两个版本基本上差不多。北师大版重视通过情景来让学生体会知识,感受知识,尽可能地通回过个人的努力来进行答学习,对于学生自主探索、主动学习的要求比较高。
人教版侧重于知识的系统化和条理化。能够让学生沿着一条有迹可循的知识脉络进行研究,使学生对于知识的掌握比较系统完善。
北师大版义务教育标准实验教科书已在成都各小学全面“实验”了三年。这套教材将“更高、更快、更强”的理念贯注于教育领域,试图为打造新一代知识精英做充足的准备。有一个不争的共识:教材需要随着时代变迁重新修改编纂。
(1)北师版小学数学扩展阅读:
其实既然是实验教材,与稳定使用了几十年的人教版老教材相比,必定有诸多不足,何况还有南橘北枳的可能。对编写这套教材的专家而言,遇到意见、不满都属正常,怕的就是缺乏讨论和沟通
这两个教材都是拓展性思维,一个问题要求多面分析,比较容易理解,且能运用到生活中。总的来说,这两个版本在趣味、拓展、延伸方面都非常好。
Ⅱ 小学数学北师大版所有概念
小学1-6年级数学概念大全 三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子
叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,
等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数
(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面
1、单价×数量=总价 2、单产量×数量=总产量
3、速度×时间=路程 4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =(a+b )*c
小学数学公式大全 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%) 长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
小学数学几何形体周长 面积 体积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
Ⅲ 小学数学人教版和北师大版教材比较及思考
人教版的内容多,比较详细。但是,这样对于老师而言,是比较难讲完。而且内,如果讲完了的话容,可能进度会好快。那样会导致学生听不懂。
但是,北师大版就不一样了。他内容少,但是关键的,重要的还是都在。也就是说,基本内容都在。所以相对来说。大家都轻松了一点点。
Ⅳ 小学六年级数学北师大版和人教版的区别
六年级上册数学知识点第一单元位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。作用:确定一个点的位置。经度和纬度就是这个原理。例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)(列,行)↓↓竖排叫列横排叫行(从左往右看)(从下往上看)(从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。第二单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。例如:×7表示:求7个的和是多少?或表示:的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)例如:×表示:求的是多少?9×表示:求9的是多少?A×表示:求a的是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c1时,ca(a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。注:(a±b)÷c=a÷c±b÷c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。例:12∶20==12÷20==0.612∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。3、化简比:化简之后结果还是一个比,不是一个数。(1)、用比的前项和后项同时除以它们的最大公约数。(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。5、比和除法、分数的区别:除法被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数分子分数线(——)分母(不能为0)分数的基本性质分数是一个数比前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。五、分数除法和比的应用1、已知单位“1”的量用乘法。例:甲是乙的,乙是25,求甲是多少?即:甲=乙×(15×=9)2、未知单位“1”的量用除法。例:甲是乙的,甲是15,求乙是多少?即:甲=乙×(15÷=25)(建议列方程答)3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几(例:甲是15的,求甲是多少?15×=9)乙=甲÷几分之几(例:9是乙的,求乙是多少?9÷=15)几分之几=甲÷乙(例:9是15的几分之几?9÷15=)(“是”字相当“÷”号,乙是单位“1”)(2)甲比乙多(少)几分之几?A差÷乙=(“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15===)B多几分之几是:–1(例:15比9少几分之几?15÷9=-1=–1=)C少几分之几是:1–(例:9比15少几分之几?1-9÷15=1–=1–=)D甲=乙±差=乙±乙×=乙±乙×=乙(1±)(例:甲比15少,求甲是多少?15–15×=15×(1–)=9(多是“+”少是“–”)E乙=甲÷(1±)(例:9比乙少,求乙是多少?9÷(1-)=9÷=15)(多是“+”少是“–”)(例:15比乙多,求乙是多少?15÷(1+)=15÷=9)(多是“+”少是“–”)4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?方法一:56÷(3+5)=7甲:3×7=21乙:5×7=35方法二:甲:56×=21乙:56×=35例如:已知甲是21,甲、乙的比3∶5,求乙是多少?方法一:21÷3=7乙:5×7=35方法二:甲乙的和21÷=56乙:56×=35方法二:甲÷乙=乙=甲÷=21÷=355、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。(2)分析数量关系。(3)找等量关系。(4)列方程。注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。第四单元圆一、.圆的特征1、圆是平面内封闭曲线围成的平面图形,.2、圆的特征:外形美观,易滚动。3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。同圆或等圆内直径是半径的2倍:d=2r或r=d÷2=d=4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。1、圆的周长总是直径的三倍多一些。2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。即:圆周率π==周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)——周长公式:c=πd,c=2πr注:圆周率π是一个无限不循环小数,3.14是近似值。3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c34、半圆周长=圆周长一半+直径=×2πr=πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=长方形的面积=长×宽=圆的周长的一半(πr)×圆的半径(r)S圆=πr×rS圆=πr×r=πr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。如果:r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4则:S1∶S2∶S3=4∶9∶164、环形面积=大圆–小圆=πr大2-πr小2=π(r大2-r小2)扇形面积=πr2×(n表示扇形圆心角的度数)5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。注:一个圆的半径增加a厘米,周长就增加2πa厘米一个圆的直径增加b厘米,周长就增加πb厘米6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π7、常用数据π=3.142π=6.283π=9.424π=12.565π=15.7第五单元、百分数一、百分数的意义:表示一个数是另一个数的百分之几。注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。1、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系。(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只以是整数。注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”。(2)小数化百分数:小数点向右移动两位,添上“%”。(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。(6)分数化小数:分子除以分母。二、百分数应用题1、求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。求甲比乙多百分之几(甲-乙)÷乙求乙比甲少百分之几(甲-乙)÷甲3、求一个数的百分之几是多少一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数部分量÷百分率=一个数(单位“1”)5、折扣折扣、打折的意义:几折就是十分之几也就是百分之几十折扣成数几分之几百分之几小数通用八折八成十分之八百分之八十0.8八五折八成五十分之八点五百分之八十五0.85五折五成十分之五百分之五十0.5半价6、纳税缴纳的税款叫做应纳税额。(应纳税额)÷(总收入)=(税率)(应纳税额)=(总收入)×(税率)7、利率(1)存入银行的钱叫做本金。(2)取款时银行多支付的钱叫做利息。(3)利息与本金的比值叫做利率。利息=本金×利率×时间税后利息=利息-利息的应纳税额=利息-利息×5%注:国债和教育储蓄的利息不纳税8、百分数应用题型分类(1)求甲是乙的百分之几——(甲÷乙)×100%=×100%=百分之几(2)求甲比乙多(少)百分之几——×100%=×100%例①甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%②甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%③乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50④甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40⑤乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50⑥甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40⑦甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%⑧甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%⑨甲比乙多25%,多10,乙是多少?10÷25%=40⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50⑪乙比甲少20%,少10,甲是多少?10÷20%=50⑫乙比甲少20%,少10,乙是多少?10÷20%-10=40⑬乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50⑭甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40⑮乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50⑯甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40第六单元、统计1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。2、常用统计图的优点:(1)、条形统计图直观显示每个数量的多少。(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。(3)、扇形统计图直观显示部分和总量的关系。第七单元、数学广角一、研究中国古代的鸡兔同笼问题。1、用表格方式解决有局限性,数目必须小,例:头数鸡(只)兔(只)腿数351343523335332……(逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)2、用假设法解决(1)假如都是兔(2)假如都是鸡(3)假如它们各抬起一条腿(4)假如兔子抬起两条前腿3、用代数方法解(一般规律)注释:这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?二、和尚分馒头100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?"如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?方法一,用方程解:解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:3x+(100-x)=100x=25100-25=75人方法二,鸡兔同笼法:(1)假设100人全是大和尚,应吃馒头多少个?3×100=300(个).(2)这样多吃了几个呢?300-100=200(个).(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?3-=(个)(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:小和尚:200÷=75(人)大和尚:100-75=25(人)方法三,分组法:由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚。这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个。"所谓"实"便是"被除数","法"便是"除数"。列式就是:100÷(3+1)=25(组)大和尚:25×1=25(人)小和尚:100-25=75(人)或25×3=75(人)我国古代劳动人民的智慧由此可见一斑。三、整数、分数、百分数应用题结构类型(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。解法:甲数除以乙数例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量例:六年级有学生180人,五年级的学生人数是六年级人数的56。五年级有学生多少人?180×56=150(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。解法:对应数量÷对应分率=单位“1”例:育红小学六年级男生有120人,占参加兴趣活动小组人数的35.六年级参加兴趣活动小组人数共有学生多少人?120÷35=200(人)请采纳,谢谢
Ⅳ 小学数学 北师大版和人教版哪个难度大,各有什么特点
我个人认为人教版的复难度稍微大一些制。
北师大版重视通过情境来让学生体会知识,感受知识,尽可能地通过个人的努力来进行学习,对于学生自主探索、主动学习的要求比较高。
人教版侧重于知识的系统化和条理化。能够让学生延着一条有迹可循的知识脉络进行研究,使学生对于知识的掌握比较系统完善。
Ⅵ 一个小学数学老师,在北师大版小学数学册上出题,厉害吗
这个的确有点厉害,值得大家学习。
Ⅶ 小学数学人教版与北师大版的区别
课文不同,好象排版也不同,人教版的要活泼些,北师大的题蛮多的 北师大版的比人教版的难大概就这些!
Ⅷ 北师大版小学数学 数学好玩有哪些内容
北师大版五年级数学上册全册教案 第2页 五年级第一学期数学教案 教 学 工 作 计 划 一、教材分析 1、教材简析 数与代数 (1)第一单元“倍数与因数”,主要是自然数的认识,倍数与因数,2,5,3倍数的特征,质数与合数,奇数与偶数。
Ⅸ 小学数学人教版与北师大版有什么区别
区别:
1、课文不同,排版也不同,人教版的要活泼些,而北师大的题比较多,北师大版的比人教版的难。
2、人教版的内容多,比较详细。但是,这样对于老师而言,是比较难讲完。而且,如果讲完了的话,可能进度会好快。那样会导致学生听不懂。
3、北师大版就不一样了。他内容少,但是关键的,重要的还是都在。也就是说,基本内容都在。所以相对来说。大家都轻松了一点点。
人教版即由人民教育出版社出版,简称为人教版。小学到高中都有这个版本的教材。也是大多数学校所用的教材。
北京师范大学出版社是改革开放以来发展最快的大学出版社之一,也是中国最具影响力的教育出版社之一。
两种教材都有优势又各有不足,人教版教材逻辑性强,编写严密,注重基础知识,能适应全国大多数地区。
北师大版教材思维活跃,形式生动,富有童趣,但所表现出的逻辑性不强,教材内容跳跃性较大,一些学生思维学习能力跟不上,教材中留给教师学生的空间过多,由于教师能力的不同,所把握的教学标准就不一致,由此导致学生学习效果不一,同时该教材不太适用于大班教学。
教师在选用教材时,应以人教版教材为主线,适时穿插北师大版的一些教学思路和方法。
Ⅹ 人教版和北师大版小学数学有什么不一样
人教版的内容多,比较详细。但是,这样对于老师而言,是比较难讲完。而且,如果讲完了的话,可能进度会好快。那样会导致学生听不懂。 但是,北师大版就不一样了。他内容少,但是关键的,重要的还是都在。也就是说,基本内容都在。所以相对来说。大家都轻松了一点点。