题时,学生提出各种算法后,教师不要急于评价,也不要用一种算法去统一,更不能算法“自由化”,即想怎样算就怎样算。可以对学生提出的各种算法进行比较、分析,让学生在与同伴的交流比较中了解各种算法特点,找到适合自己的一种或者几种算法,以此正确地理解算法多样化和算法优化的关系。
10. 小学数学题中的估算的多样化怎么理解
估算是指估计和、差、积、商大约是多少。 例如这道题目:爬行动物有376种,两栖类有284种。爬行类和两栖类大约有几种? 这道题是估计“和”大约是多少。主要解法有: 解法一:把376看成380,把284看成280,380+280=660。学生回答为爬行类和两栖类大约有660种。 (这种方法我比较强调,其实,对两年级孩子还说,要求有点高) 解法二:把376看成350,把284看成300,350+300=650。学生回答为爬行类和两栖类大约有650种。 解法三:把376看成400,把284看成300,400+300=700。学生回答为爬行类和两栖类大约有700种或回答为爬行类和两栖类合起来比700种少一些。 这样该道题对和的估计在肯定比600多,比 700少。 由此,我们可以看出: (1)在计算教学中引入估算,符合《数学课程标准(实验稿)》提倡的“算法多样化”的要求,可以有效地引导学生独立思考,发扬各自的聪明才智,提出不同的解题思路。 (2)在小学“估值”教学中,由于没有精确度的要求,主要看估值的方法是否正确。因此,上题在方法正确的前提下,学生对376加284的和估值在500~700之间,可以认为估算正确。 (3)由于学生认识水平的限制,在估算中有较大的差异是正常现象。但教师要引导学生逐步缩小“估值”与“精确值”之间的差距,即由相差较多向相差较少转变。在上题中,可以让学生通过笔算精确地计算出376+284=660,再比一比谁的“估值”与“精确值”相差比较少,说一说是怎样估算的? (4)估算通常是把需要笔算的数学问题通过取整(也可能是特殊值的计算)转化为口算来解答,而学生口算的能力有强有弱,有的学生直接口算出准确值,还能叫估算吗?这也是教学中应注意的问题。 通常,估算的结果只能与精确值相近似。对于估算问题不能单纯看结果,还要看过程。只要估算的方法合理,得出的结果是精确值也应给予肯定。 (5)在估值时,有的学生也可能体现出“区间套”思想,直接说出比谁大,比谁小,这是正确的。但这种区间估计的思想对小学生来说比较困难,不要硬性要求。 (6)对于估算问题,各套教材选用的数值通常是接近整十、整百的数,以降低估算的难度。但不能说只有接近整十、整百的数才能估算,应该说在小学阶段,凡不能直接口算的四则式题都可以估算。