① 小学数学发展历史有哪些内容
古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。的确,一个没有数的世界不堪设想。
今天,人们对从1数到10这样的小事会不屑一顾,然而上万年以前,这事可让人们煞费苦心。在7000年以前,他们甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。如果当时要有人能数到10,那一定会被认为是杰出的天才了。后来人们慢慢地会把数字和双手联系在一起。每只手各拿一件东西,就是2。数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。
就这样,在逐步摸索中,华夏民族的祖先从混混沌沌的世界中走出来了。
先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。在金文周<※鼎>中有这样一段话:“东宫乃曰:偿※禾十秭,遗十秭为廾秭,来岁弗偿,则付秭。”这段话包含着一个利滚利的问题。说的是,如果借了10捆粟子,晚点还,就从借时的10捆变成20捆。如果隔年才还,就得从借时的10捆涨到40捆。用数学式子表达即:
10+10=20
20×2=40
除了在记数和算法上有了较大的进步外,华夏民族的祖先还开始把一些数字知识记载在书上。春秋时代孔子(公元前551~前479)年修改过的古典书籍之一<周易>中,就出现了八卦。这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。
到了战国时期,数学知识已远远超出了会数1~3000的水平。这一阶段他们在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在<管子>、<荀子>、<周逸书>等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。最令后人惊异的是,在这一时期出现了“对策论”的萌芽,对策论是现代应用数学领域的问题。它是运筹学的一个分支,主要是用数学方法来研究有利害冲突的双方,在竞争性的活动中,是否存自己制胜对方的最优策略,以及如何找出这些策略等问题。这一数学分支是在本世纪第二次世界大战期间或以后,才作为一门学科形成的,可是早在2000多年前,战国时期著名的军事家孙膑(公元前360~前330年)就提出过“斗马术”问题,而这一问题的内容,正反映了对策论中争取总体最优的数学思想。“斗马术”问题说的是,齐威王要和大将田忌赛马,他们每人各有上、中、下等马各1匹,田忌那3匹马比起齐威王的来,都要略逊一筹,如果用同等级的对应较量法,田忌必输无疑,田忌为此急得不知如何是好。这时,孙膑从旁点拨,田忌用了孙膑的办法,以2:1取胜齐威王。
孙膑用的是什么方法呢?请看下面的示意图:
田忌 齐威王
下等马 上等马
上等马 中等马
中等马 下等马
看到这,你不觉得我们的祖先实在是很聪明吗?
当历史推进到秦汉时期,祖先们不再往骨头上刻字了。他们把需要记的事都用毛笔写在竹片上、木片上,这种写了字的竹、木片被称为“简”或“牍”。这种简或牍以西汉时期的流传下来最多。
从那些汉简中,我们发现,秦汉时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。
这个时期最值得一提的,要算是算筹和十进位制系统了。有了它们,祖先们就不再为没有合适的计算手段而发愁了。在我国古代,直到唐朝以前,一直用着这一套计算系统。
算筹的确切起源时间至今还不清楚,只知道,大约在秦汉时期,算筹已经形成制度了。
要明白算筹是怎么回事,先得知道什么叫筹。筹就是一些直径1分、长6分的小棍儿,这些小棍儿的质料有竹、木、骨、铁、铜等。它们的功用同算盘珠相仿。目前,筹的实物已出土多批,1971年在陕西千阳县出土的一座长方形男女合墓中发现,那具男尸的胯部系着一个丝绢带囊,囊内装有一把骨筹。1980年在石家庄南郊出土的一批早期骨筹,也是挂在死者的腰部。由引可见,算筹在汉代知识分子中已经通用。关于如何使用筹,根据记载是这样的:在计算时,将筹摆于特制的案子上,或随便摆放都可。对于5以下的数字,是几就放几根筹,而对6~9这4个数字,则需要用一根横放或竖放的算筹当5,余下的数则仍是有几摆几根算筹。
为了计算方便,古人规定了纵横表示法。纵表示法用于个、百、万位数字;横表示法用于十、千位数字,遇到零时,则空一位。
十进位制系统,正是我们今天日常生活中常用的逢十进一法。就是说,对正整数或正小数而言,以十为基础,逢十进一,逢百进二,逢千进三等等。十进位制系统的产生,为四则运算的发展创造了良好的条件。
发展繁荣时期
编辑
中国数学发展繁荣时期大约在西汉末期至隋朝中叶。这是中国数学理论的第一个高峰期。这个高峰的标志就是数学专著<九章算术>的诞生。至少有1800年的《九章算术》,其作者是谁?由谁编纂?至今无从考证。史学家们只知道,它是中国秦汉时期一二百年的数学知识结晶,到公元1世纪时开始流传使用。
这本书全书共分为九章:
①方田(分数四则算法和平面形求面积法)。
②粟米(粮食交易的计算方法)。
③衰分(分配比例的计算方法)。
④少广(开平方和开立方法)
⑤商功(立体形求体积法)
⑥均输(管理粮食运输均匀负担的计算方法)。
⑦盈不足(盈亏类问题解法,也涉及能够用这种解法处理的其他类型问题)。
⑧方程(一次方程组解法和正负术)。
⑨勾股(勾股定理的应用和简单的测量问题的解法)。
全书收录了246道数学应用题,每道题都分为问、答、术(解法。有的一题一术,有的一题多术)三部分,而且每章的内容都与社会生产有着密不可分的联系。
这本书的诞生,不仅说明中国古代完整的数学体系已经形成,而且在世界上,当时也很难找到另一本能同媲美的数学专著。
在这一数学理论发展的高峰期,除了《九章算术》这部巨著之外,还出现了刘徽注的《九章算术》以及他撰写的<海岛算经>、<孙子算经>(作者不详)、<夏侯阳算经>、<张丘建算经>和祖冲之的<缀术>等数学专著。
这一时期,创造数学新成果的杰出人物是:三国人赵爽、魏晋人刘徽和南朝人祖冲之。
全盛时期
编辑
中国数学的全盛时期是隋中叶至元后期。
任何一个国家科学的发达,都有离不开清平开明的社会环境和雄厚的经济基础。从隋朝中叶到元代末年,由于统治者总结了历代王朝倾覆的教训,采取一系列开明政策,经济得到了迅速发展,科学技术也得到了很大提高,而作为科学技术一部分的数学,也在此时进入了它的全盛时期。
在这一时期,数学教育的正规化和数学人才辈出,是最主要的特点。
隋以前,学校里的教育并不重视数学,因此,没有数学专业一说。而到了隋朝,这一局面被打破了,在相当于大学的学校里,开始设置算学专业。到了唐朝,最高学府国子监,还添设了算学馆,其中博士、助教一应俱全,专门培养数学人才。这时,数学教育的受重视,还反映到了选官问题上。据古书<唐阙史>记载,有这么一个故事:唐代有个大官,名叫杨损。他让手下的人推荐一个优秀的办事员加以提升。手下的人经过千筛百选,最后剩下两个人时,拿不定去掉哪一位好。因为这两个办事员各方面的条件太一样了:职位相同,“工龄”一样,评语类似……选谁好呢?没办法,只好把矛盾上交了。杨损得知这个消息之后,也费了不少心思,斟酌再三,最后决定出一道数学题来考考他们。他对这两位候选人说:“作为办事员,职业决定你们应该有算得快的能力,我出一道题,谁先答对就提升谁。”后来,先答对的人,理所当然地得到了升迁,而另一个人也心悦诚服地回到了原位。由此可见,唐代对数学的重视程度。
有了数学专业。就少不了好教材。这个时期,有唐朝数学家李淳风(?~公元714年)等人奉政府的命令,经过研读、筛选,规定出了国子监算馆专用教科书。这套教科书名叫<算经十书>,全套共十部:<周髀算经>、《九章算经>、<孙子算经>、<五曹算经>、<夏侯阳算经>、<张丘建算经>、<海岛算经>、<五经算术>、<缀术>和<缉古算经>。
对这套专业教材,国子监还规定了学习年限,建立了每月一考的制度。数学教育从这时开始走向逐步完善。
在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,他们是:王孝通、刘焯、一行、沈括、李冶、贾宪、杨辉、秦九韶、郭守敬、朱世杰……
科学历来是全人类共同的财富,当时中国的数学水平很快引起了朝鲜、日本的注意,他们开始往中国派留学生、书商。经过一段学习,在算法引进了关于田亩、交租、谷物交换等知识;在办学中吸取了国子监的课程设置和考试制度。由此看来,在这一阶段,中国已处于世界数学发展的潮头。
缓慢发展时期
编辑
接下来在元后期至清中期,中国数学的发展缓慢,和上面讲的数学盛世相比,这一阶段几乎黯然失色。
从宋朝末年到元朝建立中央集权制,中国大地上烽火连年,科学技术不受重视,大量宝贵的数学遗产遭受损失。
明朝建立以后,生产曾在一个短暂时期里有所发展,但马上又由于封建统治的腐败,走向了衰落,直到清朝初年才缓过一口气来。
处在这样一种政治腐败、经济落后、农民起义此起彼伏的环境中,数学跌入低谷也是情理之中的事。
然而世界发展的潮流历来是不等人的,乘中国数学衰落的功夫,西方数学悄悄地追上来,并且反过来渗透进中国。
当西方资本主义开始萌芽的时候,为了寻求发展,天主教传教士、海盗、商人纷纷涌进中国。他们除了从中国带走了原料、市场、廉价劳动力,也带来了一些文化知识。
16世纪~18世纪来华的传教士中,以意大利人利玛窦(公元1552~公元1610年)影响最大。在1583~1599年,当他活动于中国肇庆、韶州、南昌、南京等地时,结识了不少中国著名学者,如李贽、徐光启、李之藻等人。这些人正处于不满空谈理学,渴望富国强兵的思想状态中,为此他们迫切希望世界上的最新科技成果。而利玛窦的到来,无疑是起了一拍即合的作用。
利玛窦与徐光启和李之藻分别合译了两部数学著作:<几何原本>、<同文算指>。
其中《几何原本》文字通俗,很少疏漏。尽管当时原著中的拉丁文没有现成的中国词汇可对照,但是徐光启仍是克服困难,创造出许多恰当的译名,使全书达到信、达、雅的水平。
从利玛窦与中国学者合译专著开始,西学东渐的势头越来越大。
那么这个时期中国自己的数学“特产”是什么呢?是珠算。
在隋唐时期,人们已经开始在改进筹算上打主意了。他们想办法简化筹算方法、编口诀……然而,在迅速发展的数学领域中,筹算法必然会被其他算法所代替。
元朝末期,小巧灵便的算盘出现了。人们看着这计算简捷、携带方便的新工具欣喜异常,甚至有人把它编到了俗语、诗歌、唱词中。
算盘的出现,很快就引出了珠算口诀和珠算法书籍,16、17世纪,在中国大量的有关珠算的书籍中,最有名的是程大位的《直指算法统宗》。珠算普及以后,筹算便自动销声匿迹了。
就在中国人发明珠算后不久,1642年,19岁的法国数学家巴斯加(公元1623~1662年)推出了世界上最早的计算机。目前,虽然世界已进入了计算机时代,然而珠算仍有它的一席之地。有人试过,在加减法运算中,它的速度甚至超过小型计算器。
中西合流期
编辑
在中国数学发展缓慢的时候,西方数学已大跨步超前,于是在中国数学发展史上出现了一个中西数学发展的合流期,这一时期约为公元1840年~1911年之间。
前面讲到,16世纪前后,西方传教士带来了一些新的数学知识。尽管有些洋人怀有个人目的,但不管怎么说,新知识能传进来,这对中国的数学进展总是有好处的。然而,1723年清朝雍正皇帝登基时,有人就提出大批传教士在华,对他们的统治不利。皇帝一想,也是。于是马上下令,除了少数在中国编制新历法的外国人之外,其他传教士一律不留。
这一命令产生的后果是,在以后大约100年的时间里,西方的数学知识也很难“进口”;中国数学家只好把眼光从学习西方新知识,转回到研究自己的旧成果了。
古代数学回光返照的局面没持续多久,鸦片战争失败了,闭关自守的局面被打开了,帝国主义列强纷纷进来瓜分中国,中国一时间沦为半殖民地、半封建的社会。
19世纪60年代开始,曾国藩、李鸿章等为了维护腐败的清政府,发起了“洋务运动”。这时以李善兰、徐寿、华蘅芳为代表的一批知识分子,作为数学家、科学家和工程师参加了引进西学、兴办工厂、学校等活动,经过他们的不懈努力,奠定了近代科技、近代数学在中国的发展基础。
当1894年“洋务运动”以军事失败而告终时,工厂、铁路、学校却保留了下来,科技知识也在一定的范围内传播了开来。
这一时期的特点是中西合流。所谓中西合流,并不是全盘西化,数学工作者们在研究传统数学的同时吸收新的方法,一时间,出现了人才济济、著述如林的好势头。
这时,中国数学家在幂级数、尖锥术等方面已独立地得到了一些微积分成果,在不定分析和组合分析方面也获得了出色的成绩。然而,即使是这样,在世界的同行们之中,中国也仍然没达到领先的地位。
现代数学开端
编辑
近代数学的开端主要集中在公元1911年~1949年这一时期。
到了19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。
从1847年,以容闳为代表的第一批学生出国后,形成了一个出国留学的高潮。当时出国留学人数每年要达到数千人之多,他们学成回国后,在中国形成了一支不可忽视的现代科学队伍。
早期出国留学的人中,学数学的人不多,其中做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。
这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。
科研上,1949年以前共发表652篇论文,尽管数量不多,范围也仅限于纯数学方面,但是其水平却不低于世界上的同行们。要知道,就是这点微薄的成果还是在克服了政治、经济等多方面难以想象的困难下取得的。
教育上,建立了正规的课程设置,数学的学时多于文科,对教科书也进行了更新。到1932年为止,中国国内各大学已有一支约155人的数学教师队伍,可以开5至10门以上的专业课。
学术交流上,1935年7月成立“中国数学会”,创办<中国数学会学报>和<数学杂志>。1932年至1936年召开的第9、10次国际数学会议,中国均有人参加。这时,应邀到华讲学的各国数学家也纷至沓来,给过去闭关自守的数学领域,带来了现代的气息。
建国后的发展
编辑
1949年,新中国成立之初,国家虽然正处于资金匮乏、百废待兴的困境,然而政府却对科学事业给予了极大关注。1949年11月成立了中国科学院,1952年7月数学研究所正式成立,接着,中国数学会及其创办的学报恢复并增创了其他数学专刊,一些科学家的专著也竞相出版,这一切都为数学研究铺平了道路。
解放后的18年间,发表论文的篇数占解放前总篇数的3倍多,其中不少论文不但填补了中国过去的空白,有的还达到了世界先进水平。
正当数学家们奋起直追,力图恢复中国数学在世界上的先进地位时,一场无情的风暴席卷了中国。在文化大革命的十年中,社会失控,人心混乱,科学衰落。在数学的园地里,除了陈景润、华罗庚、张广厚等几个数学家挣扎着开了几朵花,几乎是满目凋零,一片空白。
当10年政治灾难过去之后,人们抬头一看,别的国家数学研究早已是高峰迭起,要想追上又需花费不少力气。
中华民族历来就有自强不息的光荣传统和坚韧不拔的耐力。浩劫以后,随着郭沫若先生那篇文采横溢的《科学的春天》的发表,数学园地里又迎来了万物复苏的春天。1977年,在北京制订了新的数学发展规划,恢复数学学会工作,复刊、创刊学术杂志,加强数学教育,加强基础理论研究……
尽管中国目前在世界数学的赛场上已处落后地位,然而,路遥识马力,今后鹿死谁手,仍然是个“x”。
古代成就
编辑
在中国古代数学发展史中,祖先摘到的金牌足可以开一座陈列馆,这里只开一个“清单”,使读者有一个直观印象。
(1)十进位制记数法和零的采用。源于春秋时代,早于第二发明者印度1000多年。
(2)二进位制思想起源。源于《周易》中的八卦法,早于第二发明者德国数学家莱布尼兹(公元1646~1716)2000多年。
(3)几何思想起源。源于战国时期墨翟的《墨经》,早于第二发明者欧几里德(公元前330~前275)100多年。
(4)勾股定理(商高定理)。发明者商高(西周人),早于第二发明者毕达哥拉斯(公元前580~前500)550多年。
(5)幻方。我国最早记载幻方法的是春秋时代的《论语》和《书经》,而在国外,幻方的出现在公元2世纪,我国早于国外600多年。
(6)分数运算法则和小数。中国完整的分数运算法则出现在《九章算术》中,它的传本至迟在公元1世纪已出现。印度在公元7世纪才出现了同样的法则,并被认为是此法的“鼻祖”。我国早于印度500多年。
中国运用最小公倍数的时间则早于西方1200年。运用小数的时间,早于西方1100多年。
(7)负数的发现。这个发现最早见于《九章算术》,这一发现早于印度600多年,早于西方1600多年。
(8)盈不是术。又名双假位法。最早见于《九章算术》中的第七章。在世界上,直到13世纪,才在欧洲出现了同样的方法,比中国晚了1200多年。
(9)方程术。最早出现于《九章算术》中,其中解联立一次方程组方法,早于印度600多年,早于欧洲1500多年。在用矩阵排列法解线性方程组方面,我国要比世界其他国家早1800多年。
(10)最精确的圆周率“祖率”。早于世界其他国家1000多年。
(11)等积原理。又名“祖暅”原理。保持世界纪录1100多年。
(12)二次内插法。隋朝天文学家刘焯最早发明,早于“世界亚军”牛顿(公元1642~1727)1000多年。
(13)增乘开方法。在现代数学中又名“霍纳法”。我国宋代数学家贾宪最早发明于11世纪,比英国数学家霍纳(公元1786~1837)提出的时间早800年左右。
(14)杨辉三角。实际上是一个二项展开式系数表。它本是贾宪创造的,见于他著作《黄帝九章算法细草》中,后此书流失,南宋人杨辉在他的《详解九章算法》中又编此表,故名“杨辉三角”。
在世界上除了中国的贾宪、杨辉,第二个发明者是法国的数学家帕斯卡(公元1623~1662),他的发明时间是年,比贾宪晚了近600年。
(15)中国剩余定理。实际上就是解联立一次同余式的方法。这个方法最早见于《孙子算经》,1801年德国数学家高斯(公元1777~1855)在《算术探究》中提出这一解法,西方人以为这个方法是世界第一,称之为“高斯定理”,但后来发现,它比中国晚1500多年,因此为其正名为“中国剩余定理”。
(16)数字高次方程方法,又名“天元术”。金元年间,我国数学家李冶发明设未知数的方程法,并巧妙地把它表达在筹算中。这个方法早于世界其他国家300年以上,为以后出现的多元高次方程解法打下很好的基础。
(17)招差术。也就是高阶等差级数求和方法。从北宋起中国就有不少数学家研究这个问题,到了元代,朱世杰首先发明了招差术,使这一总是得以解决。世界上,比朱世杰晚近400年之后,牛顿才获得了同样的公式。
我也是网上查的,希望能帮到你!
② 数学家华罗庚的小故事100字
小时候,华罗庚家境贫寒,初中未毕业便辍学在家。他一边帮父亲看店内,一边依旧不忘学习容。没有时间,他养成了早起,善于利用零碎时间,善于心算的习惯。没有书,没有纸没有笔,养成了他勤于动手,勤于独立思考的习惯。
(2)小学数学泰斗扩展阅读:
华罗庚的推广双法
华罗庚在继续从事数学理论研究的同时,努力尝试寻找一条数学和工农业实践相结合的道路。经过一段实践,他发现数学中的统筹法和优选法是在工农业生产中能够比较普遍应用的方法,可以提高工作效率,改变工作管理面貌。于是,他一面在科技大学讲课,一面带领学生到工农业实践中去推广优选法、统筹法。
1964年初,他给毛泽东写信,表达要走与工农相结合道路的决心。同年3月18日,毛泽东亲笔回函:“诗和信已经收读。壮志凌云,可喜可贺。”
他写成了《统筹方法平话及补充》、《优选法平话及其补充》,亲自带领中国科技大学师生到一些企业工厂推广和应用“双法”,为工农业生产服务。“夏去江汉斗酷暑,冬往松辽傲冰霜”。这就是他当时的生活写照。1965年,毛泽东再次写信给他,祝贺和勉励他“奋发有为,不为个人而为人民服务”。
③ 中国的数学家小时候的故事
陈景润:小时候,教授送我一颗明珠
20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。
不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。
小小陈景润,自己对自己因材施教着。
一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。
沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。
大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。
师手遗“珠“,照亮少年奋斗的前程
“我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“
像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。
“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。
“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。
该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。
“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”
沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:
“你行吗?你能摘下这颗数学皇冠上的明珠吗?”
一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。
1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!
1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。
名人成长路
陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。
女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。
从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。
17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。
数学会女前辈高扬芝
高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。
高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。
高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。
她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。解放后,她又著有《极限浅说》《行列式》等科普读物多部。
高扬芝是中国数学会创始时的少数女性前辈之一。1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。20世纪60年代,她被选为江苏省数学会副理事长。
第一位数学女博士徐瑞云
徐瑞云,1915年6月15日生于上海,1927年2月考入上海著名的公立务本女中读书。徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。此外,还有几位讲师、助教。数学系的课程主要由陈建功和苏步青担任。当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。
当时苏步青才30岁,看上去十分年轻,因此徐瑞云的同学中有人认为苏步青是助教,可是听完一堂课后就不住地赞叹说:“想不到助教竟能讲得这么好。”这件事引起知情者的哄笑。徐瑞云在陈建功和苏步青的教导下,勤奋学习,专心听讲,认真做笔记,她的考试成绩经常是满分。1936年7月,徐瑞云以优异成绩毕业了,被浙大数学系留校任助教。1937年2月,26岁的徐瑞云与28岁的生物系助教江希明喜结伉俪。新婚三个月后,徐瑞云夫妇获得亨伯特留学德国的奖学金,双双乘船漂洋赴德国留学,攻读博士学位。
徐瑞云有幸被德国著名的数学大师卡拉凯屋独利接受,由他担任她的数学博士指导老师。当时有不少学生想请他作导师,他都没有同意。而徐瑞云这位东方女士因学习勤奋,数学功底扎实,成了卡拉凯屋独利的关门弟子。徐瑞云主要研究三角级数论。这门学科起源于物理学的热传导问题的傅里叶分析的主要部分,是当时国际上研究的热门之一,在中国还是一个空白。
徐瑞云为将来能在分析、函数论方面赶上世界先进水平,废寝忘食,广撷博采,把大部分时间都用在图书馆里。1940年底,徐瑞云获得博士学位,成了中国历史上第一位女数学博士。她的博士论文“关于勒贝格分解中奇异函数的傅里叶展开”,1941年发表在德国《数学时报》上。
完成学业的徐瑞云夫妇,随即离德回国,于1941年4月回到母校,双双被聘为副教授,正式登上在战火硝烟的大后方培养人才的讲台。在艰苦的条件下,陈建功和苏步青没有中断在杭州时共创的函数论和微分几何两个数学讨论班,这是一种教学相长、遴选英彦的科研形式,徐瑞云也参与其间。1944年11月,英国驻华科学考察团团长李约瑟参观了浙大数学系和理学院,连声称赞道:“你们这里是东方的剑桥!”这更加激励了徐瑞云的勤奋工作。她这时教的学生曹锡华、叶彦谦、金福临、赵民义、孙以丰、杨宗道等,后来都成了杰出的数学家和数学教育家。1946年,31岁的徐瑞云提升为正教授。
1952年,徐瑞云调入浙江师院,被任命为数学系主任,从此全身投入了艰苦的创建数学系的工作中。在她的领导下,没有几年功夫,数学系已初具规模,教学质量不断提高。第一届本科毕业生约有三分之一考取了研究生。他们系也成为全国同行的楷模,进入全国同行前列。徐瑞云在建设数学系的同时,没有忘记科学研究。她翻译了苏联那汤松的名著《实变函数论》。译本于1955年由高等教育出版社出版。