1. 小学生数学所有计算公式
初高中的数学公式定理大集中(仅供参考)
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
2. 小学生数学四则运算法则是什么
四则是指加法、减法、乘法、除法的计算法则。
在数学中,当一级运算(加减)和二级运算(乘除)同时出现在一个式子中时,它们的运算顺序是先乘除,后加减,如果有括号就先算括号内后算括号外,同一级运算顺序是从左到右,这样的运算叫四则运算。
四则运算的法则:
1、整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。
2、小数加、减法的计算法则:
1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),
2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。)
3、分数加、减计算法则:
1)分母相同时,只把分子相加、减,分母不变;
2)分母不相同时,要先通分成同分母分数再相加、减。
4、整数乘法法则:
1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;
2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。)
5、小数乘法法则:
1)按整数乘法的法则算出积;
2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。
3)得数的小数部分末尾有0,一般要把0去掉。
6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。
7、整数的除法法则
1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;
2)除到被除数的哪一位,就在那一位上面写上商;
3)每次除后余下的数必须比除数小。
8、除数是整数的小数除法法则:
1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;
2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
9、除数是小数的小数除法法则:
1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;
2)然后按照除数是整数的小数除法来除
10、分数的除法法则:
1)用被除数的分子与除数的分母相乘作为分子;
2)用被除数的分母与除数的分子相乘作为分母。
3. 小学阶段数学数的运算的内容有哪些
整数,小数,分数四则运算和三步以内的四则混合运算。
整数、小数、分数的简便计算。
整数、小数、分数间的混合运算。
一步计算、两步计算的方程。
分数、百分数、小数之间的互化。
重量、长度、面积、体积单位的化聚。
面积、体积计算。
小数的近似计算。
用万、亿作单位的改写。
大体是这么多。
4. 如何培养小学生数学运算能力
一、使学生抄熟练掌握运算法则。袭
在小学阶段,学生学到的三类数——整数(自然数)、小数和分数。这三类数都要进行四则运算——加、减、乘、除,每一类数的每一种运算都有自己特定的运算法则(即计算方法)。熟练掌握各类运算法则是全面提高鲨数学计算能力的立足点和出发点。如何让学生熟练掌握各种运算法则呢?我认为作为数学教师在教学活动中应做好:
1、
搞清算理。这是提高计算能力的前提。让学生在教师的指导下,通过合作讨论、互相交流,按照运算的意义一步一步地归纳出运算法则。这样既能让学生切身感受到每一条法则不是教材和老师强加到他们头上的条条框框,又能让学生透彻理解运算法则。
2、
多加练习。练习是学生理解和掌握运算法则的有效途径。教师要充分利用课内外恰当的机会,对学生进行及时的,经常的计算练习,使学生在练习中加深理解和记忆,并熟练地掌握。
3、
注重纠错。教师要注意收集学生在各类计算中出现的各种错误,加以分类辨析。教师可制作一定数量的,带有各种类型计算错误的试题卡,让学生指出错误的原因并加以纠正。对在计算过程中经常犯错的学生,教师应主动和学生交流谈心,耐心疏导他们的情绪,尽力帮助他们克服学习中的各种困扰。
5. 怎样提高小学生数学计算能力
1、计算结果的准确性;
2、计算方法的技巧性;
3、计算速度的快捷性。
要想提高小学生数学计算能力,要从下面四个方面下功夫:
一、让学生熟练掌握运算法规:在小学阶段,学生要学到三类数——整数(自然数)、小数和分数,这三类数都要进行四则运算——加、减、乘、除,每一类数的每一种运算都有自己特定的运算法则,熟练掌握各类;
二、注意培养学生估算能力:新课程把培养学生的估算能力列入其中,充分反映出估算在数学计算和实际生活中的重要性,估算能力也是一个人计算能力中相当重要的一个方面,具备良好的估算能力,实践证明有四个好处:
1、帮助我们预知计算结果;
2、可以提高数学分析能力;
3、可以解决实际生活问题;
4、检查结果是否基本正确。
三、切实加强学生口算训练:在课堂中,一般采取下列步骤进行口算训练:
1、先让学生先口算出结果。
2、再让学生说说自己的口算方法,对良好的口算方法及时给予肯定,有时对同一题目,还可问问学生有无别的口算方法。
3、最后教师对口算方法给予解释和强调。
四、善于采取简便算法:有些数学计算试题具有明显的形式和数字构造特征,这些特征正是我们施展简便算法的大好机会,通过一定数量的简算练习,不但提高了学生的观察能力和分析能力,逐步强化了学生数学计算的技巧和快捷性,而且还给学生带来了快乐的精神享受,这对激发学生学习数学兴趣大有裨益。
6. 小学生数学所有公式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、总数÷总份数=平均数
3、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
4、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
5、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
6、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
7、、 加数+加数=和 和-一个加数=另一个加数
8、 被减数-减数=差 被减数-差=减数 差+减数=被减数
9、 因数×因数=积 积÷一个因数=另一个因数
10、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式:
1 、正方形:C周长S面积a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体: V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3 、长方形: C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4 、长方体:V体积s面积 a长 b 宽 h高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)×2
(2)体积=长×宽×高 V=abh
5、三角形: s面积a底h高 面积=底×高÷2 s=ah÷2
三角形高=面积×2÷底 三角形底=面积 ×2÷高
6、平行四边形: s面积 a底 h高 面积=底×高 s=ah
7、梯形:s面积a上底b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形:S面积C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3
和差问题的公式:
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题:
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题:
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题:
一、 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1 全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1)
株距=全长÷(株数+1)
二、 封闭线路上的植树问题的数量关系如下:
株数=段数=全长÷株距 全长=株距×株数
株距=全长÷株数
三、盈亏问题:
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
四、相遇问题:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间
追及问题:
追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题:
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)
长度单位换算:
1千米=1000米1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米
面积单位换算:
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算:
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升 1立方米=1000升
重量单位换算:
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算:
1元=10角 1角=10分 1元=100分
时间单位换算:
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天,闰年全年366天
1日=24小时 1时=60分 1分=60秒 1时=3600秒
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh
7. 整数复合运算是什么几年级的
2013-2014学年《四年级(上)整数四则混合运算数学习题卷参考答... 10天能看完.考点:整数、小数复合应用题.
8. 小数除整数的口算
口算[kǒu suàn]
口算:一边心算一边口说地运算。口算就是用脑计算,用口头叙述来记忆当时的结果。这种方法用于速算,常练有助于智力的提高。也成为如今的主流的计算方法。也叫“心算”。数学教学方法之一。一种只凭思维及语言活动不借任何工具的计算方法。它能培养学生快速的计算,发展学生的注意、记忆和思维能力。口算熟练后有助于笔算,且便于在日常生活中应用。[1]
中文名
口算
释义
一边心算一边口说地运算
应用领域
速算
辅助作用
发展学生的注意、记忆和思维能力
拼音
kǒu suàn
快速
导航
辨析小学口算移动应用
详细释义
口算--快心算是唯一不借助任何实物进行简便运算的方法,既不用算盘,也不用手指, 口算--快心算-----真正与小学数学教材同步的教学模式
口算--快心算教材的编排和难度是紧扣小学数学大纲并与初中代数接轨,比小学课本更简便的一门速算。简化了笔算,加强了口算。简单,易学,趣味性强,小学生通过短时间培训后,多位数加,减,乘,除,不列竖式,直接可以写出答数。
口算--快心算的奇特效果
三年级以上任意多位数的乘除加减全部学完.
二年级多位数的加减,两位数的乘法和一位数的除法.
一年级,多位数的加减.
幼儿园中,大班小朋友可学会多位数加减法,这是为学龄前幼儿量身定做的,让他们提前渡过小学口算这一关。小孩在幼儿园学习快心算对以后上小学有帮助。
学生们做作业不再用草稿纸,看算直接写答案。
辨析
口算,快心算”有别于“珠心算”和“手脑算”。西安教师牛宏伟发明的快心算, 主要是通过教材中的一定规则,对幼儿进行加减乘除快速运算训练。“快心算”有助于提高孩子思维和行为的条理性、逻辑性以及灵敏性,锻炼孩子眼、手、脑的同步快速反应,计算方法和中小学数学具有一致性,所以很受幼儿及家长的欢迎。 口算,快心算真正与小学数学教材同步的教学模式:
1:会算法
笔算训练,现今我国的教育体制是应试教育,检验学生的标准是考试成绩单,那么学生的主要任务就是应试,答题,答题要用笔写,笔算训练是教学的主线。与小学数学计算方法一致,不运用任何实物计算,无论横式,竖式,连加连减都可运用自如,用笔做计算是启动智慧快车的一把金钥匙。
2:明算理
算理拼玩。不但要使孩子会算法,还要让孩子明白算理。 使孩子在拼玩中理解计算的算理,突破数的计算。孩子是在理解的基础上完成的计算。
3:练速度
速度训练,会用笔算题还远远不够,小学的口算要有时间限定,是否达标要用时间说话,也就是会算题还不够,主要还是要提速。
4:启智慧
智力体操,不单纯地学习计算,着重培养孩子的数学思维能力,全面激发左右脑潜能,开发全脑。经过快心算的训练,学前孩子可以深刻的理解数学的本质(包含),数的意义(基数,序数,和包含),数的运算机理(同数位的数的加减,)数学逻辑运算的方式,使孩子掌握处理复杂信息分解方法,发散思维,逆向思维得到了发展。孩子得到一个反应敏锐的大脑。
小学口算移动应用
《小学口算》是为小学一年级到六年级学生开发的基于平板电脑的教育应用,充分利用平板电脑的优势,为小学生提供一个体验舒适、趣味性强、方便实用的口算训练平台,让孩子随时随地能轻松地完成口算作业,进行口算训练,提高口算能力,也把家长从每天为孩子出口算题和验算口算题的工作中解脱出来。
为什么使用
口算是小学数学学习的重要内容,是小学生数学作业和数学考试的重要组成部分。《全日制义务教育课程标准》编委会指出:“培养学生口算、估算、速算的意识,对发展学生的计算能力,让学生拥有良好的数感,具有重要的作用。”为了帮助小学生快速地完成口算作业,提升口算能力,同时也帮助家长更好地辅导孩子。
适用人群
当前软件提供人教版和冀教版的1到6年级口算题卡,基于iPad平板电脑进行,适合有条件的家长购买以辅导小学生进行口算训练。
功能特性
App主要功能:选择和购买相应教材、选择题卡、全屏幕手写做题、自动判卷、对答案、错题库
App辅助功能:会员注册与登录、成绩统计、错题库、定时提醒、徽章奖励
后台系统功能:教材更新与管理、消息推送、会员管理
1. 大容量题库,覆盖面广,适合各年级学生
2. 手写识别适应最直接的书写和学习方式
3. 快速智能判卷节约时间和帮助家长辅导
4. 高品质适合孩子的卡通画面,学着不累
5. 让家长参与监督和激励,共同提升孩子的学习
9. 小学五年级上册数学整数简便运算
300÷125÷8
=300÷(125×版8)
=300÷1000
=0.3
396-96-172-28
=(396-96)-(172+28)
= 300-200
= 100 125×权24
= 125×8×3
= 1000×3
= 3000
26×15
= (20+6)×15
= 20×15 + 6×15
= 300+90
=390
25×99×4
= 25×4×99
= 100×99
= 9900
250×32
= 250×4×8
= 1000×8
= 8000
(98+98+98+98)×25
= 4×98×25
= 4×25×98
= 100×98
= 9800
10. 整数的运算定律
加法交换律: a+b=b+a;
加法结合律内: a+b+c =(a+b)+c=a+(b+c)=(a+c)+b;
乘法交换律: a×容b=b×a;
乘法结合律: a×b×c=(a×b)×c =a×(b×c) =(a×c)×b ;
乘法分配律: a×(b+c)=a×b+a×c。
1、四则混合运算顺序:同级运算时,从左到右依次计算;两级运算时,先算乘除,后算加减。
有括号时,先算括号里面的,再算括号外面的;有多层括号时,先算小括号里的,再算中括号里面的,再算大括号里面的,最后算括号外面的。
2、乘法是加法的简便运算,除法是减法的简便运算。减法与加法互为逆运算,除法与乘法互为逆运算。
几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。
一个数减去两个数的和,等于从这个数中依次减去和里的每一个加数。