A. 求小学数学常见的问题的公式
小学数学几何形体周长
面积
体积计算公式
1、长方形的周长=(长+宽)×2
C=(a+b)×2
2、正方形的周长=边长×4
C=4a
3、长方形的面积=长×宽
S=ab
4、正方形的面积=边长×边长
S=a.a=
a
5、三角形的面积=底×高÷2
S=ah÷2
6、平行四边形的面积=底×高
S=ah
7、梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
8、直径=半径×2
d=2r
半径=直径÷2
r=
d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2
c=πd
=2πr
10、圆的面积=圆周率×半径×半径
定义定理公式
三角形的面积=底×高÷2。
公式
S=
a×h÷2
正方形的面积=边长×边长
公式
S=
a×a
长方形的面积=长×宽
公式
S=
a×b
平行四边形的面积=底×高
公式
S=
a×h
梯形的面积=(上底+下底)×高÷2
公式
S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高
公式:V=abh
长方体(或正方体)的体积=底面积×高
公式:V=abh
正方体的体积=棱长×棱长×棱长
公式:V=aaa
圆的周长=直径×π
公式:L=πd=2πr
圆的面积=半径×半径×π
公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
B. 相遇问题六大公式是什么
一、相遇问题六大公式
1、相遇路程=速度和×相遇时间
2、相遇时间=相遇路程÷速度和
3、速度和=相遇路程÷相遇时间
4、相遇路程=甲走的路程+乙走的路程
5、甲的速度=相遇路程÷相遇时间 -乙的速度
6、甲的路程=相遇路程-乙走的路程
二、相遇问题
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。相遇问题是研究速度,时间和路程三者数量之间的关系。它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。
(2)小学数学相向问题公式扩展阅读:
行程问题分类
1、追及问题
两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。这类常常会在考试考到,是行程中的一大类问题。
2、相遇问题
多个物体相向运动,通常求相遇时间或全程。
3、流水行船问题
船本身有动力,即使水不流动,船也有自己的速度,但在流动的水中,或者受到流水的推动,或者受到流水的顶逆,使船在流水中的速度发生变化,而竹筏等没有速度,它的速度就是水的速度
4、火车行程问题
火车走过的长度其实还有本身车长,这是火车行程问题的特点。
5、钟表问题
时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
C. 小学数学相遇方程问题及答案
你好!
相遇问题的公式:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
只要依着公式也可以解决题目的~~~
相遇方程问题及答案如下:
1.一辆客车和一辆货车同时从甲,乙两地相向而行.客车每小时行80KM,货车每小时行65KM.货车先行51KM后客车才出发,结果两车正好在甲乙两地中点相遇,这时客车行了多少KM?
设客车行驶时间为X,
80X=65X+51
解: X=3.4
80×3.4=272(KM)
2.AB两地相距1050千米,甲乙两列火车从AB两地同时相对开出,甲列火车每小时行60千米,乙列火车每小时行48千米。乙列火车出发时,从车厢里飞出一只鸽子,以每小时80千米的速度向甲列火车飞去,在鸽子与甲车相遇时,乙车距A地还有几千米?
设相遇时鸽子飞行时间为X,
60X+80X=1050
解: X=7.5
1050-48×7.5=690(千米)
3.一辆公交车和一辆客车同时从甲地开往乙地,公交车每小时行50千米,客车每小时行45千米,现在公交车比大客车早40分钟到达,问甲乙两地相距多少千米?
设公交车行驶时间为X小时,
50X=45×(X+2/3)
解: X=6
50×6=300(千米)
希望可以帮到你~~~
D. 小学数学相遇问题
A、b两地相距464km,甲乙两车行完全程所需的时间比是15:14,现在两车同时出发,相向而行,经过8小时相遇,求甲乙两车速度。
根据相遇问题公式:(甲速+乙速)×相遇时间=全长。根据此公式可得甲速+乙速的和=全长÷相遇时间=464÷8=58km,也就是说,甲每小时行的路程+乙每小时行的路程=58.
因为甲乙两车时间比=15:14,根据路程相等,时间与速度成反比,可得知甲乙两车速度比=14:15.根据此比,可得出:甲58×14/(14+15)=28km,乙58×15/29=30km (因为甲每小时行的路程+乙每小时行的路程=58,所以两个比相加)
答:甲速:28km/h,乙速:30km/h(直接删除/h也没关系)。
这样可能有些难理解,但做得多了就会觉得简单。方程的话可以参照下面的回答,要分析追问。
E. 小学数学追击问题的公式是什么
追击时间=追击路程/速度差
例:
某人在商店里购买商品后,骑上自行车以5米/秒的速度沿平直运速回骑行,5分钟后答店主发现顾客忘了物品,就开摩托车开始追赶该顾客,如果摩托车行驶速度为54千米/时摩托车要什么时候能追上顾客?追上时离店多远?
5分钟(即300秒)后店主和顾客的距离为:5*300=1500(米)
摩托车速度为:54千米/时=15米/秒
店主追上顾客需要的时间为:1500/(15-5)=150(秒)
店主追上顾客时离店距离为:150*15=2250(米)
F. 小学数学追及问题公式的资料
S=vt
t=s/v
v=s/t
s:路程 t:时间 v:速度
a=△v/△t
a:加速度 △v:速度变化量 △t:时间变化量
s/(a1-a2)=t
G. 小学数学相遇问题公式
总路程=速度和×相遇时间
相遇时间=总路程÷速度和
速度和=总路程÷相遇时间
H. (数学问题)谁能给我追及问题的公式(如相向而行,顺逆水),全部,
相向:(V1+v2)t=s
追及:速度差*t=追及s
I. 小学数学相遇问题公式
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
相遇时间=总路程÷速度和
甲走的路程=甲速度×相遇时间 常用公式和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)