导航:首页 > 小学学科 > 小学数学方程式应用题

小学数学方程式应用题

发布时间:2021-01-24 08:42:37

Ⅰ 六年级小学数学应用题(解方程)

第一题:设答对抄x道,则袭答错(20-x)道,则有5x-3(20-x)=60 解得x=15
第二题:原理和第一题一样。(1)答对6道答错2道(2)答对7道答错3道(3)答对8道答错1道
第三题:设答对5,6,7个的有x人,则答对8个的有(60-6-10-3x=44-3x)人,
则有338-3*6-4*10-3x=8(44-3x) 解得x=12 44-3x=8
所以8个全猜对的有8人
忘了六年级学没学二元一次方程,所以就用最简单的一元一次方程解了

小学五年级数学方程式应用题

解:设鸡有x只,则兔有(30-x)只
根据题意得2x-4(30-x)=36
2x-120+4x=36
6x=156
x=26
30-26=4
答:有26只鸡,4只兔鐧内惧容害鍦板浘

本数据来源于网络地图,最终结果以网络地图最新数据为准。

Ⅲ 四道小学数学解方程应用题。

1.小明看一本书,原计划每天看35页,32天看完。实际每天比计划多看5页,实际用多少天看完?

2.修一条路,原计划每天修0.4千米,70天可以修完。实际每天修的米数是计划的1.25倍。实际用多少天完成?

3.绿化队植树,计划8天完成任务。实际每天植树240棵,7天就完成了全部的植树任务。实际比计划每天多植树多少棵?

4.某街道居委会慰问军烈属,给他们送去红糖和白糖。每到一户送去2袋红糖和5袋白糖,送到最后一户时,红糖正好送完,还剩下10袋白糖。已知带去的白糖的袋数是红糖袋数的3倍,那么带去的红糖、白糖各多少袋?

Ⅳ 小学数学:解方程(应用题)

设儿子今年x岁
(38-3)除以 (x-3)=7
解得:x=8 嘿嘿~~
儿子今年8岁 !!!

Ⅳ 本人急需50道小学数学五到六年级解方程应用题

1、机床厂原来知道机床每台用钢材1.02吨,改进设计后,每台比原来节约0.12吨,原来制造300台所用的钢材,现在可以制造机床多少台?

2、小明买了6支铅笔和4本练习本,每本练习本0.68元,每支铅笔0.24元。小明付出5元钱,应找回多少元?

3、甲、乙两列火车同时从两地相对开出,甲火车每小时行使80千米,乙火车每小时行使70千米,开出12小时后两车还相距110千米,两地相距有多少千米?

4、光明造纸厂生产一批新闻纸,原计划28天完成,每天需生产12.5吨。施加提前3天完成,实际每天比原计划多生产多少吨?

5、李师傅生产一 批零件,前3天生产零件126件,照这样计算,再生产12天完成生产任务。这批零件共有多少件?

6、化肥厂计划用30天生产化肥84吨,实际每天比计划多生产0.2吨,实际比计划提前几天完成任务?

7、加工一批服装,每天加工300套,16天可以完成,
(1) 如果每天加工400套,提前几天完成?

(2) 如果每天多加工20套,几天可以完成?

(3) 如果要提前5天完成,每天要加工多少套?

8、某汽车厂计划全年生产汽车16800台,结果提前2个月就完成了全年的生产任务。照这样的速度,全年可生产汽车多少台?

9、新丰农机厂一个车间加工2480个零件。原来每天加工100个,工作20天后,改为每天加工120个。这样再加工几天就可以完成任务?

10、一个服装厂原来做一种儿童服装,每套用布2.2米。现在改进了裁剪方法,每套节省布0.2米。原来做600套这种服装所用的布,现在可以做多少套?

11、小红买了练习本和生字本各3本,一本练习本0.36元,一本生字本0.32元,小红买生字本比买练习本少用多少元?

12、同学抬水浇树。三年级浇45棵,三年级比四年级少浇10棵,四年级是五年纪浇的棵数的一半。五年级比三年纪多浇多少棵?

13、两个工程队合开一条隧道,各从一端开凿,第一队每天开12.6米,第二队每天开14.4米,第一队开凿5天后,第二队才加入,再过21天隧道终于打通。
(1)这条隧道长多少千米?

(2)打通时两队各开凿了多少米?

14、小汽车每小时行63千米,小汽车的速度是载重汽车的1.4倍。它们从相距270千米的两地同时开出,相向行驶。
(1) 经过几小时相遇?

(2) 相遇时两车各行了多少千米?

(3) 如果出发时是8时15分,相遇时是几时几分?

15 一辆摩托车 小时行98千米,一辆卡车 小时行80千米,试求:
(1)摩托车与卡车所用时间之比;

(2)摩托车与卡车所行路程之比;

(3)摩托车速度与卡车速度之比。

16 一辆汽车从甲地开往500千米外的乙地,已经行了280千米,求已经行的路程与剩下路程之比。

17 一项工程,甲队单独做10天完成,乙队单独做8天完成,甲队与乙队工作效率之比是多少?

18 五(1)班有学生40人,体育锻炼达标的有32人,未达标的人数占全班人数的百分之几(即求未达标率)?

19 小李、小赵、小王三人合做一批零件,到完工时,小李做总数的 ,小赵做总数的 ,小王做总数的 ,求三人所做零件数量之比。

20 五(1)班第一次数学测试,及格的有48人,不及格的有2人。求这次数学测试的及格率。

21 某车间某天出勤职工38人,缺勤2人,求出勤率。

22 某厂上半月完成计划产量的56%,下半月又完成计划产量的64%,这个月增产百分之几?

23 一套自学丛书,现在的单价是160元,比原价降低了40元,问现在的售价是原价的百分之几?

24 少先队绿化组春季植树360株,秋季植树440株,共成活760株,求树苗成活率。

25 月饼厂去年生产月饼140吨,今年生产月饼210吨,今年比去年增产百分之几?

26 6千克比5千克多百分之几?5千克比6千克少百分之几?

27 某厂上半月完成计划产量的56%,下半月又完成计划产量的64%,这个月增产百分之几?

28 服装厂下半年生产服装计划数比上半年增加20%,那么下半年生产服装计划数是上半年的百分之几?

29 .油菜籽的出油率是38%,5吨油菜籽可加工出多少吨油?

30 .修建一自来水厂,计划投资500万元,实际比计划节约了5%,节约了多少万元?

31.油菜籽的出油率达到八成五,勤奋村种了8公顷油菜,每公顷收到油菜籽3750千克,共可出菜籽油多少千克?

32.辛庄小学六年级学生有200人,其中120人参加兴趣小组,要使参加兴趣小级的人数达到88%,还需要增加多少人参加?

33.养鸡场养肉鸡10万只,第一次卖去 ,第二次卖去25%,还剩多少万只?
34.一堆煤重120吨,第一天运走了总重量的20%,第二天运走总重量的25%,还剩下多少吨?

35.一辆汽车原来每小时用去汽油12升,修理后用油节约了10%,现在这辆汽车每小时用去汽油多少升?

36.某小学四年级有120人,五年级比四年级少10%,五年级有多少人?

37.汽车 小时行24千米,摩托车每小时的速度比汽车快70%,摩托车每小时行多少千米?

38 一条公路,第一个月修了全长的 ,第二个月修了6千米,还剩37.5%没有修。这条公路全长多少米?

39 某厂生产一批零件,第一天生产40件,第二天比第一天多生产10%,两天的产量占总数的25%,这批零件有多少件?

40 一辆汽车从甲城开往乙城,已经行了72千米,还剩下全程的62.5%,这辆汽车行到乙城还需要多少千米?

41 甲、乙两车同时从两地相向开出,当甲车行了全程的60%,乙车行了全程的75%时,两车相距140千米。两地相距多少千米?甲车比乙车少行多少千米?

42 庆丰商店运来桔子和梨1620千克,运来的梨是桔子的80%,运来桔子和梨各多少千克?.

43 油菜籽的出油率是38%,5吨油菜籽可加工出多少吨油?

44 修建一自来水厂,计划投资500万元,实际比计划节约了5%,节约了多少万元?

45 全国工商税收收入95年为5383亿元,96年增收1051亿元,96年比95年增收百分之几?

46、 新华书店把5250本文艺书和科技书运往农村,文艺书有25包,科技书有80包,每包的本数相等。每包多少本书?科技书和文艺书各有多少本?

47、 一个粮店,上午卖出50袋面粉,下午卖出30袋面粉,每袋面粉的重量相等,上午比下午多卖出面粉1600千克。每袋面粉重多少千克?上午和下午各卖出面粉多少千克?

48、 第一辆卡车运来水泥80包,第二辆卡车运来水泥65包,比第一辆卡车少运来水泥1.5吨,两辆卡车各运来水泥多少吨?

49、 一个水果店有两筐单价相同的苹果,第一筐重45千克,第二筐重39千克,第二筐比第一筐少卖15元,两筐苹果各值多少元?两筐苹果共值多少元?

50、 华丰水国行,运来的梨比橘子多840千克,梨的重量是橘子的1.5倍,橘子和梨各重多少千克?

51、 服装厂有工人156人,其中女工人数是男工人数的3倍,求男、女工各有多少人?

52、 两包赈灾物品共重154千克,其中第一包比第二包的2倍少14千克,求两包赈灾物品的重量各是多少千克?

53、 仓库存有大米和面粉,已知存放的面粉比大米多4500千克,存放的面粉比大米的3倍还多700千克,求仓库存有大米和面粉各多少千克?

54、 明明星期天上街买衣服,花175元买了一套服装,已知上衣比裤子贵15元,上衣与裤子各多少元?

55、 一个长方形的周长是55厘米,已知长比宽长3.5厘米,这个长方形的长和宽各是多少厘米?

Ⅵ 小学数学公式、方程、应用题等

一、鸡兔同笼问题:
基本题型:笼子里有鸡兔共30只,一共100条腿,问:鸡兔各几只?
解这个题的方法是:先假设30只都是鸡,那么共有2x30=60条腿,少100-60=40条腿,因为每只兔子比鸡多4-2=2条腿,所以兔子共有40/2=20只,则鸡共有30-20=10只.
当然也可以倒过来,先假设30只都是兔子,那么就120条腿,多了20条,因为鸡比兔子少2条腿,所以鸡是10只.
类似的题还有很多,但都是从基本题型变化出来的,如下题:
俱乐部里有30副棋,正好供100位小朋友下,象棋是每2人下一副,跳棋是每6人下一副,问象棋和跳棋各有几副?
二、工程问题:
基本题型:
甲乙两人完成某项工程,甲单独做需要3天完成,乙单独做需要6天完成,问甲乙共同完成需要几天?
解题方法:
甲每天的工作量是全部工程的1/3,乙每天的工作量是全部工程的1/6,两人合作每天的工作量=1/3+1/6=1/2,所以甲乙共同完成需要2天.
这个题会有很多变化,如甲先工作多少天,乙再开始工作;或者甲乙共同工作一天,乙单独工作等等,但解题思路是一样的.都是把总的工作量定成1,然后计算.
三、相遇问题:
基本题型:甲乙两地相距20公里,甲的速度是6公里/小时,乙的速度是4公里/小时,甲乙两人同时同向出发,问多少时间后相遇?
解题方法:这个比较简单,20/(6+4)=2
这类的题变化是非常多的,通常有甲先出发若干时间后,乙再发的;或者求相遇地点离甲地多远的?
四、追击问题:
基本题型:甲的速度是10公里/小时,乙的速度是15公里/小时,甲先出发2小时,问乙多少时间追上甲?
解题方法:甲出发2小时,走的路程是10x2=20公里,乙的速度比甲快15-10=5公里/小时,所以追上的时间是20/5=4小时.
这个题的变化很多,比如著名的放水问题.某浴池开注水管,10分钟可注满,开排水管,20分钟可排完,问两管同时开,多少分钟可注满.这个题可以按追击问题思路来做:注水的速度是1/10,排水的速度是1/20,两者相差1/10,所以10分钟可注满.
五、水流问题:
基本题型:甲乙两地相距300公里,船速为20公里/小时,水流速度为5公里/小时,问来回需要多少时间?
解题方法:假设去的时候顺流,则速度为20+5=25公里/小时,所用时间为300/25=12小时,回来的时候逆流,则速度为20-5=15公里/小时,所用时间为300/15=20小时
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系.
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式.
过桥问题:关键是确定物体所运动的路程,参照以上公式.
仅供参考:
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数.
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或 和-一倍数=另一数.
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或 较小数+差=较大数.
【平均数问题公式】
总数量÷总份数=平均数.
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间.
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种.这两种题,都可用下面的公式
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和.
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程.
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和.
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速.
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度.
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目).
【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时.
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间.
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5…….特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便.)
【盈亏问题公式】
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数.
例如,“小朋友分桃子,每人10个少9个,每人8个多7个.问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2
=8(个)………………人数
10×8-9=80-9=71(个)………………………桃子
或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数.
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发.问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数.
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本.有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数.
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数.
(例略)
【鸡兔问题公式】
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数.
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数.
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡.
解二 (4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔.
(答 略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数.(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式.
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数.
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数.(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一 (4×1000-3525)÷(4+15)
=475÷19=25(个)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它的解法显然可套用上述公式.)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只?”
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
【植树问题公式】
(1)不封闭线路的植树问题:
间隔数+1=棵数;(两端植树)
路长÷间隔长+1=棵数.
或 间隔数-1=棵数;(两端不植)
路长÷间隔长-1=棵数;
路长÷间隔数=每个间隔长;
每个间隔长×间隔数=路长.
(2)封闭线路的植树问题:
路长÷间隔数=棵数;
路长÷间隔数=路长÷棵数
=每个间隔长;
每个间隔长×间隔数=每个间隔长×棵数=路长.
(3)平面植树问题:
占地总面积÷每棵占地面积=棵数
【求分率、百分率问题的公式】
比较数÷标准数=比较数的对应分(百分)率;
增长数÷标准数=增长率;
减少数÷标准数=减少率.
或者是
两数差÷较小数=多几(百)分之几(增);
两数差÷较大数=少几(百)分之几(减).
【增减分(百分)率互求公式】
增长率÷(1+增长率)=减少率;
减少率÷(1-减少率)=增长率.
比甲丘面积少几分之几?”
解 这是根据增长率求减少率的应用题.按公式,可解答为
百分之几?”
解 这是由减少率求增长率的应用题,依据公式,可解答为
【求比较数应用题公式】
标准数×分(百分)率=与分率对应的比较数;
标准数×增长率=增长数;
标准数×减少率=减少数;
标准数×(两分率之和)=两个数之和;
标准数×(两分率之差)=两个数之差.
【求标准数应用题公式】
比较数÷与比较数对应的分(百分)率=标准数;
增长数÷增长率=标准数;
减少数÷减少率=标准数;
两数和÷两率和=标准数;
两数差÷两率差=标准数;
【方阵问题公式】
(1)实心方阵:(外层每边人数)2=总人数.
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数.
或者是
(最外层每边人数-层数)×层数×4=中空方阵的人数.
总人数÷4÷层数+层数=外层每边人数.
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一 先看作实心方阵,则总人数有
10×10=100(人)
再算空心部分的方阵人数.从外往里,每进一层,每边人数少2,则进到第四层,每边人数是
10-2×3=4(人)
所以,空心部分方阵人数有
4×4=16(人)
故这个空心方阵的人数是
100-16=84(人)
解二 直接运用公式.根据空心方阵总人数公式得
(10-3)×3×4=84(人)
【利率问题公式】利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下.
(1)单利问题:
本金×利率×时期=利息;
本金×(1+利率×时期)=本利和;
本利和÷(1+利率×时期)=本金.
年利率÷12=月利率;
月利率×12=年利率.
(2)复利问题:
本金×(1+利率)存期期数=本利和.
例如,“某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”
解 (1)用月利率求.
3年=12月×3=36个月
2400×(1+10.2%×36)
=2400×1.3672
=3281.28(元)
(2)用年利率求.
先把月利率变成年利率:
10.2‰×12=12.24%
再求本利和:
2400×(1+12.24%×3)
=2400×1.3672
=3281.28(元)(答略)

定义定理公式
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

Ⅶ 急要小学六年级数学方程应用题12道 要解题

1.一旅客乘坐的火车以每小时40千米的速度前进,他看见迎面来的火车用了6秒时间从他身边驶过.已知迎面而来的火车长150米,求迎面来的火车速度.

2.已知某一铁路桥长1000米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间为40秒.求火车的速度.

3.如果汽车以每小时40千米的速度从甲地开往乙地,正好在预定时间到达.实际上汽车在行驶了3小时后,速度减慢为30千米/小时,因此比预定时间迟到1小时,求甲、乙两地的距离.

4.某连队从驻地出发前往某地执行任务,行军速度是6千米/小时.18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟(15分钟)内把命令传达给该连队.小王骑车以14千米/小时的速度沿同一路线追赶连队.问是否能在规定时间内完成任务?

5.一架飞机飞行于甲、乙两城之间,顺风时需要5小时30分钟,逆风时需要6小时,若风速是每小时24千米,求两城之间的距离.

6.甲、乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/分,乙的速度是240米/分
(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了多少圈?
(2)两人同时同地反向跑,问几秒后两人第一次相遇?

7.一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过15秒,客车与火车的速度比是5:3,问两车每秒各行驶多少米?

Ⅷ 小学数学方程解应用题!!!

1.有两桶油,甲桶来的重量自是乙桶的1.8倍,如果从甲桶中取出1.2千克,两桶油的重量就像等。两桶油原来各有多少千克?
方程:设乙是x,则甲是1.8x
1.8x-1.2=x
x=1.5
即乙是1。5千克,甲是:1。5*1。8=2。7千克

2.油量桶油,甲桶的重量是乙桶的1.8倍,如果从甲桶中取出1.2千克倒入乙桶,那么两桶油的重量就像等了。两桶油原来各有多少千克?

设乙是x
1.8x-1.2=x+1.2
x=3
即乙是3千克,甲是3*1。8=5。4千克

3.少先队员去种树,如果每人种五棵,还有三棵没有种,如果其中两人各种四棵,其余的每人种植六棵,那么正好种完。少先队员一共种了多少棵树?
设一共有学生x人,则共有树5x+3
2*4+(x-2)*6=5x+3
x=7
共有树:5*7+3=38棵。

4.甲,乙两数的和是5.247,乙数的小数点向左移动一位,就等于甲,甲数是几?

设甲是x,则乙是10x
x+10x=5.247
x=0.477
答:甲是0.477

Ⅸ 小学数学列方程解应用题2道

解:设上抄层原有X本书
1.5(X-16)=X+16
1.5X-24=X+16
1.5X-X=16+24
0.5X=40
X=80
答:上袭层原有80本书。

解:设爸爸开车X小时后与小敏在途中相遇
26X+12(2+X)=120
26X+24+12X=120
38X=120-24
X=96/38
X=2又10/19
答:爸爸开车2又10/19小时后与小敏在途中相遇

Ⅹ 小学的一道数学应用题,用方程解(要完整)

假设这本书抄有X页,那么
上午读的页数是:(1/(1+9))*X=(1/10)X
因为下午比上午多6页,所以下午读的页数是:(1/10)X+6
上下午所读的页数总和是:(1/10)X+(1/10)X+6=(1/5)X+6
又因为到下午已读的页数比未读的页数的比变成了1:3,所以
(1/(1+3))*X=(1/5)X+6

即:(1/4)X=(1/5)X+6
所以(1/4)X-(1/5)X=6
(1/20)X=6
X=120

阅读全文

与小学数学方程式应用题相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99