导航:首页 > 小学学科 > 我国传统小学数学案例

我国传统小学数学案例

发布时间:2021-02-02 14:51:44

小学数学案例分析

4*6=24
(4*10^m)*(6*10^n)=4*6*10^(m+n)=24*10^(m+n)

⑵ 小学数学教学案例

小学数学教学案例

一、小学数学教学案例的内涵

一个案例是一个实际情境的描述,在这个情境中,包含一个或多处疑难问题,

同时也可能包含解决这些问题的方法。教学案例描述的是教学实践,它以丰富的叙述形式,向人们展示了一些包含有教师和学生的典型行为、思想、感情在内的故事。小学数学教学案例应该描述小学数学课堂教学情境中教师与学生典型的、生动的交往状态与外在行为,刻画他们丰富的、细腻的精神状态和内心世界。

二、小学数学教学案例的特征

1、素材真实性

案例所反映的应该是一个真实事件,即案例描述的是真人、真事、真情、真知,要能激发起大家的思考。

2、选材典型性

小学数学教学案例叙述的是一个数学教学的典型事例,这个事例要有一个从开始到结束的完整情节,并包括一些戏剧性的冲突,这些冲突主要集中在数学教师与学生、学生与学生的数学思维上的冲突。

3、情节具体性

小学数学教学案例的叙述要具体、特殊,要能够把数学教学与学生的数学思维活动生动地描述出来。例如,反映某一个数学教师与学生围绕一个特定的数学教学目标和特定的数学教学内容的双边活动,不应是对活动总体特征所作的抽象化的、概括性的说明,而应是对双边活动的具体情节展示叙述,做到翔实、有趣。

4、时空广延性

小学数学教学案例的描述要把事例置于一个时空框架之中,也就是要说明事情事件发生的时间、地点等。案例的描述要放在一个现实的生活场景之中,使人有身临其境之感。

5、目标全面性

小学数学数学案例对行为等的叙述,要能反映教师和学生教与学的特性,涵盖教学目标的全部,揭示出人物的内心世界。如数学认知的思维活动,对教学的态度、情感,学习数学的动机、需要等。

三、小学数学教学案例的功能

小学数学教师写作案例具有以下功能:

1、记录功能——案例写作为小学数学教师提供了一个记录自己教学经历的机会。案例写作实际上是对教师职业一些困惑、喜悦、问题等等的记录。如果我们说一个数学教师展示其自身生命价值的主要所在,是在课堂、在学校、在与学生的交往的话,那么,案例在一定程度上就是教师生命之光的记载。在案例中,有教师的情感,同时也蕴涵着无限的生命力。案例能够折射出教育历程的演变,它一方面可以作为个人发展史的反映,另一方面也可以作为社会背景下教育的变革历程。

2、导向功能——案例写作可以促使小学数学教师更为深刻地认识到自己工作的重点和难点。能够成为案例的事实,往往是小学数学教师工作中魂牵梦绕的难题,或者是刻骨铭心的事件。如果你对案例写作已经成为一种习惯,一种工作方式,那么随着案例材料的增多,你就会逐渐发现你自身工作的难点在哪里,今后努力的方向是什么。

3、反思功能——案例写作可以促进小学数学教师对自身行为的反思,提升教学工作的专业水平。如果把反思当成数学教学工作的有机组成部分,而不是一时冲动或岁末特有的行为,就可以极大地促进小学数学教师的专业发展,促进其向专业化水平迈进。

4、传播功能——案例为教师间分享经验、加强沟通提供了一种有效的方法。教师工作主要体现为一种个体化劳动过程,平时相互之间的交流相对较少。案例写作是以书面形式反映某位或某些教师的教育教学经历。它可以使其他教师有效地了解同事的思想行为,使个人的经验成为大家共享的财富。同时,通过个人分析、小组讨论等,认识到自己所从事工作的复杂性,以及所面临问题的多样性和歧义性,并且可以把自己原有的缄默的知识提升出来,把自己那些只可意会不可言传或不证自明的知识、价值、态度等,通过讨论和批判性分析从感性认识提升到理性认识。

四、小学数学教学案例的编制

1、编制原则

(1)客观性原则。一个案例就是关于某一个实际情境的描述,它不能用“摇椅上杜撰的事实”来代替,也不能用“从抽象的、概括化理论中演绎出的事实”来代替。坚持实事求是,尽量依据时间发展顺序客观记录事例。杜绝掺假现象,不会“合理构想”。不搞“文字游戏”,不因文字篇章的需要而扭曲或改变事实。

(2)独特性原则。在撰写案例活动中,倡导教师开展创造性的工作,不人云亦云,不见风使舵,要有个性的观察、个性的实践、个性的反思、个性的表述。

(3)价值性原则。撰写案例的目的在于推动教学的改革。因此,所选事例的先进性与实用性价值程度,与案例本身的实际意义成正比。所以,要站在时代的高度面向教学实际需要选择事例。

2、编制格式

分析有关案例不难发现案例的一般格式与写法。目前专家撰写的案例主要格式是“案例+分析”,其变式主要有“提示——案例——分析”与“提示——案例——访谈录——分析”。“提示”,主要简介“案例”与“分析”中将要涉及的基本教育理论,可以促进理论知识与教学实例的融合。“访谈录”以对话的形式记录对有关教师进行的访谈,以外化教师的缄默知识,便于他人更加全面、深刻地了解案例产生的背景、过程和做法。教师撰写的案例主要格式是“片断+反思”,其变式主要有“背景——片断——反思”与“片断——评析——反思”。

可见,案例主要由两大部分组成,即“案例+反思”。案例是为了一个主题而截取的教学行为片断,这些片断蕴涵了一定的教育理论。它源于实践,但高于实践。案例以真实的教师和事件为基础,但又不是简单而机械的课堂实录,它是教师对自身典型教学事件的描述,它可以描述一节课或一个片断,也可以围绕一个主题,把几节课的相关片断叠加。从案例内容的表述形式看,主要有“叙事式”和“对话式”;从案例内容的编排方式看主要有“单一式”、“对照式”和“递进式”。反思一方面是基于案例,做到理论联系实际,实例印证理论;另一方面要高于案例,要从案例的分析中生发出新的问题,提出新的观点。

⑶ 小学数学案例题目随便

试卷分析是小学检测必不可少的内容,通过分析可以更清楚的了解学生本阶段的学习情况,也有利于下一步教学工作的开展。试卷分析可详可简,本文先分享一个详细的试卷分析,仅供参考……
小学数学试卷分析(样本)
一、整体情况分析
1、本次检测平均分只有73.9分,反映了本班学生的数学综合水平处于中等水平,两极分化较严重,31.0%的学生数学素养较好,都能在90分以上,而19.0%的学生不及格,并且有11.9%的学生成绩在20分以内,平均分就难提高上去。优等生成绩不完美,总有差错,100分几乎没有,说明学生的知识掌握不够全面,系统处理数学知识的能力尚未建立。
2、学困生分析
本班的学困生已成现实,难以改变,因为他们的基础知识实在不行,教师根本没有精力和耐心去精心辅导,所以尽可能让他们理解简单的数学知识,让他们切实掌握。11.9%的学生基本不具备学数学的能力和方法了,只能靠模仿做几道简单的习题。18.0%的学生思维水平不是特别高,相对于优等生来说理解会慢点,不够灵活,但耐心讲解,他们也能掌握好,这部分学生还是可以挽救的。
3、卷面分析
本次检测较以往,有如下改变:一是解决问题的比重适度降低,几乎涵盖了本册重点知识,分值只占25%;二是口算题量增加,强化了口算能力的重要性;三是注重了知识习得过程的考查,如圆面积计算方法的形成过程,计算长方形的面积,强化了过程的重要性。四是注重知识的全面理解。如选择题的第1、5小题,都是理解性较强的题,需要学生深入思考才能做出正确选择。
二、试题具体分析
1、学生答卷整体情况分析:从学生答题情况开看,还算可以。每个大题的答题率都在60??70%之间,只有解决问题的第2个题目,在44.8%不大理想。而有关用数对表示位置的习题正确率在100%,难能可贵。其余较好的有文字题的第2小题,让学生用方程解答,刚好有复习到。本次的解决问题比上学期要好,答题率都在70%左右,有关计算的习题也算可以,都在75%左右。答题情况较弱的是填空题、选择题、问题解决等这些认知水平较高、需一定解决能力的习题。
2、细化分析:从试卷安排顺序逐步进行分析,以便科学合理的反映本班答题情况。
项目一:认真思考,准确填空。(19%)
⒈考点:有1个小题,侧重于倒数、化聚、分数乘除法、扇形统计图、圆环面积、圆面积的推导公式等。
⒉答题情况:本题的得分率在67.5%,可见学生对基础知识的掌握还算可以,全班只有1位学生全对,而错误率最高是第7小题,将圆展开后,拼长的长方形的周长的计算,还有圆环小路的面积计算。部分同学对():8=10/()=()÷20=0.25=()%类型的题目掌握不够好,更需强调“谁在前,谁在后”的问题解决的策略方法。
⒊失分原因:一是知识点记忆不深刻,如最小的合数;二是转化意识不强,如拼成的长方形的长相当于圆周长的一半,宽相当于半径,理解不透;三是对圆环面积的计算方法理解不到位。
⒋今后教学要加强:一是知识形成的展开过程,更加重视直观教学;二是基础知识的回忆和理解;三是讲究策略和方法。
项目二:仔细推敲,认真辨析。(5%)
⒈考点:百分数的意义、化简比、圆周率概念、比的分配问题、商与被除数大小关系等。
⒉答题情况:答题率在78.1%,还能较好到体现出学生的辨析能力。几道习题应该不难,平时教学都有讲到过,只是第4个习题,平时不大注意,学生答题情况不好。
⒊失分原因:一是学生对直角三角形的三个内角度数关系理解不到位;二是对圆周率概念理解还摸棱两可;三是商与被除数大小关系比较,没有形成整体观,缺乏辨析能力。
⒋今后教学:一是要加强概念的理解和知识点的落实;二是培养学生综合分析数学知识的能力。
项目三:反复比较,慎重选择。(5%)
⒈考点:对称轴、圆、百分率、等式、单一量等
⒉答题情况:61.4%的答题率来看,应该不算好,第1、5小题,此类型习题平时讲得较少,但也有部分学生正确选择。尤其是第1小题,求单一量的问题,平时教给学生的策略不是很到位。对“如果A÷=B×,那么A()B”这种习题,平时已有渗透,可这里错误率还是较高,不难理解。原先以为,学生对第5题,如“在含盐率是10%的盐水中,加入盐和水各10克,这时盐水的含盐率是( )”的把握不是很好,可答题率还不错。说明学生已对百分率有了很好的理解。
⒊失分原因:一是理解不到位;二是逆向思维能力不强;三是不会合理选择方法。
⒋今后教学:一是加强知识的综合性;二是教会学生解决的策略和方法;三是扎实地理解有关概念。
项目四:注意审题,细心计算。(38%)
相对于数学学科特点,计算能力的测查是必测项目。而计算离不开口算、递等式计算、解方程、文字题等。而文字题,从新教材来看,并不突出,课本中这种类型的习题根本找不到,但每比检测总有这样的习题存在,不得不重视。
⒈考点:主要侧重于分数乘除法、分数四则混合运算、解方程等;
⒉答题情况:一是口算的答题率有81.5%,其中只有两题是分数加减法,错误率最高的是+、0.3×、+×7、×÷×等题。二是递等式计算,答题率在75.4%,往往是过程基本正确,结果错误较多,此类习题:×+÷8错误率最高。三是解方程的答题率在78.6%还算可以,形如x-x=24题型,错误率较高,学生就是不能将乘法分配率进行迁移。四是文字题,平时做得比较少,但答题率也在85.4%,尤其是对用方程解决文字题较好,这跟复习时刚好碰到有关。
⒊失分原因:一是学生对异分母分数加法还不够熟练,缺乏观察数据特点,盲目计算,分数和小数乘法的能力不是很强;二是学生基本已掌握分数四则混合运算顺序,但往往由于粗心结果错误较多,对简便方法掌握不够,原因在于不能先观察数据特点进行合理计算;三是解方程的能力不强,尤其是稍复杂的方程,学生还没有与乘法分配率进行联系;四是文字阅读能力较差。
⒋今后教学:一是更加突出计算能力的教学,照准机会培养学生的计算能力,安排一定的计算练习,形成较强的计算方法;二是突出乘法分配率的教学,尤其是方程;三是平时教学也要适度增加一些文字形式的习题,供学生练习。
项目五:用心观察,精心计算。(8%)
⒈考点:用数对表示位置、在正方形内画一个最大的圆、计算圆的面积等;
⒉答题情况:一是用数对表示位置非常好,答题率在100%。二是大部分同学能在正方形内找到圆心,并正确画圆,尤其是能正确计算面积。此题的答题率在77.4%非常可观。
⒊失分原因:一是还不能找到圆心;二是圆面积的计算方法。
⒋今后教学:一是充分发挥每道习题的作用,尽最大可能培养学生的各方面能力,如作图能力、计算能力;二是讲究策略和方法,如在正方形内找圆心的方法,平时有遇到,但没有抓落实。
项目六:活用知识,解决问题。(25%)
⒈考点:问题解决是数学测试的重头戏。本张试卷涵盖了分数乘除法应用题、比的应用、利息计算、圆周长的计算。
⒉答题情况:一是对利息计算、分数乘法解决问题的答题情况较好,正确率都在83.3%以上;二对分数除法问题学生掌握还是不够好,但也有多样方法,其中的数量关系掌握不透彻;学生正确的方法有如下几种:①100-51-28=21(枚),这种方法解答的学生已有全面分析习题的能力,其实这道题目编排不是很科学;②28÷(1+);③(1+)x=28;④28÷;⑤x+x=28。而错误的方法也很多,粗略统计有11种,有些答案正确,但说不出原由,有些答案乱套,没有思路,学生想法不一,就是没能找到正确的数量关系。三是对按比例分配计算能力掌握较好,但学生对长方体棱长的数量回忆不够,盲目计算,导致此题答题率只有44.8%,问题在于没有将求出的长除以4,算出一条长的长度,缺少知识的系统性。
⒊失分原因:一是不能正确找到其中的数量关系,进行合理分析,尤其是分数除法问题;二是有关长方体棱长的数量掌握不到位;三是圆周长的理解不到位。四是缺乏作图、线段图能力。
⒋今后教学:一是加强数量分析的理解,帮助学生正确找到习题中的数量关系,最大可能让学生自主作出线段图,帮助分析,寻求解决问题的方法;二是注重周长和面积的理解,正确计算;三是概念的落实,如学生一定要明白长方体棱长的数量。
三、今后教学建议:
1、抓两头并进,促中间层发展。学困生已成为本班的现实问题,一时也难以改变。只能在新知教学时让这部分学生切实掌握好一些简单知识,掌握基本的计算技能和方法。尖子生还不是很全面,今后要融入拓展性习题,着重培养学生解决问题的灵敏度,当然首先要夯实基础,教学中要关注学生的知识的系统性,帮助建构数学知识体系。中间层的学生只能靠耐心,多伸援助之手,利用课后辅导时间,详细讲解要点,帮助他们掌握好每节课的知识点,这样才不至于他们掉进学困生的队伍,使他们稳定在七八十分左右。
2、注重数学知识的过程演绎。在备课时,我们要形成整体观,在课堂教学中培养学生的全面系统知识体系,落实各个知识点,充分发挥知识的作用,开展思维训练,一定要让学生切实经历知识的习得过程。让学生理解数学知识的脉络体系,建构系统知识。如圆面积的推导过程,我们只注重面积的推导,而没有去挖掘周长的计算也是一种很好的教学。可见,备课缺乏系统观,要充分挖掘数学知识演绎过程的思维价值,进行系统教学。
3、重视基础知识的落实。基础知识一定要让学生切实掌握,尤其是学困生,教学不能浮在知识表层,一定要深挖,体现思想。
4、教学要有深度。从本次检测来看,平时的教学基本在知识点上螺旋进行,而没有让学生多角度思考问题,让学生建构解题模型,切实掌握好策略和方法。如“如果小刚小时行走 km,那么他行1千米需要几小时?列式为”,平时也有碰到,但总是没能找到更好的策略,这些灵活性较强的习题,平时教学一定要深层次思考,帮助学生找到更好的方法。此题,我想就可以利用“比的基本性质”的知识来帮助解决,是不是更妥当。
5、教学更讲究学习方法和策略。遇到不同类型的习题,让学生找到更合适的解决方法和策略来提高解题能力,最终建立解题模型,发展学生的思维能力。

⑷ 小学数学教学案例分析

课题:探索三角形全等的条件
一、教学设计:
1 学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2 学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3 学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4 教学目标:
(1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
5 教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。。
6 教学过程

教学步骤 教师活动 学生活动 教学媒体(资源)和教学方式

复习过渡
引入新知

创设情景
提出问题

建立模型
探索发现

归纳总结
得出新知

巩固运用
及其推广

反思小结

提炼规律
电脑显示,带领学生复习全等三角定义及其性质。

电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

按照三角形“边、角” 元素进行分类,师生共同归纳得出:
1 一个条件:一角,一边
2 两个条件:两角; 两边;一角一边
3 三个条件:三角; 三边;两角一边;两边一角

按以上分类顺序动脑、动手操
作,验证。
教师收集学生的作品,加以比
较,得出结论:
只给出一个或两个条件时,
都不能保证所画出的三角形
一定全等。

下面将研究三个条件下三角形
全等的判定。
(1)已知三角形的三个角分别
为40°、60°、80°,画出这
个三角形,并与同伴比较是否
全等。
学生得出结论后,再举例体会
一下。
举例说明:如老师上课用的三
角尺与同学用的三角板三个角
分别对应 相等,但一个大一个
小,很显然不全等;再如同是
等边三角形,边长不等,两个
三角形也不全等。等等。

(2)已知三角形三条边分别是
4cm,5cm,7cm,画出这个三角
形,并与同伴比较是否全等。

板演:三边对应相等的两个
三角形全等,简写为“边
边边”或“SSS”。

由上面的结论可知,只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。
实物演示:
由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。
举例说明该性质在生活中的应用

类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性

图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。

题组练习:
P140 2 ( 学生举反例说明)
3 ( 对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)

教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。

在教师引导下回忆前面知识,为探究新知识作好准备。

议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件…经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。

想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?
画一画:
按照下面给出的两个条件做出三角形:
(1) 三角形的两个角分别是:30°,50°
(2) 三角形的两条边分别是:4cm,6cm
(3) 三角形的一个角为 30,一条边为3cm
剪一剪:
把所画的三角形分别剪下来。
比一比:
同一条件下作出的三角形与其他同学作的比一比,是否全等。

学生重复上面的操作过程,画一画,剪一剪,比一比。
学生总结出:三个内角对应相等的两个三角形不一定全等

学生举例说明

学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。

鼓励学生自己举出实例,体验数学在生活中的应用.

学生那出准备好的硬纸条,进行实验,得出结论:
四边形、五边形不具稳定性。

学生练习

学生在教师引导下回顾反思,归纳整理。

z+z平台演示

z+z平台演示,教师加以分析。
学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。

结论很显然只需学生想像即可,z+z平台辅助直观演示。

学生动手操作,通过实践、自主探索、交流,获得新知。

举例时,电脑辅助演示让学生感受反例的作用。

z+z平台播放三角形稳定性及四边形不稳定性在生活中的应用.

z+z平台显示题组练习

检测学生对知识的掌握情况及应用能力。

再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验。

7教学反思

(1) 本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
(2) 在课堂教学设计中,尽量为学生提供“做中学”的时空,不放过任何一个发展学生智力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。
(3) “乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才的以发展。

⑸ 简单梳理一下我国的小学数学教育的变革轨迹,从中可以发现一些什么样的特点

数与代数数与代数现行大纲这部分内容主要侧重有关数、代数式、方程、函数的运算,《标准》对此作了较大地改革:1.重视数与符号意义以及对数的感受,体会数字用来表示和交流的作用.通过探索丰富的问题情景发展运算的含义,在保持基本笔算训练的前提下,强调能够根据题目条件寻求合理、简捷的运算途径和运算方法,加强估算,引进计算器,鼓励算法多样化.2.对于应用问题:选材强调现实性、趣味性和可探索性;题材呈现形式多样化(表格、图形、漫画、对话、文字等);强调对信息材料的选择与判断(信息多余、信息不足……);解决的策略多样化;问题答案可以不唯一;淡化人为编制的应用题类型及其解题分析.3.使学生初步体会数学可以发现、描述、分析客观世界中多种多样的模式,把握事物的变化和事物间的关系;初步发展学生的符号意识,学会用符号表达现实问题中的一些基本关系,会初步进行符号运算.4.体会方程和函数是刻划现实世界,有效地表示、处理、交流和传递信息的强有力工具,是探究事物好发展规律,预测事物发展的重要手段,重视对简单现实头问题的建模过程,学会选择有效的符号运算程序和方法解决问题,重视近似解法特别是图象解法.第一学段1.增加“能进行简单的四则混合运算(两步).2.适当加强基础.3.加强综合能力的培养.第二学段1.增加“结合现实情景感受大数的意义,并进行估算;发展学生的数感;加强与现实的联系.”2.增加了“了解公倍数和最小公倍数,了解公因数和最大公因数.”3.删除“会口算百以内一位数乘、除两位数”(?教师讨论)4.将“理解等式的性质,会用等式的性质解简单的方程”改为“能理解简单的方程.”图形与几何(原称空间与图形:变“空间与图形”为“图形与几何”;重提几何直观、推理能力、运算能力、逻辑思维能力,用词更加规范,体现了课标的严肃)现行大纲这部分内容,小学主要侧重长度、面积、体积的计算,初中主要是运用逻辑证明和扩大公理化的方法呈现有关平面图形的性质,这使得学生不能将所学的几何知识与现实生活联系起来,也没有体现现代几何的发展,还往往造成不少学生因此对几何、至整个数学学习失去了兴趣和信心.为此,《标准》在重新审视几何教学目标的基础上,提出几何学习最重要的目标是使学生更好地理解自己所生存的世界,形成空间观念.并对传统的几何内容进行了较大幅度的改革:1.设置了“空间与图形”领域,将几何学习的视野拓宽到学生生活的空间,强调空间和图形知识的现实背景,从第一学段开始使学生接触丰富的几何世界.2.通过观察、描述、制作、从不同的角度观察物体、认识方向、制作模型等活动,发展学生的空间观念和和图形设计与推理的能力.3.突出用观察、操作、变换、坐标、推理等多方式了解现实空间和处理几何问题,体会的刻划现实生活中的应用.《标准》中还指出,逻辑证明的要求并不局限于几何内容,而应该体现在数学学习各个领域,包括代数和统计与概率等;对于几何证明的教学来说,它的目的不应当是追求证明的技巧、证明的速度和题目的难度,而应服从于使学生养成“说明有据”的态度、尊重客观事实的精神和质疑的习惯,形成证明的意识,理解证明的必要性和意义,体会证明的思想,掌握证明的基本方法等等.因此,《标准》中在强调探索图形性质的基础之上,要求证明基本图形(三角形、四边形)的基本性质,降低了对论证过程形式化和证明技巧的要求,删节去了繁难的几何证明题,旨在通过这些让学生体验逻辑证明的意义、过程,掌握基本的证明方法,同时,向学生介绍欧几里得和《几何原本》,使学生体会它们对于人类历史和思想发展中的重要作用.综上所述,《标准》大大地加强和改善了目前的几何教学.的”图形与几何”第一学段仍分为四部分,具体表示有所变动,(1)图形的认识,(2)测量,(3)图形的运动,(4)图形与位置,在探索、发现、确认、证明图形性质过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系.体现增强学生“发现和提出问题、分析和解决问题”的能力要求.“图形的运动”强调了图形的运动是研究图形性质的一种有效方法.运动也是一种基本的数学思想.第一学段(1)将能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”放在第二学段.(2)将”能在方格纸上画出简单图形的轴对称图形放在第二学段.”第二学段(1)删除“两点确定一条直线”和“两条直线确定一个点”(2)增加“通过操作,了解圆的周长与直径的比为定值.统计与概率现行大纲中只在小学高年级和初三代数中设立一章介绍有关统计初步的内容,几乎没有涉及概率内容,同时仍然采取“定义——公式——例题——习题”的体系呈现弦计初步知识,使得学生很难得体会这部分内容与现实的联系,统计与概率对决策的作用.因此,《标准》中大大增加了“统计与概率”的内容,在三个学段根据学生的认知特点,分别设置了相应的内容,结合实际问题,体现了统计与概率的基本思想:1、反映数据统计的全过程:收集和整理数据、表示数据、分析数据、作出决策、进行交流.2、体全随机观念和用样本估计总体的初步思想,将概率统计方法作为制定决策的有力手段.3、根据数据作出推理和合理的论证,并初步学会用概率统计语言进行交流.统计鼓励学生运用自己的方式呈现整理数据的结果.⑴(第一学段)不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(放在第二学段).这种变化有三个原因:①更加突出了学生对数据分析的体验,鼓励学生用自己的方式去分析数据.②早期经验的多样化可以为以后学习:“正规”的统计图表和统计量奠定比较牢固的基础.③使得统计内容在第一、二学段的要求层次更加明确.⑵加强分析图表的能力里的培养.提升“读图能力”的培养.⑶加强调查等活动的体验.(主要是小调查)在收集数据方法方面,考虑到学生年龄特征,要求学生了解测量、调查等的简单方法,不要求学生从报刊、杂志、电视等去收集资料.⑷第二学段与《标准》相比,在统计方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在第三学段)平均数易受极端数的影响(最大数与最小数的影响).⑸另外,删去“体会数据可能产生的误导”这一要求.概率(可能性,重视“随机现象”)在第一学段,去掉了对此内容的要求:第二学段只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性的描述.综合与实践“综合与实践”是一类以问题为载体,学生主动参与的学习活动.,是帮助学生积累数学活动经验,培养学生应用意识与创新意识的重要途径.针对问题的情景,学生综合所学的知识,和生活经验,独立思考或与他人合作经历发现问题和提出问题,分析问题和解决问题的全过程,感悟数学各部分内容之间\数学与生活实际之间\数学与其他学科之间的联系,加深对所教数学内容的理解.《标准》增设“联系与综合”部分的目的是让学生在各个知识领域的学习过程中,有意识地体会数学与他们的生活经验、现实社会和其他学科的联系,以及数学在人类文明发展与进步过程中的作用;体会数学知识内在的联系.同时,采用过“综合实践活动”这种新的学习形式,通过学生的自主探索与合作交流,使他们获得综合运用数学知识和方法解决实际问题、探索数学规律的能力,逐步发展对数学的整体认识.新的数学课程新技术对数学课程提出了新的要求,指出了新技术包括数学课程的目的、数学学习的内容以及教与学的方式等方面产生了巨大影响.因此,《标准》提出在第二学段引入计算器,并鼓励把计算器和计算机作为研究、解决问题的强有力的工具.这样可以免除学生做大量繁杂、重复的运算,从而在探索性、创造性的数学活动中投入的精力,解决更为广泛的现实问题.同时,在课程实施建议中强调,有条件的地区应尽可能在教学过程中使用现代教育技术,增加数学课程的技术含量,充分利用现代教育技术在增加师生互动、形象化表示数学内容、有效处理复杂的数学运算等方面的优势,去改进学生的数学学习方式、增进学生对数学的理解,最终提高数学教学的质量.对综合与实践的理解-------实践性﹑综合性﹑探索性“综合与实践”应当保证每个学期至少有一次,它可以在课堂上完成,也可以在课外或课内外相结合完成.“综合与实践”的核心是发现和提出问题,分析和解决问题,不同学段有不同的特点.第一学段:内容安排强调时实践性和趣味性.第二学段:通过应用、探索和反思,加深对所学知识的理解,通过探索、引发学生学习的兴趣和培养思考的习惯,通过交流,发展理解他人、团结互助的合作精神.启示:启示一:坚持数学课程的三维整体目标把促进学生的全面发展体现在新的教学课程标准中,形成了包括知识与技能、思维与能力、情感与态度三个基本方面的目标.启示二:以发展学生的数学思维作为课程与教学的重点之一在教师指导下自主学习和探究问题,初步学会大知识的学习和解决问题过程中进行自我评判和调控.让学生对知识进行系统的整理.初步学会对已有知识经验质疑和对问题进行多方面的分析,能进行发散性思维,能提出自己的见解(算法多样化、思考问题的策略化).初步掌握观察、操作、比较、分析、类比、归纳多种数学的思考方法和利用图表整理数据,获取信息的方法.具有抓住现实生活的本质,进行数学抽象与概括的经历与经验.懂得从特殊到一般,从一般到特殊以及转化的思维策略.启示三:把解决问题置于数学课程的核心地位在标准的修改稿中,不仅体现了解决问题的基本理念,而且在实施过程中形成自己的特色(经历探索、实践的过程).启示四:要把促进创新和落实基础知识统一起来数学学习中创新活动主要集中在发现问题、提出问题、分析问题和解决问题的过程中.在上述活动中,学生已有的知识基础占有重要作用.

⑹ 小学数学案例分析题及答案

小学数学案例分析

1、[案例描述]《带分数乘法》教学片断:

⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:5×2

⒉算式一出现,教师就立即组织四人小组交流算法。

其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)×(2+) ②5.8×2.5 ③×,其他同学拍手叫好而告终。

请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。

答:以上现象是教师在使用小组合作时经常出现的一种问题。就是没有处理好小组合作和独立思考的关系。教师要处理好合作学习与独立思考的关系强调合作学习不是不要独立思考。独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?

2、[案例描述]记得那是一节顺利而精彩的课,上课内容是“分数的意义”。在课的结尾,教者没有安排学生围绕知识点去小结,而是让学生在小组内、班里用分数表述一下自己这节课的学习情绪。令人难忘的是有一位学生在小组里的表述:“我把整节课的学习情绪看成单位‘1’,高兴的占了3份,即3/4高兴,遗憾的占了一份,即1/4遗憾。因为面对这么多的老师听课,我们班的同学一个个都正确地回答了老师的提问,展示了我们班的风采,为班级争了光,我为我们班而自豪,感到十分高兴。我之所以遗憾,是因为整堂课我一直认真思考,积极举手,许多问题又不难,但老师没有给我一次机会,我感到很遗憾……”

下课后我找到这位同学了解情况:

问:小朋友,你知道老师为什么没让你发言吗?

答:老师有可能没有看到我举手,也有可能怕我回答不准确吧,因为数学这门课我学得不太好。

问:平时课堂上,老师都叫哪些同学发言呢?

答:差不多都是成绩较好的同学。

[案例反思](可以从面向全体的角度分析):

答:这是我们数学课堂中存在的普遍想象,我们的数学课堂教学如何来面向全体学生呢?只有最大限度地尊重个体,才有可能真正面向全体,这样的道理已经很难在传统的教学组织形式下得以落实。我们想,我们可以采用开展小组合作交流,让学生的个人想法在小组内得到展示,在小组内得到表现。…

3、案例描述

师:今天,在学习小数的加减法之前,请你们独立解决一个问题:笑笑在书店买一套《中国儿童网络全书》花了148元,还剩下53元,笑笑带了多少钱?

师:淘气跟笑笑一起到书店买书,也有一个问题,看谁有办法帮他解决?

淘气在书店买一本《童话故事》,花了3. 2元,他又买了一本数学世界,花了11. 5元。淘气一共花了多少元?(鼓励学生迎接挑战,认真审题,先列出算式,教师巡堂,再到黑板前列出算式:3.2+11.5=?)

师:(指着算式)这是我看到的一些同学所列的算式,有没有列式和这个不同的?(学生还可能列出11.5+3.2=?教师也把它写到黑板上,给予肯定)

师:为了帮淘气解决付钱的问题,大家都列出了正确的算式。可我们都没有尝试过两个小数怎么相加。现在就来试一试看谁能独立发现小数加法的算法。

(1)学生独立思考,自主探索。

(2)在独立思考的基础上,小组交流。

(3)看一看教材中三位小朋友是怎么计算的。其中哪种算法和你的一样,哪种你没想到?你还有不同的算法吗?

(4)小组讨论:教材中的三种算法各有什么特点和相同之处?小数相加时,为什么智慧老人特别强调“小数点一定要对齐?”

(5)全班围绕“为什么小数点一定要对齐”交流,教师归纳小结,明晰小数加法的算理。

师:多位数相加时,个位数字一定要对齐。这是为什么呢?因为相同数位(单位)上的数才能相加;个位对齐了,所有的数位也都对齐了。小数相加时,小数点一定要对齐也是这个道理。只要小数点对齐了,所有的数位也都对齐了。教材中前两种算法的共同特点是化去小数点,把小数相加变成整数相加,但“相同单位的数才能相加”的算理没有变。所以,只要小数点对齐了,小数加法的计算与多位数加法的计算就没有什么不同了。

问题讨论

(1). “小数加法”这一课,教材是让学生直接进行尝试的,本案例中教师引入时先安排了整数加法的内容,你对此有什么看法?直接安排学生尝试,对学生理解小数加减法是否有帮助?

(2)、教师在学生讨论完之后,安排了看书的环节,你认为有必要吗?为什么?

(3)、书中三种算法的共性是什么?为什么要让学生讨论这个问题?

案例分析(围绕上述问题分析)

4、案例《9加几》前半节课的教学过程:

⒈创设9+5的情境,列出数学算式。

⒉学生合作交流9+5=?

⒊比较算法多样化,得出“凑十法”。

⒋教师布置学生以四人小组的为单位,通过摆小棒计算9+6=

9+7= 9+4= 9+3=

笔者仔细观察各小组的活动情况,大多数小组同学先写出得数,再摆小

棒,有一个组的同学纯粹在玩小棒。为什么会这样呢?为了弄清原因,于是我又出了一些9加几的算式让学生口答,每人5题,抽测了十位同学,只有一人算错了1题。问他们怎样算的,多数同学回答,想出来的,在幼儿园里就会算了。位数不少的同学能把“凑十法”的过程说得头头是道、明明白白。

思考题:1、摆小棒计算时学生为什么先写得数再摆小棒?

2、我们应如何对待书中所安排的动手操作?

案例分析:

5、设计一个你认为较理想的问题情境,并加以分析。

6、、案例描述:这样的合作有效果吗?

场景1

一位教师在教学“两位数减一位数的退位减法”一课时,在学生根据情境列出16-7这样一个算式之后,马上让同学们以小组为单位,讨论应该怎样计算16-7。

场景2

某校四年级六班有56名同学,老师在教学实践活动课“秋游计划”一课时,在让学生合作制订购买秋游所需物品及所需钱数之后,又设计了一个活动——乘车与买门票。“一辆大客车可坐50人,每辆300元;一辆中型客车可坐30人,每辆200元。个人票每人10元,团体票每人8元(10人为一组)。”让学生根据教师提供的这些数据,讨论交流应该怎样租车、怎样购买门票比较合理(在第二次合作学习时,有的学生在继续计算买哪些吃的更好,有的在互相玩计算器)。

场景3 .

一位教师在教学二年级数学课“克和千克”一课时,让小组合作称自己感兴趣的东西。在小组汇报时,有一个学生说:“我称的是竖笛,它的重量是8克。”老师问道: “是8克吗?”坐在旁边的学生提醒了一下:“它的重量是85克。”这名学生终于说出了合理的答案。

思考题:场景1的合作缺少了什么?场景2在第二次合作学习时,有的学生在继续计算买哪些吃的更好,有的在互相玩计算器的主要原因是什么?场景3中为什么会出现第一次说是8克而第二次说是85克的情况呢?

“5的加法”新授课。教材是这样编写的:

教材编写的意图是:渗透算法多样化的理念,鼓励学生独立思考。那么老师又是怎样理解使用教材的呢?

师:算出一共5只,是用什么方法算?

生1:4+1=5。

生2:4和1组成5。

师:为什么用加法?

生:(无人举手)

师:昨天学习加法,把两个数合起来,用加法。现在,要把4只和1只合起来,所以该用——加法。

师:算式4+1=5中的4、1、5表示什么?

生:(略)

师:5只鸟,可能用什么方法算出来?

生:(脱口而出)用加法。

(教师想要的方法没出来,于是教师要求学生讨论)

师:请四人小组讨论。

生:(学生讨论)

师:谁来汇报“5只鸟,可能用什么方法算出来?”

生1:用加法。

生2:想组成分解。

(这时教材上列举的三种方法,学生只想到“组成”这一种。于是,教师继续引导)

师:有不同的想法吗?你是怎么想的?

生3:心里想的。

生4:5-0=5(这时,学生有点“丈二和尚摸不着头脑”)

师:请你说一说怎样想出等于5?

生5:4和1组成5。

生6:跟他一样是心里想的。

(学生仍然想不出“数数”的方法,这时教师干脆直截了当地“导”)

师:在心里怎样算?先数几?

生7:先数4。

师:再数几?

生7:再数5。

(至此,“用数数的方法来计算4+1=?”终于出来了)

【评析】为了启发学生说出数数的方法,整个教学过程用了十几分钟。在这当中学生有什么收获呢?学生为什么不会想到数数的方法?实际上城市的一年级新生几乎100%接受幼儿园教育。目前,许多幼儿园都在教学10以内加减法,而且为了更好地与小学“接轨”,他们教孩子用想组成分解的方法来计算加减法,还让学生天天练习。因此,相当一部分学生在幼儿园期间对10以内的加减法已达到了提取事实的阶段(即脱口而出的程度),早已超越用数数得到计算结果的阶段。也就是说学生经验中早就淡忘了数数的方法,所以学生想不到数数的方法也就成其自然了。

教师用这么长的时间想达到什么目的呢?为什么千方百计地非要学生说出用数数的方法计算“4+1=?”呢?因为这种方法教材上出现了。有些教师以为教材提倡算法多样化,就必须让学生掌握教材中的每一种方法。这说明教师对数学课程标准的理念尚未理解,仍然是“以教材为本”、“以教案为本”。

学生在这十几分钟里知识无增,认知水平降低,只有失败的体验。这样的教学,无论是从教学目标的哪个维度来衡量,都不利于学生的发展,反而阻碍了学生的发展。

课改的基本理念是:教育要以人为本,教育要促进人的发展,要关注学生、关注过程、关注发展。而要体现这个基本理念,非创造性地使用教材不可。那么如何创造性地使用教材呢?根据《数学课程标准》,创造性地使用教材可在“五个字”(调、改、增、组、挖)上下功夫。调:调整认知目标,调整教学内容,调整练习题;改:改变情境(问题情境、游戏情境、活动情境……)、改变例题、习题;增:增加让学生探索创造的活动;组:重组教学内容;挖:挖掘教材中可发展学生创新思维的因素。

像前面举的这个例子,当学生列式计算之后,教师可让学生说一说:“4+1=5,你是怎么想的?”学生能想出几种就几种,勿强求。接着教师可创设这样的问题情境:笑笑也在学习5以内的加法,可2+3=?他给忘了,你能帮他想办法算出这题的得数吗?然后可设计游戏和一些有助于发展学生思维的练习。还可以引导学生联系实际,说说生活中哪些事可以用5的加法来表示?……如果班级学生的基础较好,可以把5以内的加减法合在一起上,甚至也可以不教学这部分内容。这样的设计,是站在学生的角度,从学生的实际出发,遵循学生的认知规律以及他们的发展需求,较好地体现教学为学生的发展服务的理念。

7.[案例描述]《带分数乘法》教学片断:

⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:5×2

⒉算式一出现,教师就立即组织四人小组交流算法。

其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)×(2+) ②5.8×2.5 ③×,其他同学拍手叫好而告终。

请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。

答:以上现象是教师在使用小组合作时经常出现的一种问题。就是没有处理好小组合作和独立思考的关系。教师要处理好合作学习与独立思考的关系强调合作学习不是不要独立思考。独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?

8.[案例描述]记得那是一节顺利而精彩的课,上课内容是“分数的意义”。

在课的结尾,教者没有安排学生围绕知识点去小结,而是让学生在小组内、班里用分数表述一下自己这节课的学习情绪。令人难忘的是有一位学生在小组里的表述:“我把整节课的学习情绪看成单位‘1’,高兴的占了3份,即3/4高兴,遗憾的占了一份,即1/4遗憾。因为面对这么多的老师听课,我们班的同学一个个都正确地回答了老师的提问,展示了我们班的风采,为班级争了光,我为我们班而自豪,感到十分高兴。我之所以遗憾,是因为整堂课我一直认真思考,积极举手,许多问题又不难,但老师没有给我一次机会,我感到很遗憾……”

下课后我找到这位同学了解情况:

问:小朋友,你知道老师为什么没让你发言吗?

答:老师有可能没有看到我举手,也有可能怕我回答不准确吧,因为数学这门课我学得不太好。

问:平时课堂上,老师都叫哪些同学发言呢?

答:差不多都是成绩较好的同学。

[案例反思](可以从面向全体的角度分析):

答:这是我们数学课堂中存在的普遍想象,我们的数学课堂教学如何来面向全体学生呢?只有最大限度地尊重个体,才有可能真正面向全体,这样的道理已经很难在传统的教学组织形式下得以落实。我们想,我们可以采用开展小组合作交流,让学生的个人想法在小组内得到展示,在小组内得到表现。……

⑺ 小学数学教学案例有哪些

101教育PPT有很多,随便发一篇给你吧
人教一年级数学上册《1—5的认识》教案
学情分析:
学生在幼儿园接触过1-5各数,他们能够熟练地数数,有的甚至能够疏导100多,从表面上看,他们已经很熟悉这些数了,但是这一阶段的学生缺乏对数的整体意义的理解。大部分学生在生活中见到过这些数,对它们的用处有了一些了解,但是没有感受到身边处处有数,对生活中离不开数的价值缺乏体验,还没有对这些数产生较强的喜爱之情。
教学目标:
1、 在观察农家小院图提取信息的过程中,引导学生初步感知1~5各数的基数含义,知道1~5的数序,并会认、会读、会写这5个数。
2、 在教学活动中,培养学生的数感,感受数学与生活的密切联系。
教学重点:
1~5的基数含义和写法。
教学难点:
1~5的写法,初步建立数感。
课时准备:
1课时
教学过程:
一、游戏导入,激发学生兴趣
教师:小朋友们喜欢做游戏吗?今天,老师给大家带来一个小游戏,请同学们举起你们的双手,跟着老师一起做。我说一句你们跟着说一句。(师生一起做变变变的游戏)
师:刚刚我们变手指是从几根指头变到几根指头的?(随机引出一根指头到五根指头的)
师:今天我们学习《1-5的认识》板书课题(1-5的认识)
二、实践探索,合作交流。
1.师:现在是秋天,秋风送爽,硕果累累,这是一个收获的季节。看这位老奶奶,家里收获了很多东西,同学们瞧瞧,这幅图里面都有什么东西呀?
(南瓜/花朵/老奶奶……)
2.生自主观察,图中有多少个南瓜、多少朵花?并随机指导三、指导学生按从小到大的顺序数。
1.师:图中有什么数量是1?
(一个老奶奶/一只小狗/一串玉米。)
教师:(那我们数量1的东西数完了,接下来应数数量几的呢?)那就请同学们数出图中可以用数“2”表示的东西。
2、师:它们的数量都是2,可以用数“2”表示。2数完了应该数几呢?就请同学们数出图里面可以用数“3”表示的东西。
3、 3数好了接下来应该怎么数?
4、请同学们数数,图中有什么可以用数“4”表示的呢?
5、小鸡和向日葵的数量都是4,可以用数“4”表示。接下来我们应该数?
6、:请同学们说说图中有什么可以用数“5”表示?
(南瓜、玉米的数量是5,可以用数“5”表示)。
四、指导认读。
教师:现在我们一起看一下这个计数器。上面有几颗珠子?
教师:1颗珠子可以用1表示,我们再加一颗珠子,现在是几颗啊?(相机做练习)
五、指导书写
教师: 1是从上往下写,稍稍有些倾斜;2像一只小鸭子; 3像小耳朵;4要写得直直的,不能有弯曲的地方。
六、练习
生在方格本上写1~5。
七、布置作业
课本第16页的做一做两道题完成。
教学反思:
1~5学生们在幼儿园都已经学习过了,这节课的主要目的在于感知1~5各数的基数含义,知道1~5的数序,并会认、会读、会写这5个数,通过图片让学生自己去发现去探讨。但实践下来发现课堂游戏少,学生注意力不够集中。可以在接下来的课堂上多开发一些数学游戏,激起学生的兴趣。

⑻ 小学数学优秀案例《求一个数的几倍是多少》教学设计与反思

《求一个数的几倍是多少》是小学生初次接触“倍”的概念的教学内容,目的是要求学生初步建立并理解“倍”的概念,初步建立“求一个数的几倍是多少”的计算方法。
学情分析
1、教师的主观分析:对于初次接触“倍”的学生来说“倍”的概念是比较抽象的,难以理解。
2、学生认知发展分析:此内容是学生在学习了《7的乘法口决》后的一个学习内容,而学习理解“倍”的概念及“求一个数的几倍是多少”的基础就是乘法,为此应将乘法作为本节课学生学习的基础来展开教学,以旧引新,化难为简。
3、学生认知障碍点分析:本节内容是学生初次接触“倍”这一新概念,在理解“倍”的时候思维迁移存在一定的难度。
综上所述,本节课应充分利用学生原有的知识基础结合直观的方式构建新知,以学习活动为载体,通过探究学习的方式来解决问题,以突出重点,突破难点。在教学中多给学生感知的机会,让学生亲身经历做的过程,体验“倍”的意义及“求一个数的几倍是多少”的方法,自然地探究出并接受新的知识,体验数学即生活,感受数学的乐趣,数学的价值。
教学目标
知识与技能:理解掌握“倍”的意义及“求一个数的几倍是多少”的计算方法。
过程与方法:设置情境,复习旧知,引出新知。通过摆一摆的活动,让学生经历探究新知的过程,引导学生理解掌握“倍”的意义及“求一个数的几倍是多少”的计算方法。培养学生操作、观察、推理、迁移的能力及语言表达能力。
情感态度价值观:培养学生积极动脑的学习习惯和激发学生的学习兴趣,培养合作探究能力,让学生体验数学即生活,感受数学的乐趣,数学的价值。
教学重点和难点
1、理解并建立“倍”的意义,
2、理解并掌握“求一个数的几倍是多少”的计算方法。

⑼ 小学数学调研案例

小学数学四年级上《确定位置(一)》教学案例
2009-11-06 21:30:41 来源:未知 【大 中 小】 评论: 条
摘要: 【 教材分析 】 1. 教材编写特点 : 本单元的主要教学内容及课时安排 : 教学内容 课时安排 确定位置(一) 3 确定位置(二) : 练习八 1 确定位置(一)是探索确定位置的方法,确定位置(二)是根据方向和距离确定物体的位置。 本节课涉及在具体情境中用数-
【教材分析】

1.教材编写特点:

本单元的主要教学内容及课时安排:

教学内容
课时安排

确定位置(一)
3

确定位置(二):

练习八
1

确定位置(一)是探索确定位置的方法,确定位置(二)是根据方向和距离确定物体的位置。

本节课涉及在具体情境中用数对确定位置,历属于小学阶段空间与图形中“图形与位置”的教学范畴。在《全日制义务教育数学课程标准解读(实验稿)》中第一学段中的 目标是:会用上、下、左、右、前、后描述物体的相对位置;在东、南、西、北和东北、西北、东南、西南中,给定一个方向(东、南、西或北)辨认其余七个方向,并能用这些词语描绘物体所在的方向;会看简单的路线图,并作出大致的定性描述。

第二学段的要求是在具体情境中,能用数对来表示位置,并能在方格纸上用数对确定位置的点与点的位置关系,即用有序数对做定量描述。

其后续学习内容为第三学段,图形与坐标中认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标;能在方格纸上建立适当的直角坐标系,描述物体的位置;在同一直角坐标系中,感受图形变换后点的坐标的变化;灵活运用不同的方式确定物体的位置。

由上,我们认为这一节课主要需要解决两件事情:第一,根据实际情境感受建立平面坐标系的必要性和重要性,并试着建立合适的坐标系,以便获得确定点的位置的方法。一种是平面直角坐标系的方法,一种是平面极坐标系的方法(即用距离和角度的方法);第二,在已经建立好的平面直角(或平面极)坐标系中,能根据给出的数对,画出数对对应的点。不论是两个有序的同量称的数(如,(3,4),这里的3与4是同一个单位下的数,比如3米,或者3格),还是(3,40°)都应该是在事先有坐标系的前提下,才能确定唯一一个点。

在整个小学阶段,毫无疑问,重点应该是第二件事情,难点是第一件事情。这样就整体把握了小学阶段“确定位置”的全部内容。

因此本节课着重于体现确定点的位置,一定要在具体情境中渗透坐标系的建立,确立其原点,即观察者的眼睛,确立从哪儿开始看,以及看的方向,为以后正式学习平面直角坐标系奠定基础。

2、本节课教学内容的数学核心思想:

如何在平面上确定位置(坐标系选定后,需要两个参数)。无论是几排几列,距离和方向或者其他坐标都是用两个参数来确定位置,因为平面是二维的。

“实物——点阵——方格——坐标”的逐渐抽象过程是重要的坐标系的相对性;原点的不同造成坐标的不同。

数形结合思想:也就是坐标系方法的提升。也就是用代数的方法(在小学阶段主要是算术)研究图形的思想,这是笛卡尔解析几何思想的精髓,过去都是用基本图形研究更复杂一些的图形,即从几何到几何.

对应:在给定的平面坐标系中,每一个点有唯一的坐标(x,y);另外,对于给定的有序数对(x,y)有唯一确定的点与之对应,这就是一一对应思想在这里问题中的具体体现;

序的结构:自然数可以表示一个列队中每个元素的排队顺序,第4个是在第3个的后面,,这是自然数作为“序数”的特征;那么,在给定的平面直角坐标系中,怎么理解(3,4)和(4,3)不一样呢?其实,类比地看,就是把平面上所有的整格点(整数为坐标的点),也可以象直线上的整数点一样排列,只不过要用到两条线,要用到两个数。这样我们就像理解3和4是不一样的,也能接受(3,4)与(4,3)是不一样的两个点。在实际教学中,要通过问题解决使学生感受这种“序”关系,理解(3,4)与(4,3)的差异。

其中,数形结合思想、对应可以在许多学习内容中体现。序的结构最为抽象,学生不易深刻理解,只能感受。

当然,在一节课同时体现以上几个方面是很困难的,那么我们就需要每节课思考在什么地方体现什么核心思想。第一节课可以借助具体情境的创设,使学生产生用数对确定位置必须依赖于方格或点阵,即在平面(两维空间)上确定位置必须要有两个参数及坐标原点,从而达到在学生头脑中建立平面直角坐标系的雏形的作用,继而培养学生空间观念、推理能力,以及更好地认识与把握我们生存的现实空间。据此,我们设计了确定位置这节课的学科思路,这就是通过教室座位图的具体情况直接引用数对确定位置的方法,通过创设用数对表示一个人在空教室中的位置的情境,使学生体会在二维的平面上确定位置必须在选下(确定)的坐标系上,即给定一个原点,给定横轴和纵轴时,通过2个参数,才能确定一个点在平面中的位置。这样做既符合学生的认知水平,也体现了数学上坐标方法的精神实质,为以后正式学习平面直角坐标系奠定了基础。

【学生分析】

1、学生已有的知识基础

在第一学段中学生经历了用上、下、左、右、前、后及其余七个方向描述物体的相对位置;会看简单的路线图的粗犷的定性描述等知识的学习。通过课前调研可以看出学生对于自己前、后、左、右的同学均能快速准确说出其姓名,但对于东南、东北、西南、西北分别是哪位同学判断和指认困难较大,因此在学习确定位置(二)时会产生较大阻力,必须要提前对此部分知识进行必要的强化复习。但本课学习的用数对方法确定位置对于此部分的前射影响不大。

2、已有的生活经验和学习该内容的经验

在学校的学习生活中我们一般都用第几组第几个来描述自己所在的位置,所以学生对该知识来说很熟悉,而且在访谈的5位学生对于自己在教室的位置均能快速准确说出,而且通过调研,学生在教室中的组与行的确认一致,这就为学习感悟坐标系具备良好的生活经验基础。

3、学习该内容的可能的困难

虽然学生对于用数对确定物体位置的方法有一定的生活和学习经验,但通过调研可以看出,学生画出自己的位置的方法并不一致,其中2位学生用点阵的方法,而另一位用画格子的方法,还有2位学生不会画,这样就要在学生自己体会坐标的由来过程中部分学生会产生困难。教学应设计一定的方法如学生讨论,两人共同完成等手段帮助部分学生突破此难点。

4、学习的兴趣、学习方式和学法分析

学生对于熟悉的生活情境比较感兴趣,但是对于直角坐标系的认识是模糊的,因此教学中注意让学生感受平平面图形的抽象过程,体会数学抽象与生活。

5、再思考

根据学情调查,我设计了确定位置(一)的教学思路,就是通过教室座位图的具体情况直接引出用数对确定位置的方法。通过创设用数对表示一个人在教室中的位置的情境,使学生体会在二维的平面上确定位置必须在选定(确定)的坐标系上,即给定一个原点,给定横轴和纵轴时,通过2个参数,才能确定一个点在平面中的位置。这样做既符合学生的认知水平,也体现了数学上坐标方法的精神实质,为以后正式学习平面直角坐标系奠定了基础,同时达到发展学生的空间观念的目的。

附:学生调研方案

调查时间:2007年3月

调查对象:北京市海淀区第二实验小学三(2)班学生36人

调查题目、目的及结果分析:

1、(1)说一说大门、游乐园、天鹅湖分别在花房的什么方向。

(2)花房的东北方向是猴山,西北方向是鸟房,分别画出它们的位置。

(3)进大门经过花房到天鹅湖要走多少米?进大门经过花房到游乐园要走多少米?

目的:调研学生对已有知识基础(前、后、左、右,东、南、西、北,东南、东北、西南、西北)等方面的掌握情况,以及解决问题的基本技能的情况。

本测试对本校三年级2班的36位学生进行,其中22位学生全对,占被测总数的61.1%,其中5位学生落了题目属于习惯问题;还有6人对于游乐场、天鹅湖的位置判断错误,另外把猴山与鸟房写错方向的有3人,他们对于东南、东北、西南、西北等方向的确认困难与调研结果一致;还有3人计算进大门经过花房到天鹅湖要走多少米?进大门经过花房到游乐园要走多少米?产生错误,属于应用能力较差。

2、访谈题目: 说一说你的座位前、后、左、右以及东南、东北、西南、西北分别是哪位同学。

目的:调研学生对所学知识的掌握及应用经验

被访谈的5位学生对于自己前、后、左、右的同学均能快速准确说出其姓名,但对于东南、东北、西南、西北分别是哪位同学判断和指认困难较大,因此在学习确定位置(二)时会产生较大阻力,必须要提前对此部分知识进行必要的强化复习。但本课学习的用数对方法确定位置对于此部分的前射影响不大.

3、访谈题目: 用描述性的语言,说说自己在班里的位置并用简单的方法写下来。

目的:调研学生对要学的知识(数对)确定位置的经验和用数对表示位置将遇到的问题。

(1)被访谈的5位学生对于自己在教室的位置均能快速准确说出,而且通过调研,学生在教室中的组与行的确认一致,这就为学习感悟坐标系具备良好的生活经验基础,课堂教学可以开门见山地进入新课,可以节约时间。

(2)被访谈的5位学生画出自己的位置的方法并不一致,其中2位用点阵的方法,而另一位用划格子的方法,还有2位学生不会画,这样就要在学生自己体会坐标的由来过程中部分学生会产生困难。教学应设计一定的方法如学生讨论,两人共同完成等手段帮助部分学生突破此难点。

【学习目标】

1.结合具体生活情境,体验确定位置的必要性和重要性,探索确定位置的方法。初步感知直角坐标系雏形(思想和方法),掌握在方格纸上用有序“数对”确定点在平面中的位置的方法。

2.经历观察空间的物体,并能用适当的数学知识描述观察的空间对象的数学化过程,提高学生运用数学符号表示生活现象的认识水平,通过位置的确定发展学生的空间观念。发展空间观念

3.让学生体验数学的简洁美,感受丰富的确定位置的现实背景,体会数学的价值和数学与实际生活的密切联系。

【教学活动】

活动

内容
活动的组织与实施
设计意图
时间

分配

教师活动
学生活动

创设情境生活引入
师:同学们我们做个游戏吧,击鼓传花。要求铃声停,红花落在谁手上,大家请他表演节目。

1、先请8个孩子上前面站一排。

2、再请8个孩子上前面站两排。

师:为什么同样是XX同学演节目,位置却发生变化了呢?

师小结:同学们说的不错,只有一排同学时,我们介绍XX的位置只要介绍从左往右数他在第几个就行了。但如果两排或更多排时,就要介绍清楚他在第几排第几个了。

师:那么同学们知道自己在教室的位置吗?能介绍一下班长的位置吗?
板书:第几个,第2排第几个

生:刚才只是站一排,所以只告诉大家他在第几个就行了,但现在站两排了,所以就要说他在第几排第几个了。

生起立介绍:我在第几组第几个。

生进行介绍。

游戏不仅激兴趣,还内含着从一维到两维空间的类比过渡,之后采取开门见山的方法入课,让学生介绍自己的位置,使学生的生活经验作为重要的课程学习资源,使学生感受到确定位置的现实背景,体会数学就在身边。
1分钟

探索方法引出数对

师:看来大家都知道自己在教室的位置,用什么简便的办法来表示同学们在教室的位置呢?我们比比看谁写的简单、正确。

师组织反馈

师:请你介绍自己的写法并说说这样写的道理。

师:我们看这几种方法虽然不同,有没有共同的特点?

师:为什么一定要用2个数字确定位置呢?

师小结:同学们的想法真不错,用两个数字表示同学在教室的位置,你们的想法已经接近数学家的想法了,他们也用两个数字确定位置板书(3,5),这种方法叫数对。读作数对(3,5)。
学生独立完成。

生介绍自己写的情况。

生指出。

生1:我在第二组第五个,我觉得这样写清楚、明白。

生2:我写的组三第1;组三表示第三组,第1表示第一个,我觉得这样能简单。

生3:我的方法是七1;七表示第七组,1表示第一个……

生:他们都是用两个数字确定位置的。

生:因为只有知道第几组第几个,才能确定位置。
让学生在具体的情境中用简洁的方法写出自己在教室中的位置,这就为学生提供自主探究的空间。同学互相判断的学习设计,是为了进一步确认学生是否理解了数对表示一个平面中点的位置的方法,同时也使一开始没有理解的学生有再次学习的机会,使更多的学生学会数对表示的基本方法,实现教学目标中的基本要求。
13分钟

师:请同学用数对写下自己的位置。

师:我们作个小游戏:看谁反应快!一个同学用数对说出好友的位置,其他同学判断是谁。

师:小青同学现在也在上数学课,让我们一块儿走进她们班去看一看。(出示主题图)
学生独立完成并汇报

学生说数对,其他学生判断。

生:打开书P79,认真看图,完成练习。

全班反馈。

合作

交流

渗透

坐标

师:这是一间教室的平面图,你能用数对表示小红同学的位置吗?

师:请你想办法,把小红的位置用数对表示出来。

自己想一想,两个人互相说说,在图上画一画。

教师巡视。

师组织小组交流

师:我们看这两个组的汇报,用假设的方法标出班级同学的排列情况,说的都有道理,点子和格子看起来比较简洁。但同样的一间教室为什么小红的数对位置却不相同,怎么办?

师小结:我们要做一个规定,规定这间教室的列与行。

出示课件:教室中人员的点阵图(42名学生,7列6行,小红的位置描红)

师:谁说说小红在这间教室中的位置。有不同意见吗?

师:我们统一了这间教室的列与行,为什麽小红的数对位置还不一样呢?

请你们上来指着说说你是怎麽看的?

师小结:看来我们在一个具体环境中确定物体的位置一定要先做规定,确定一个点起始位置,第二,确定几列与几行以及方向。一般情况下人们习惯从左往右确定列,从下往上确定行。

师出示课件:这样我们就能准确地说出小
生:不能,因为教室没有桌椅,没有小组。

学生小组交流,在纸上画图。(有几种情况:点阵排列;画出表格)

各组交流。

学生汇报各组的情况,

组1:用点阵形式表示。

组2:用方格形式表示。

生:因为同学们画的列和行不一样,所以数对不同,必须要统一有多少组多少行。

生1:小红的位置是(5,4)。

生2:小红的位置是(5, 3)。

生上前指图说明。

生:两种说法都对,数对(5,4)把门的组作为第一组,数对(5, 3)把另一边
创设只有一位学生的教室平面图,并用数对表示这位学生位置的问题情境,使学生对数对确定位置所依赖的2个参数的产生或者说来源进行探究。通过学生的思考、交流、尝试,使得学生真正感知直角坐标系的内涵。为中学学习平面直角坐标系打下基础。数学思考的形成借助于一定的数学问题情境,通过探究性的实践活动,让学生在活动中逐步领悟。

18分钟

拓展提高寻找规律
小红在这间教室中的位置了。

师:刚才我们研究了用数对表示位置,大家掌握得很好,下面我可要考考大家了。

出示方格图:

师:请你标出(3,5)与(5,3)所在的位置,他们表示同一个学生吗? 3和5分别表示什么?

师小结:我明白了,数对表示的方法是先列后行(板书列 行),是有顺序的。当一列与一行相交时就出现一个数对,也就是一个位置才确定下来了否则数对中的一个数字只表示一行或一列不能确定一个点。

师:请你在方格纸上标出5个点的数对,比一比谁写的最快。

师:观察所写的数对你有什么发现?如果再这样写下去数对会是什麽?会在第几行第几列?

师小结:看来用数对确定位置真奇妙。
作为第一组,所以都对。

生1不是一个同学,(3,5)表示第三组第五个;(5,3)表示第五组第三个。

生2(3,5)中 3表示第三组,5表示第五个。(5,3)中 3表示第三个,5表示第五组。

生1:我们发现每组同学的位置数对中第一个数都一样。而且连接这些点就画出了一条横线。

生2:每行同学的数对第二个数都一样连接这些点就画出了一条竖线。

生3:我们发现连接数对(1,1)、(2,2)、(3,3),(4,4)、(5,5)、(6,6)正好是这班同学的对角线……
学生的水平不一,在纸上标出5点的数对,聪明的学生会发现各点排列的规律,从而发现数对的规律,而弱一些的学生再次进行了练习。这就很好地将数与形进行统一。这样设计旨在注重发展学生观察、抽象的能力。突出学生在课堂上的能动性、创造性。

⑽ 小学数学案例研究

先找出自己教学中的一些比较特别的案例,再进行思考与分析,长期坚持这样一定会有收获的!这是一种很好的教研方法,特别有助于专业成长。

阅读全文

与我国传统小学数学案例相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99