导航:首页 > 小学学科 > 小学数学教学案例片段

小学数学教学案例片段

发布时间:2021-01-26 07:24:03

小学数学教学案例及评价

小学数学教学案例

一、小学数学教学案例的内涵

一个案例是一个实际情境的描述,在这个情境中,包含一个或多处疑难问题,

同时也可能包含解决这些问题的方法。教学案例描述的是教学实践,它以丰富的叙述形式,向人们展示了一些包含有教师和学生的典型行为、思想、感情在内的故事。小学数学教学案例应该描述小学数学课堂教学情境中教师与学生典型的、生动的交往状态与外在行为,刻画他们丰富的、细腻的精神状态和内心世界。

二、小学数学教学案例的特征

1、素材真实性

案例所反映的应该是一个真实事件,即案例描述的是真人、真事、真情、真知,要能激发起大家的思考。

2、选材典型性

小学数学教学案例叙述的是一个数学教学的典型事例,这个事例要有一个从开始到结束的完整情节,并包括一些戏剧性的冲突,这些冲突主要集中在数学教师与学生、学生与学生的数学思维上的冲突。

3、情节具体性

小学数学教学案例的叙述要具体、特殊,要能够把数学教学与学生的数学思维活动生动地描述出来。例如,反映某一个数学教师与学生围绕一个特定的数学教学目标和特定的数学教学内容的双边活动,不应是对活动总体特征所作的抽象化的、概括性的说明,而应是对双边活动的具体情节展示叙述,做到翔实、有趣。

4、时空广延性

小学数学教学案例的描述要把事例置于一个时空框架之中,也就是要说明事情事件发生的时间、地点等。案例的描述要放在一个现实的生活场景之中,使人有身临其境之感。

5、目标全面性

小学数学数学案例对行为等的叙述,要能反映教师和学生教与学的特性,涵盖教学目标的全部,揭示出人物的内心世界。如数学认知的思维活动,对教学的态度、情感,学习数学的动机、需要等。

三、小学数学教学案例的功能

小学数学教师写作案例具有以下功能:

1、记录功能——案例写作为小学数学教师提供了一个记录自己教学经历的机会。案例写作实际上是对教师职业一些困惑、喜悦、问题等等的记录。如果我们说一个数学教师展示其自身生命价值的主要所在,是在课堂、在学校、在与学生的交往的话,那么,案例在一定程度上就是教师生命之光的记载。在案例中,有教师的情感,同时也蕴涵着无限的生命力。案例能够折射出教育历程的演变,它一方面可以作为个人发展史的反映,另一方面也可以作为社会背景下教育的变革历程。

2、导向功能——案例写作可以促使小学数学教师更为深刻地认识到自己工作的重点和难点。能够成为案例的事实,往往是小学数学教师工作中魂牵梦绕的难题,或者是刻骨铭心的事件。如果你对案例写作已经成为一种习惯,一种工作方式,那么随着案例材料的增多,你就会逐渐发现你自身工作的难点在哪里,今后努力的方向是什么。

3、反思功能——案例写作可以促进小学数学教师对自身行为的反思,提升教学工作的专业水平。如果把反思当成数学教学工作的有机组成部分,而不是一时冲动或岁末特有的行为,就可以极大地促进小学数学教师的专业发展,促进其向专业化水平迈进。

4、传播功能——案例为教师间分享经验、加强沟通提供了一种有效的方法。教师工作主要体现为一种个体化劳动过程,平时相互之间的交流相对较少。案例写作是以书面形式反映某位或某些教师的教育教学经历。它可以使其他教师有效地了解同事的思想行为,使个人的经验成为大家共享的财富。同时,通过个人分析、小组讨论等,认识到自己所从事工作的复杂性,以及所面临问题的多样性和歧义性,并且可以把自己原有的缄默的知识提升出来,把自己那些只可意会不可言传或不证自明的知识、价值、态度等,通过讨论和批判性分析从感性认识提升到理性认识。

四、小学数学教学案例的编制

1、编制原则

(1)客观性原则。一个案例就是关于某一个实际情境的描述,它不能用“摇椅上杜撰的事实”来代替,也不能用“从抽象的、概括化理论中演绎出的事实”来代替。坚持实事求是,尽量依据时间发展顺序客观记录事例。杜绝掺假现象,不会“合理构想”。不搞“文字游戏”,不因文字篇章的需要而扭曲或改变事实。

(2)独特性原则。在撰写案例活动中,倡导教师开展创造性的工作,不人云亦云,不见风使舵,要有个性的观察、个性的实践、个性的反思、个性的表述。

(3)价值性原则。撰写案例的目的在于推动教学的改革。因此,所选事例的先进性与实用性价值程度,与案例本身的实际意义成正比。所以,要站在时代的高度面向教学实际需要选择事例。

2、编制格式

分析有关案例不难发现案例的一般格式与写法。目前专家撰写的案例主要格式是“案例+分析”,其变式主要有“提示——案例——分析”与“提示——案例——访谈录——分析”。“提示”,主要简介“案例”与“分析”中将要涉及的基本教育理论,可以促进理论知识与教学实例的融合。“访谈录”以对话的形式记录对有关教师进行的访谈,以外化教师的缄默知识,便于他人更加全面、深刻地了解案例产生的背景、过程和做法。教师撰写的案例主要格式是“片断+反思”,其变式主要有“背景——片断——反思”与“片断——评析——反思”。

可见,案例主要由两大部分组成,即“案例+反思”。案例是为了一个主题而截取的教学行为片断,这些片断蕴涵了一定的教育理论。它源于实践,但高于实践。案例以真实的教师和事件为基础,但又不是简单而机械的课堂实录,它是教师对自身典型教学事件的描述,它可以描述一节课或一个片断,也可以围绕一个主题,把几节课的相关片断叠加。从案例内容的表述形式看,主要有“叙事式”和“对话式”;从案例内容的编排方式看主要有“单一式”、“对照式”和“递进式”。反思一方面是基于案例,做到理论联系实际,实例印证理论;另一方面要高于案例,要从案例的分析中生发出新的问题,提出新的观点。

❷ 急求 小学数学教学案例

几个数学教学案例的反思与启示

程广文1 宋乃庆2

(1. 泉州师范学院 教务处,福建 泉州 362000;2. 西南师范大学 基础教育研究中心,重庆 北碚 400715)

“案例是教学理论的故乡。”〔1〕这个观点从两个方面得来:第一,教学理论应该是一种“形而下”的理论,教学理论是为教学实践服务的,离开了这个前提的“理论”不能称之为“教学理论”;第二,教学理论来源于教学实践,实践是教学理论的唯一来源,而案例则是数学教学实践的摹写,摹写案例的目的在于把数学教学实践中的教育学问题突出出来,以便更清楚地认识问题本质。不难明白,这两个方面是一个双向建构的过程。数学课堂教学活动主要包括教学主体、教学内容、教学方式和教学结果。以下四个案例分别从上述四个方面反映了数学课堂教学实践层次上的特征,同时也从一定的角度提出了研究者关于这四个阶段的观点和思考。我们对它们进行反思,目的在于从中可以得到一些启示。舒尔曼说过,“案例并非是简单地对一个教学事件的报告,称其为案例是因为在于提出一项理论主张……”〔2〕四个案例中有三个是从数学课堂第一线收集来的,另一个则来自课堂实录。这些案例虽然是个别的,但是它们所反映出的数学教学特征在数学教学实践中仍然具有一定的代表性,可以说只要走进数学课堂就可以看到案例中的情境。

一、教学主体:以教师思维代替学生思维而忘却学生的存在

案例1:“分式”概念教学

〔开始上课之前〕

T:〔板书〕根据题目意思列出代数式:

甲2小时做x个零件,乙每小时比甲少做6个零件。

1. 乙每小时做 个零件;

2. 甲乙合作小时共做 个零件;

3. 甲用m小时可做 个零件;

4. 甲做60个零件需 小时;

5. 甲乙合作y个零件需 小时。

§ 9.1 分式

例1 x取什么值时,下列分式有意义。

(1);(2)。

〔开始上课〕

T:我们看填空题。(全班一起回答。)

(1)x-6;(2);(3)mx;

(4);(5)。

T:观察这五个答案,上述五个答案中(4)、(5)与前三个答案有什么不一样?

S1:(4)、(5)中有分数线。

T:中也有分数线。

S2:分母中含有字母。

T:对了,主要是分母含有字母。

T:像这样的式子,我们叫做分式。

(板书:分式定义)。

T:在课堂本子上,举几个分式的例子。

S:(开始做作业)

(注:T表示教师;S表示学生;Sk表示第K个学生;S表示全班学生。)

这节课主要是对分式概念进行教学。在教学进行之前,教师精心地设计了一个工程问题为分式教学进行铺垫。这个铺垫对分式的学习是有很大帮助的,具有较高的教学价值。铺垫后的教学有两个关键之处:第一是教师的提问,“T:观察这五个答案,上述五个答案中(4)、(5)与前三个答案有什么不一样”;第二是教师对S2的回答“分母中含有字母”的后继处理(教学)。而恰恰在这两个关键之处教师都“忘记了学生”。例如,教师的第一个提问,试图让学生从“(1)x-6;(2);(3)mx;(4);
(5)”这样五个代数式中区别出分式来,但是教师所提出的问题中已经“不由自主”地区别了,说(4)、(5)“与前三个答案有什么不一样”,这样提出问题使得提问的价值大为降低。首先要求学生从形式上辨别出“分式”,并且是采取比较的方式,有比较才有鉴别,教师出发点非常好,但是作为以区别分式为出发点的比较应让学生自己采用分类的方法区别开来。换句话说,如果教师让学生先观察这五个代数式然后进行分类紧接着做比较从而让学生把分式的根本特征概括出来,这样分式概念的教学前的铺垫就发挥了充分作用。把本该由学生思考的东西却由教师代为思考了,那么教师为谁而教?学生在哪里?其次,在实际教学中,当S2把教师希望提的问题的答案“分母中含有字母”说出之后,教师立即给出分式的定义并在黑板上板书。一个学生知道了教师的问题的答案并不意味着大部分学生都清楚了问题所在。更何况,还不能真正清楚S2的答案是否表明S2对问题的认识,从S1的回答足以看出这一点,更不能断定整个班级的其他60多个学生的情况了。此处,足见教师在提出问题后已经“迫不及待”等候着学生的答案了,似乎显得教师提出问题就是为了这个答案而已,而忘记了作为教学过程的目的在于使得全班学生都达到理解和认同。

二、教学内容:数学教学中以数学操作代替数学理解

案例2:“表达式”例题教学

例:已知x=,y=3-2t,用含x的表达式表示y。

教师这样开始教学:题目要求我们用含x的表达式表示y,那么,第一步,我们可以从式子x=中得到(1+t)x=1-t。整理,得t(1+x)=1-x。从中求出t,得t=。第二步,将这个t=代入y=3-2t中,得y=3-2×。整理,得y=。这样这个题目就算讲解完了。

上述数学解题教学,教师是直接“讲解”“数学理解的表达形式”,而不是“讲解”“数学理解”本身。这种形式的教学是一种“数学操作”,是一种操作性教学,不是真正意义上的教学。真正意义上的教学是具有生成意义的,没有生成意义的教学充其量算是一种“训练”。不可否认,数学教学首要的是对数学知识的掌握,但是知识的掌握并非绝对地要通过“训练”方式才能掌握,何况数学是思而至知的学问,它的学习和掌握需要理解,没有理解的“训练”不能从真正意义上获得数学知识。如果教师从问题的结论开始和学生一起分析,从什么是“用含x的表达式表示y”这一问题开始,让学生对这句话的数学语义理解了,学生就比较容易找到问题的解决思路和途径。懂了“用含x的表达式表示y”就可以理解“x=”和“y=3-2t”,进而理解“t=”,问题也就解决了。

三、教学方式:数学课堂上出现形式化教学

案例3:“三角形中位线”课录节选〔3〕

T:同学们,今天上第36节课——三角形的中位线(边讲边板书,学生记在作业本上)。1. 什么叫做三角形的中位线?(教师板书学生记。)请同学们先看书,再齐读。(全班齐读三角形的中位线定义,师在黑板上画△ABC,如图1)

图1

T:请指出△ABC的中位线。

S1:在AB上找到中点D,在AC上找到中点E,连接DE。DE就是△ABC的中位线。

T:同学们,S1说得对吗?

S(齐答):对!

T:三角形的中位线是直线,是射线,还是线段呢?请S2回答。

S2:线段。

T:是一条什么样的线段?

S2:是一条连接三角形两边的中点的线段。

T:讲得好。三角形的中位线是一条线段,它的两个端点是三角形两边的中点。除了DE,还有哪些线段是三角形的中位线呢?请S3回答。

S3:有。还有BC的中点与其他任一边上的中点的连线。

(师在图1上作EF,DF。)

T:对了,DF、EF也是三角形的中位线。请同学们看课本第155页上的第一行,这里说三角形的中位线和三角形的中线不同,请问:不同在哪里?(见S4举手。)请S4回答。

S4:中线是连接三角形一个顶点和它的对边的中点的线段。

T:对了,虽然它们都是线段,但它们连接的点不同。中位线是连接两边中点的线段,而中线是连接一个顶点和它的对边的中点的线段。(边画图2,边说明。)

图2

这是一节概念课教学。如果说概念的认知顺序是先“过程”再“对象”的话,那么在这节课中,“中位线”概念的教学顺序则只有“对象”没有“过程”。概念的认知顺序需要有过程性,原因在于“概念在过程阶段表现为一系列的固定步骤,具有操作性,相对直观,容易仿效学会”。〔4〕从教学片段看,教学仅仅停留在“对象”——中位线的定义上,而缺乏“过程”。关于中位线定义,教师教学有这样三个阶段,第一阶段是“读”,让学生“读”中位线的定义,在教学中教师提出“什么叫做三角形的中位线”并且“教师板书学生记”,然后“请同学们先看书,再齐读”,“全班齐读三角形的中位线定义”时教师“在黑板上画”;第二个阶段是“识”,让学生根据“读”来识别三角形中哪条线段是中位线,在教学中教师“请S2指出△ABC的中位线”;第三个阶段是“辨”,让学生根据“读”和“识”的结果和感受辨别中位线和中线的区别,教师的教学行为是提出“三角形的中位线是直线,是射线,还是线段呢”和“请同学们看课本第155页上的第一行,这里说三角形的中位线和三角形的中线不同,请问不同在哪里”。教学停留在中位线定义的文字上,没有从中位线的形成着手,也没有把中位线在几何中的地位和作用说明清楚。三角形中位线在几何题证明中中点的作用最大,教学中若强调中点比强调定义的文字和形式更节约时间也更能把重点突出出来,教学还更清晰。

四、教学结果:对数学理解中的自动化行为缺乏教育学反思

案例4:“有理数运算”应用题教学

例:一批面粉10包,每包标准重量为25 kg,通过称量,发现这10包与标准线位置的差如下表:

袋号
1
2
3
4
5
6
7
8
9
10

与标准线位置差
+1
-0.5
-1.5
+0.75
-0.25
+1.5
-1
+0.5
0
+0.5

求这批面粉的总重量。

教师的讲解如下。

解:求代数和

(+1)+(-0.5)+(-1.5)+(0.75)+(-0.25)+(+1.5)+(-1)+(+0.5)+0+(+0.5)=1,我们可以求得总重量就是:

25×10+1=251(kg)。

这是一节初中一年级数学课中的一部分。从数学的角度来看,整道题的求解无懈可击。但是在实际课堂上这里有两个地方教师没有向学生交代清楚:第一是例题中表格里的正负号的意义。正号表示超过标准重量的意思,(+1)就是表示超出标准重量1 kg,也就是这包面粉的重量为26 kg;负号表示低于标准重量的意思,(-1)就表示低于标准重量1 kg,也就是这包面粉重量为24 kg。这也能加深学生对正负数的概念的理解,并且是结合实际意义进行理解。所以,这个解释很重要。第二是例题讲解中对“25×10+1=251(kg)”中“25×10”的理解。“25×10”是一个抽象的算式,25 kg是一个观念中的重量,因此教师应该把这一点向初一的学生讲解清楚,而实际教学中教师没有做到。本人在课堂上就抽了三个学生询问了一下,没有学生知道这是为什么。

任何学科的教学都要求在该学科上有一定专业化程度的人进行教学工作。教师的学科专业化在教育学上的意义是十分明确的,没有一定的相对于所教学的内容而言层次较高的知识做准备的教师是无法在这个层次上进行该学科的教学的,数学教学尤为如此。但是,在课堂教学中教师的专业化程度越高,对数学的理解就越具有高度的自动化,从而使得对学生的数学学习状况不理解,甚至不理解学生。例如,我们常常听到一线的教师这样说,我讲得最清楚不过了,他就是听不懂,他就是做不来题目。同一个数学问题,对教师理解起来容易,但对学生理解起来太难;在教师看来是那样的显而易见,但对学生来说却很艰难。所以很多时候还需要我们广大教师好好反思一下。

注释:

〔1〕顾泠沅:《教学任务的变革》,《教育发展研究》2001年第10期。

〔2〕Shulman,L.S. Just in case:Reflections on learning from experiences. In J.Colbert,K.Trimble,& P.Desberg(Eds.),The case for ecation:Contemporary approaches for using case methods,(P11). Boston:Allyn & Bacon,1996.

〔3〕宋阳、王梦荣等:《初中数学优秀教案课堂实录选评》,广西人民出版社1986年版,第103~106页。

〔4〕李士锜:《PME:数学教育心理》,华东师范大学出版社2001年版,第112页。

(责任编辑:李 冰)

❸ 小学数学教学方法典型案例分析 速求啊

长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
二、教学目标:
1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。
2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
三、教学活动过程:
一、引导学生学习正方体表面积的计算方法
1.回忆
上节课我们学习了长方体表面积的概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?
(拿起一个正方体的模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积 是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?
3.归纳引入新课:
正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)
4.教学例2
提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?
(课堂实录:有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)
(点评:良好的开端是成功的一半,一堂课是否有好的开头是上好一堂课的关键。针对小学生的心理特点,上课一开始,我首先利用长方体和正方体的模型进行导入,先请学生思考用什么方法计算正方体的表面积,接着根据以前所学的知识进行推导,从而引出新的计算方法,使得学生愉快主动地进入学习情境,强化了有意注意,激发学生的求知欲望,对新的知识进行探索。通过教学的导入,明确了教学的目标,确定了研究方向,这时再引导学生学习就事半功倍了。)
师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。
二、鱼缸的制作问题
说明:我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算。如例3。
1.帮助学生回忆鱼缸的形状(长方体,但是没有上面)
2.如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)
3.教学例3
(出示长方体模型,把它看成鱼缸的模型)
(1)鱼缸缺少哪个面的玻璃?(上面)
(2)要求需要多少平方分米玻璃,要算几个面的面积和?哪几 对面有相同的梁个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽*高前面=长*高 底面=长*宽)
(3)指名学生板演,集体订正。
(点评:在教学中采用学生生活中较熟悉的物体“鱼缸”启发学生如何计算制作一个鱼缸所需材料的面积,也就是计算长方体某几个面的面积之和。这个事例在生活中较普遍,再加上利用一些模具进行教学,使得学生在学习中能够更好地联系实际情况进行学习。以上这一系列的活动表现了完整的探究过程,都体现让学生经历整个教学的探究过程。)
(4)改变题目要求,使得长方体的宽和高长度相等,观察模型,你发现了什么现象?怎样计算比较简便?
学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。
学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。
学生3:这个长方体没有上面,所以只要算5个面的面积,它的前面、后面、下面这三个面完全相同
说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。
(点评:数学是很严谨的,所以在学生叙述的时候要规范学生的语言,我在教学的时候还注重评价,运用语言和体态及时给予适当的鼓励和指导,促进学生的学习和发展。第三位同学回答地最完善,所以我表扬了他在叙述数学问题时所具有的严谨性,同时要求全班同学在这方面要向他学习。)
书P42页练习二的第一、二题。
(点评:要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)
《长方体和正方体的表面积》的教学反思:
一、积极参与,发现问题
在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。在活动中,一方面要巩固学生所学的知识,另一方面要使得学生通过活动,根据所学的知识发现问题,让学生自己提出问题,猜测结果,同时教师进行适当引导。在整个活动过程中,要让每一个同学都参与这种研究学习的过程,通过本身的实践活动去寻求问题的答案,形成科学的世界观和价值观,利用本身所掌握的知识提高科学探究的能力。在《长方体和正方体的表面积》一课的教学中,我首先帮助学生回忆上节课的内容,提出相应的问题进行复习巩固,同时提出新问题——正方体的表面积是如何求解的?然后让学生根据所学的内容进行合理的猜测,并且举例证明观点是否正确,最后由我来归纳总结。设计探究问题:1.你能根据表面积的概念说一下什么叫做正方体的表面积吗?2.如何计算正方体的表面积?还进行全班讨论,正方体表面积计算方法和长方体表面积计算方法的区别与联系。通过这种研究性的探讨以及对比的方式,教好地完成了教学任务。学生从本质上理解了表面积的概念而且学会了如何根据实际情况求解长方体某几个面的面积之和,使得学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。
二、以事实为依据,解决问题
在制作鱼缸的问题中,首先帮助学生回忆生活中的实物,然后出示简易模型进行教学。先问学生鱼缸有没有盖子,接着启发学生猜想如何计算制作鱼缸所需材料的面积数量,从而引出问题,将学生的注意力集中在如何求解长方体某几个面的面积之和的问题上来,这就激发了学生的求知、探索欲望。通过教学引导发现问题后,利用事实为依据,和学生一起解决问题。让学生经历一系列的探讨研究过程,从不同角度发现问题。同时提出新的问题,让学生带着问题离开教室,对数学的学习保持一种新鲜感和神秘感。
三、巩固知识,归纳要点
改变题目的要求,发现新问题,全班讨论。经过多位同学叙述,他们便发现某些同学的认识是片面的,所叙述的内容是不完整的,所以结论不完全正确。要想得到全面正确的结论,就要用充分的事实来说话,资料这样才能得到正确的结论。针对某些典型的错误观点可以进行讨论,推翻,说出问题的结果和原来预测的不同点(区别),然后和学生一起总结,加深印象。同时正确评估学生的观点,通过练习,巩固新旧知识,思考与讨论问题的答案,大胆的进行猜测,做好记录,最后归纳要点或者规律。新课程强调:教师是科学学习活动的组织者、引领者和亲密的伙伴。我遵循这些理念开展以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的科学探究能力有了一定提高。
四、教学需改进之处:
教师进一步做好“六认真”工作,提高教学能力,掌控好学生上课时的气氛,帮助学生集中注意力,发现问题和解决典型问题,培养学生的叙述能力和运用能力,使得我们的教学工作能够让学生学以致用,全面发展,成为一个“十”字型人才。

❹ 小学数学教学案例有哪些

101教育PPT有很多,随便发一篇给你吧
人教一年级数学上册《1—5的认识》教案
学情分析:
学生在幼儿园接触过1-5各数,他们能够熟练地数数,有的甚至能够疏导100多,从表面上看,他们已经很熟悉这些数了,但是这一阶段的学生缺乏对数的整体意义的理解。大部分学生在生活中见到过这些数,对它们的用处有了一些了解,但是没有感受到身边处处有数,对生活中离不开数的价值缺乏体验,还没有对这些数产生较强的喜爱之情。
教学目标:
1、 在观察农家小院图提取信息的过程中,引导学生初步感知1~5各数的基数含义,知道1~5的数序,并会认、会读、会写这5个数。
2、 在教学活动中,培养学生的数感,感受数学与生活的密切联系。
教学重点:
1~5的基数含义和写法。
教学难点:
1~5的写法,初步建立数感。
课时准备:
1课时
教学过程:
一、游戏导入,激发学生兴趣
教师:小朋友们喜欢做游戏吗?今天,老师给大家带来一个小游戏,请同学们举起你们的双手,跟着老师一起做。我说一句你们跟着说一句。(师生一起做变变变的游戏)
师:刚刚我们变手指是从几根指头变到几根指头的?(随机引出一根指头到五根指头的)
师:今天我们学习《1-5的认识》板书课题(1-5的认识)
二、实践探索,合作交流。
1.师:现在是秋天,秋风送爽,硕果累累,这是一个收获的季节。看这位老奶奶,家里收获了很多东西,同学们瞧瞧,这幅图里面都有什么东西呀?
(南瓜/花朵/老奶奶……)
2.生自主观察,图中有多少个南瓜、多少朵花?并随机指导三、指导学生按从小到大的顺序数。
1.师:图中有什么数量是1?
(一个老奶奶/一只小狗/一串玉米。)
教师:(那我们数量1的东西数完了,接下来应数数量几的呢?)那就请同学们数出图中可以用数“2”表示的东西。
2、师:它们的数量都是2,可以用数“2”表示。2数完了应该数几呢?就请同学们数出图里面可以用数“3”表示的东西。
3、 3数好了接下来应该怎么数?
4、请同学们数数,图中有什么可以用数“4”表示的呢?
5、小鸡和向日葵的数量都是4,可以用数“4”表示。接下来我们应该数?
6、:请同学们说说图中有什么可以用数“5”表示?
(南瓜、玉米的数量是5,可以用数“5”表示)。
四、指导认读。
教师:现在我们一起看一下这个计数器。上面有几颗珠子?
教师:1颗珠子可以用1表示,我们再加一颗珠子,现在是几颗啊?(相机做练习)
五、指导书写
教师: 1是从上往下写,稍稍有些倾斜;2像一只小鸭子; 3像小耳朵;4要写得直直的,不能有弯曲的地方。
六、练习
生在方格本上写1~5。
七、布置作业
课本第16页的做一做两道题完成。
教学反思:
1~5学生们在幼儿园都已经学习过了,这节课的主要目的在于感知1~5各数的基数含义,知道1~5的数序,并会认、会读、会写这5个数,通过图片让学生自己去发现去探讨。但实践下来发现课堂游戏少,学生注意力不够集中。可以在接下来的课堂上多开发一些数学游戏,激起学生的兴趣。

❺ 小学数学教学案例

小学数学教学案例

一、小学数学教学案例的内涵

一个案例是一个实际情境的描述,在这个情境中,包含一个或多处疑难问题,

同时也可能包含解决这些问题的方法。教学案例描述的是教学实践,它以丰富的叙述形式,向人们展示了一些包含有教师和学生的典型行为、思想、感情在内的故事。小学数学教学案例应该描述小学数学课堂教学情境中教师与学生典型的、生动的交往状态与外在行为,刻画他们丰富的、细腻的精神状态和内心世界。

二、小学数学教学案例的特征

1、素材真实性

案例所反映的应该是一个真实事件,即案例描述的是真人、真事、真情、真知,要能激发起大家的思考。

2、选材典型性

小学数学教学案例叙述的是一个数学教学的典型事例,这个事例要有一个从开始到结束的完整情节,并包括一些戏剧性的冲突,这些冲突主要集中在数学教师与学生、学生与学生的数学思维上的冲突。

3、情节具体性

小学数学教学案例的叙述要具体、特殊,要能够把数学教学与学生的数学思维活动生动地描述出来。例如,反映某一个数学教师与学生围绕一个特定的数学教学目标和特定的数学教学内容的双边活动,不应是对活动总体特征所作的抽象化的、概括性的说明,而应是对双边活动的具体情节展示叙述,做到翔实、有趣。

4、时空广延性

小学数学教学案例的描述要把事例置于一个时空框架之中,也就是要说明事情事件发生的时间、地点等。案例的描述要放在一个现实的生活场景之中,使人有身临其境之感。

5、目标全面性

小学数学数学案例对行为等的叙述,要能反映教师和学生教与学的特性,涵盖教学目标的全部,揭示出人物的内心世界。如数学认知的思维活动,对教学的态度、情感,学习数学的动机、需要等。

三、小学数学教学案例的功能

小学数学教师写作案例具有以下功能:

1、记录功能——案例写作为小学数学教师提供了一个记录自己教学经历的机会。案例写作实际上是对教师职业一些困惑、喜悦、问题等等的记录。如果我们说一个数学教师展示其自身生命价值的主要所在,是在课堂、在学校、在与学生的交往的话,那么,案例在一定程度上就是教师生命之光的记载。在案例中,有教师的情感,同时也蕴涵着无限的生命力。案例能够折射出教育历程的演变,它一方面可以作为个人发展史的反映,另一方面也可以作为社会背景下教育的变革历程。

2、导向功能——案例写作可以促使小学数学教师更为深刻地认识到自己工作的重点和难点。能够成为案例的事实,往往是小学数学教师工作中魂牵梦绕的难题,或者是刻骨铭心的事件。如果你对案例写作已经成为一种习惯,一种工作方式,那么随着案例材料的增多,你就会逐渐发现你自身工作的难点在哪里,今后努力的方向是什么。

3、反思功能——案例写作可以促进小学数学教师对自身行为的反思,提升教学工作的专业水平。如果把反思当成数学教学工作的有机组成部分,而不是一时冲动或岁末特有的行为,就可以极大地促进小学数学教师的专业发展,促进其向专业化水平迈进。

4、传播功能——案例为教师间分享经验、加强沟通提供了一种有效的方法。教师工作主要体现为一种个体化劳动过程,平时相互之间的交流相对较少。案例写作是以书面形式反映某位或某些教师的教育教学经历。它可以使其他教师有效地了解同事的思想行为,使个人的经验成为大家共享的财富。同时,通过个人分析、小组讨论等,认识到自己所从事工作的复杂性,以及所面临问题的多样性和歧义性,并且可以把自己原有的缄默的知识提升出来,把自己那些只可意会不可言传或不证自明的知识、价值、态度等,通过讨论和批判性分析从感性认识提升到理性认识。

四、小学数学教学案例的编制

1、编制原则

(1)客观性原则。一个案例就是关于某一个实际情境的描述,它不能用“摇椅上杜撰的事实”来代替,也不能用“从抽象的、概括化理论中演绎出的事实”来代替。坚持实事求是,尽量依据时间发展顺序客观记录事例。杜绝掺假现象,不会“合理构想”。不搞“文字游戏”,不因文字篇章的需要而扭曲或改变事实。

(2)独特性原则。在撰写案例活动中,倡导教师开展创造性的工作,不人云亦云,不见风使舵,要有个性的观察、个性的实践、个性的反思、个性的表述。

(3)价值性原则。撰写案例的目的在于推动教学的改革。因此,所选事例的先进性与实用性价值程度,与案例本身的实际意义成正比。所以,要站在时代的高度面向教学实际需要选择事例。

2、编制格式

分析有关案例不难发现案例的一般格式与写法。目前专家撰写的案例主要格式是“案例+分析”,其变式主要有“提示——案例——分析”与“提示——案例——访谈录——分析”。“提示”,主要简介“案例”与“分析”中将要涉及的基本教育理论,可以促进理论知识与教学实例的融合。“访谈录”以对话的形式记录对有关教师进行的访谈,以外化教师的缄默知识,便于他人更加全面、深刻地了解案例产生的背景、过程和做法。教师撰写的案例主要格式是“片断+反思”,其变式主要有“背景——片断——反思”与“片断——评析——反思”。

可见,案例主要由两大部分组成,即“案例+反思”。案例是为了一个主题而截取的教学行为片断,这些片断蕴涵了一定的教育理论。它源于实践,但高于实践。案例以真实的教师和事件为基础,但又不是简单而机械的课堂实录,它是教师对自身典型教学事件的描述,它可以描述一节课或一个片断,也可以围绕一个主题,把几节课的相关片断叠加。从案例内容的表述形式看,主要有“叙事式”和“对话式”;从案例内容的编排方式看主要有“单一式”、“对照式”和“递进式”。反思一方面是基于案例,做到理论联系实际,实例印证理论;另一方面要高于案例,要从案例的分析中生发出新的问题,提出新的观点。

❻ 小学数学教学案例分析

课题:探索三角形全等的条件
一、教学设计:
1 学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2 学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3 学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4 教学目标:
(1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
5 教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。。
6 教学过程

教学步骤 教师活动 学生活动 教学媒体(资源)和教学方式

复习过渡
引入新知

创设情景
提出问题

建立模型
探索发现

归纳总结
得出新知

巩固运用
及其推广

反思小结

提炼规律
电脑显示,带领学生复习全等三角定义及其性质。

电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

按照三角形“边、角” 元素进行分类,师生共同归纳得出:
1 一个条件:一角,一边
2 两个条件:两角; 两边;一角一边
3 三个条件:三角; 三边;两角一边;两边一角

按以上分类顺序动脑、动手操
作,验证。
教师收集学生的作品,加以比
较,得出结论:
只给出一个或两个条件时,
都不能保证所画出的三角形
一定全等。

下面将研究三个条件下三角形
全等的判定。
(1)已知三角形的三个角分别
为40°、60°、80°,画出这
个三角形,并与同伴比较是否
全等。
学生得出结论后,再举例体会
一下。
举例说明:如老师上课用的三
角尺与同学用的三角板三个角
分别对应 相等,但一个大一个
小,很显然不全等;再如同是
等边三角形,边长不等,两个
三角形也不全等。等等。

(2)已知三角形三条边分别是
4cm,5cm,7cm,画出这个三角
形,并与同伴比较是否全等。

板演:三边对应相等的两个
三角形全等,简写为“边
边边”或“SSS”。

由上面的结论可知,只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。
实物演示:
由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。
举例说明该性质在生活中的应用

类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性

图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。

题组练习:
P140 2 ( 学生举反例说明)
3 ( 对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)

教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。

在教师引导下回忆前面知识,为探究新知识作好准备。

议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件…经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。

想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?
画一画:
按照下面给出的两个条件做出三角形:
(1) 三角形的两个角分别是:30°,50°
(2) 三角形的两条边分别是:4cm,6cm
(3) 三角形的一个角为 30,一条边为3cm
剪一剪:
把所画的三角形分别剪下来。
比一比:
同一条件下作出的三角形与其他同学作的比一比,是否全等。

学生重复上面的操作过程,画一画,剪一剪,比一比。
学生总结出:三个内角对应相等的两个三角形不一定全等

学生举例说明

学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。

鼓励学生自己举出实例,体验数学在生活中的应用.

学生那出准备好的硬纸条,进行实验,得出结论:
四边形、五边形不具稳定性。

学生练习

学生在教师引导下回顾反思,归纳整理。

z+z平台演示

z+z平台演示,教师加以分析。
学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。

结论很显然只需学生想像即可,z+z平台辅助直观演示。

学生动手操作,通过实践、自主探索、交流,获得新知。

举例时,电脑辅助演示让学生感受反例的作用。

z+z平台播放三角形稳定性及四边形不稳定性在生活中的应用.

z+z平台显示题组练习

检测学生对知识的掌握情况及应用能力。

再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验。

7教学反思

(1) 本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
(2) 在课堂教学设计中,尽量为学生提供“做中学”的时空,不放过任何一个发展学生智力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。
(3) “乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才的以发展。

阅读全文

与小学数学教学案例片段相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99