① 如何理解小学数学新课标中的核心概念
在目标里边,可以看到了对这些核心概念的一些具体解释,相当于目标的一些要素.但是同时也能发现它们之间是密切联系的,所以核心概念有一个承上启下的作用.上面连着目标,下面联系着内容,是非常重要的,所以也把它称为核心概念.(一)为什么要设计核心概念 在这次课程标准修订过程中,除了前面说的这些理念,怎么设计这个课程标准,也进行了一个讨论,在提出设计的过程中有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调.从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程.这是一个渗透在整个标准的研制过程中.第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来.记得当时在讨论的时候,就在过去义务教育的基础上,能不能用一些词,把这些东西彰显出来,经过讨论,提出了十个核心概念.(二)核心概念的理解 1.数感 数感在实验稿里边就提出来,在修订稿里边又进一步明确了数感的含义.在这里边,有这样两句话,来帮助理解数感.数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟.这是一层含义,是一种感悟,对那些数量、数量关系和估算结果的估计这种感悟.然后第二句话的含义是建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系.这两层意思都是数感,什么是数感?数感是一种感悟,是对数量、对数量关系结果估计的感悟;第二层意思就是数感的功能.学习数学是要会去思考问题,一个本质的问题就是要建立数学思想,而数学思想一个核心就是抽象,而对数的抽象认识,又是最基本. 2.符号意识 关于符号意识,注意到它在用词上,标准的修改稿和实验稿有一个区别,原来是叫符号感,现在把它称为叫符号意识.因为符号感更多的是感知,是一个最基本的层次.而符号意识对学生理解要求更高一些.在标准里边它是这样来表述的,符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律.就是用符号来表示,表示什么,表示数,数量关系和变化规律,这是一层意思. 还有一层意思,就是知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性.所以标准上,大概用分号隔开是两层意思,一个是会表示,另外一个进行分开进行推理,得到一般性的结论.符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要形式. 3.空间观念和几何直观 空间观念是原来大纲里有的,现在是在原来的基础上做了进一步的刻画.具体是这么描述的,空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等.这是对于空间观念的一个刻画. 空间观念和几何直观这两个概几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果.几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用. 4.数据分析观念 数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断.体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性.一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心. 5.运算能力 运算能力,标准中是这样说的,只要是指能够根据法则和运算进行正确的运算的能力.培养运算能力有助于学生理解运算,寻求合理、简洁的运算途径解决问题.运算始终是中小学教学里边非常重要的组成部分,对数的认识,数的运算,一直都占很大的篇幅,另外也是学生学习数学的一个重要的标志. 6.推理能力 推理能力是标准实验稿中就提出的一个核心概念,在修改稿当中,仍然也保留了这样一个核心概念.经过这几年的实验,老师们对推理能力,应该有了一个比较全面的认识,以往在谈推理的时候,老师首先想到就是演绎推理和逻辑推理,而现在推理能力实际上包含了两个方面.首先推理是数学的基本思维方式,也是人们学习和生活当中,经常使用的一种思维方式,推理一般包括合情推理和演绎推理,合情推理的外延包含了两个大方面,一个是合情推理,一个是演绎推理.演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算.换句话说,从思维形式的角度,是从一般到特殊的过程,在几何的证明当中,实际上都是这样一种推理形式.合情推理是从已有的事实出发,评论一些经验、直觉,通过归纳和类比等等这样一些形式,来进行推断,来获得一些可能性结论这样一种思维方式.和演绎推理不一样的是从特殊到一般这样一种推理,所以合情推理得到的结论,知道不一定是对的,通常可能称之为猜想、推测,是一个可能性结论.但是合情推理在数学整个发展过程当中,包括在学生学习数学和今后的未来的社会生产实践和生活当中,都是特别重要的. 7.模型思想 首先说一下标准的解释,就是模型思想的建立,使学生体会和理解数学与外物世界联系的基本途径,建立和求解模型的过程包括,从现实生活或具体情境中,抽象出数学问题,用数学符号,建立方程、不等式、函数等数学模型的数量关系和变化规律,然后求出结果,并讨论结果的意义.这些内容的学习有助于学生初步的形成模型的思想,提高学习数学的兴趣和应用意识.这个基本上模型思想概括的比较清楚. 8.应用意识和创新意识 首先是应用意识,应用意识说白了就是强调数学和现实的联系,数学和其他学科的联系,如何运用所学到的数学,去解决现实中和其他学科中的一些问题,当然也包括运用数学知识去解决另一个数学问题.
② 浅谈如何落实小学数学新课标理念
作为小学数学教学的一线教师,如何落实新课标理念,下面,就我多年的教学经验以及对新课改革精神的学习与理解,谈一谈我对在新课标理念指导下开展数学课的几点个人体会:
一、结合教学实际,重视培养学生的数感
在当前的义务教育数学改革中,笔算是被削弱的内容,降低了笔算的复杂性和熟练程度,这不是说计算能力的培养不重要了,其实正相反。《标准》中明确指出要“提倡算法的多样化,避免程式化的机械计算和叙述算理”。既然这样,我们怎样提高全体学生的计算能力和良好的数感呢?
1、依据教学内容,精心设计“口算”题。“口算”是一个人最基本的计算能力,也是一种最生活化的基本技能。
2、精心设计教学内容,留给学生自主探索的空间。计算的学习要符合儿童学习计算的认知规律,同时,也要符合计算知识本身的发展规律。
3、不用固定的语言文字来概括计算法则,让学生在自主的探索中获得对计算过程与算理的理解。
4、让学生在现实情景中理解数学知识的意义和作用,培养学生用数学解决问题的良好数感。
5、笔算与估算结合,加大估算的教学力度。要把估算作为现代数学基础教育的重要内容来抓,这既能为学生数学的发展奠定良好基础,也符合学生今后的生活需要。
二、结合生活与教学实际,加强对学生的实际操作能力、自主探索能力、估测能力的培养
1、在教学中培养学生的操作,探索和估测能力。课堂教学是学生学习的主阵地。学生将通过课堂学习获得相关的知识与技能,并在教师的指导下,获得学习的方法,端正学习的态度,受到各种思想的熏陶,特别是学生的操作、探索和估测能力的提高更是离不开教师的指导。
2、在生活中培养学生的操作,探索和估测能力。知识离开了生活,就无从验证,能力离开了生活就得不到提高。学生在课堂上所获得的是基础知识与基本技能,这些基础知识与基本技能只有经过学生生活的再次洗礼,才能不断提高学生的各种能力。在生活中教师也可以有意识的培养他们的这些能力。
三、逐步发展学生综合运用知识的能力,注重情感、态度、价值观以及数学思想的均衡发展
1、学生综合运用知识的能力培养。知识的价值在于应用,如果学会了知识却不会运用就等于不会知识。也就是说,教师的任务不仅仅是引导他们学会知识,更要的是要引导他们学会学习和运用知识。
2、渗透思想教育,让学生的情感、态度、价值观得以均衡发展。学生的情感、态度、价值观直接影响到他们对数学知识的把握与理解。那么,就需要教师在教学时激发他们的学习兴趣和探索知识的欲望,利用教材与生活中他们感兴趣的素材渗透各种思想教育。
四、建立与数学同步的评价机制与体系,增强学生学好数学的信心。
学生的信心来自于不断的成功,来自于教师充分的肯定。这就是说,学生用什么样的心态对待学习,很大程度上取决于教师的评价。因此,每一位教师都应该有自己对学生评价的评价体系和在教学中不断完善改进的评价机制。
相信“只有无心的教师,没有改变不了的学生。”只有具备了高尚心灵的老师才能心平气和,也才能具有无穷的智慧。面对千差万别的学生,教师“送之以甘泉”,他们会“报之以桃李”,教师立足学生长远发展的无私奉献必将硕果累累。
③ 如何理解如何理解小学数学新课标
.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。
教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
④ 小学数学新课标的主要内容有哪些
截止2018年目前小学数学新课标的主要内容如下:
义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
⑤ 小学数学新课标的主要内容有哪些
2014小学数学新课标内容
一、前言
《全日制义务教育数学课程标准(修定稿)》(以下简称《标准》)是针对我国义务教育阶段的数学教育制定的。根据《义务教育法》.《基础教育课程改革纲要(试行)》的要求,《标准》以全面推进素质教育,培养学生的创新精神和实践能力为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施(教学.评价.教材编写)提出建议。
《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,教学内容的选择和教学活动的组织应当遵循这些基本理念和目标。《标准》规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。《标准》是教材编写.教学.评估.和考试命题的依据。在实施过程中,应当遵照《标准》的要求,充分考虑学生发展和在学习过程中表现出的个性差异,因材施教。为使教师更好地理解和把握有关的目标和内容,以利于教学活动的设计和组织,《标准》提供了一些有针对性的案例,供教师在实施过程中参考。
二、设计理念
数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民所必备的基本素养。数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,一方面要充分发挥数学在培养人的科学推理和创新思维方面的功能。
义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面.持续.和谐发展。课程设计要满足学生未来生活.工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感.态度与价值观等方面都要得到发展;要符合数学科学本身的特点.体现数学科学的精神实质;要符合学生的认知规律和心理特征.有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题.构建数学模型.得到结果.解决问题的过程。为此,制定了《标准》的基本理念与设计思路。
基本理念
数学课程应致力于实现义务教育阶段的培养目标,体现基础性.普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。课程内容既要反映社会的需要.数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容要贴近学生的生活,有利于学生经验.思考与探索。内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化.情境化与知识系统性的关系。课程内容的呈现应注意层次化和多样化,以满足学生的不同学习需求。数学活动是师生共同参与.交往互动的过程。有效的数学教学活动是教师教与学生学的统一,学生是数学学习的主体,教师是数学学习的组织者与引导者。数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考;要注重培养学生良好的学习习惯.掌握有效的学习方法。学生学习应当是一个生动活泼的.主动地和富有个性的过程,除接受学习外,动手实践.自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察.实验.猜测.验证.推理.计算.证明等活动过程。教师教学应该以学生的认知发展水平和益友的经验为基础,面向全体学生,注重启发式和因材施教,为学生提供充分的数学活动的机会。要处理好教师讲授和学生自主学习的关系,通过有效的措施,启发学生思考,引导学生自主探索,鼓励学生合作交流,使学生真正理解和掌握基本的数学知识与技能.数学思想和方法,得到必要的数学思维训练,获得广泛的数学活动经验。学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学。应建立评价目标多元.评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我,尽力信心。信息技术的发展对数学教育的价值.目标.内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的有机结合。要充分考虑计算器.计算机对数学学习内容和方式的影响以及所具有的优势,大力开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的.探索性的数学活动中去。
三、设计思路
(一)关于学段
为了体现义务教育数学课程的整体性,《标准》统筹考虑了九年的课程内容。同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:第一学段(1-3年级).第二学段(4-6年级).第三学段(7-9年级)。设计思路
(二)关于目标《标准》提出义务教育阶段数学课程的总体目标和分学段目标,并从知识技能.数学思考.问题解决.情感态度等四个方面具体阐述。《标准》用了“了解(认识).理解.掌握.运用”等认知目标动词表述知识技能目标的不同水平。一句“基本理念”,数学学习必须注重过程,标《准》使用“经历(感受).体验(体会).探索”等认知过程动词表述学习活动的不同程度。使用这些动词进行表述是为了更准确地刻画上述四个方面的具体目标。在《标准》中,这些动词的具体含义如下。了解(了解认识):从具体事例中知道或举例说明对象的有关特征;根据对象的特征,从具体情景中辨认或者举例说明对象。理解:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系。掌握:在理解的基础上,把对象用于新的情境。运用:用已掌握的对象,选择或创造适当的方法。经历(感受):在特定的数学活动中,获得一些感性认识。体验(体会):参与特定的数学活动,认识或验证对象的特征,获得经验():验。探索:独立或与他人合作参与特定的数学活动,发现对象的特征及其与相关对象的区别和联系,获得理性认识。
(三)关于学习内容之一:数与代数
在各个教学段中,《标准》安排了四个方面的内容:“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”。数与代数“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程.方程组.不等式.函数等。
在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力,树立模型思想。
数感主要是指关于数与数量表示.数量大小比较.数量和运算结果的估计等方面的直观感觉。建立“数感”有助于学生理解现实生活中数的意义,理解或表述具体情景中的数量关系。
符号意识主要是指能够理解并且运用符号表示数.数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立“符号意识”有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
运算是“数与代数”的重要内容,运算是基于法则进行的,通常运算满足一定的运算律。学习这些内容有助于理解运算律,培养运算能力。
模型也是“数与代数”的重要内容,方程.方程组.不等式.函数等都是基本的数学模型。从现实生活或者具体情境中抽象出数学问题,是建立模型的出发点;用符号表示数量关系和变化规律,是建立模型的过程;求出模型的结果并讨论结果的意义,是求解模型的过程。这些内容有助于培养学生的学习兴趣和应用意识,体会数学建模的过程,树立模型思想。
关于学习内容之二:图形与几何
图形与几何“图形与几何”主要内容有:空间和平面的基本徒刑,图形的性质和分类;平面图形基本性质的证明;图形的平移.旋转.轴对称.相似和投影;运用坐标描述图形的位置和图形的运动。
在“图形与几何”的学习中,应帮助学生建立空间观念。空间观念是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;能够想象出空间物体的方位和相互之间的位置关系;根据语言描述或通过想象画出图形等。
直观与推理是“图形与几何”学习中的两个重要方面。几何直观是指利用图形描述几何或者其他数学问题.探索解决问题的思路.预测结果。在许多情况下,借助几何直观可以把复杂的数学问题变得简明.形象。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,并且贯穿在整个数学学习中。
推理是数学的基本思维方式,是人们学习和生活中经常使用的思维方式,也因此,与直观一样,推理也贯穿在整个数学学习中。推力一般包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果,是由特殊到一般的过程。演绎推理是从已有的事实(包括定义.公理.定理等)出发,按照规定的法则(包括逻辑和运算)验证结论,是由一般到特殊的过程。在解决问题的过程中,合情推力有助于探索解决问题的思路.发现结论;演绎推理用于验证结论的正确性。
关于学习内容之三:统计与概率
统计与概率“统计与概率”主要内容有:收集.整理和描述数据,包括简单抽样.记录调查数据.描绘统计图表等;处理数据,包括计算平均数.中位数.众数.极差.方差等;从数据中提取信息并进行简单的判断。简单随机事件及其发生的概率。
在“统计与概率”中,帮助学生逐渐建立起数据分析的观念是重要的。数据分析包括:了解在现实生活中有许多问题应当先做调查研究.收集数据,通过分析作出判断,体会数据中是蕴涵着信息的;体验数据是随机的和有规律的,一方面对于同样的事情每次收集到的数据可能会是不同的,另一方面只要有足够的数据就可能从中发现规律;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法。在概率的学习中,所涉及的随机现象都基于简单事件:所有可能发生的结果是有限的.每个结果发生的可能性是相同的。“统计与概率”的内容与现实生活联系密切,必须结合具体案例组织教学。
关于学习内容之四:综合与实践
综合与实践“综合与实践”是以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。针对问题情景,学生借助所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题.分析问题和解决问题的全过程,感悟数学各部分内容之间.数学与生活实际之间及其他学科的联系,激发学生学习数学的兴趣,加深学生对所学数学内容的理解。
这种类型的课程对于培养学生的抽象能力和逻辑思维能力.对于培养学生的创新意识和应用能力是有益处的,还有利于培养学生的合作精神。合理地设计课程内容以及教学方法是达到教学目标的关键,既要考虑学生的直接经验.能够启发学生思考,也要考虑问题的数学实质.培养学生的数学素养。这种类型的课程对教师是一种挑战,教师应努力把握住问题的本质,能够引导学生思考,同时,教师又应努力帮助学生整理清楚自己的思路,指导学生以不同的形式展示自己的成果或报告自己的工作。这种类型的课程应当贯彻“少而精”的原则,保证每学期至少一次。它可以在课堂上完成,也可以将课内外相结合。
关于实施建议
为了保证《标准》的顺利实施,《标准》分别对教学活动.学习评价,以及教材编写.课程资源的开发与利用等方面提出了实施建议;同时,为了更好地说明课程内容,《标准》在相关部分提供了一些案例。以上内容供有关人员参考.借鉴。
《课标》修改稿---总体目标(1)通过义务教育阶段的数学学习,学生能够:1.获得适应社会生活和进一步发展所必须的数学的基本知识.基本技能.基本思想.基本活动经验。2.体会数学知识之间.数学与其他学科之间.数学与生活之间的联系,运用数学的思维方式进行思考,增强发现问题和提出问题的能力.分析问题和解决问题的能力。3.了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
《课标》修改稿---总体目标(2)知识与技能:*经历数与代数的抽象运算与建模等过程,掌握数与代数的基础知识和基本技能。*经历图形的抽象.分类.性质探讨.运动.位置确定等过程,掌握图形与几何的基础知识和基本技能。*经历在实际问题中收集和处理数据.利用数据分析问题.获得信息的过程,掌握统计与概率的基础知识和基本技能。*参与综合实践活动,积累综合运用数学知识.技能和方法解决简单实际问题的数学活动经验。
数学思考
*体会代数表示运算和几何直观等方面的作用,初步建立数感.符号意识和空间观念,发展形象思维和抽象思维。*了解数据和随机现象,体会统计方法的意义,发展数据分析和随机观念。*在参与观察.实验.猜想.证明.综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法。*学会独立思考,体会数学的基本思想和思维方式。
问题解决
*初步学会从数学的角度发现问题和提出问题,综合运用数学知识和其他知识解决简单的数学问题,发展应用意识和实践能力。*获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。
情感态度
*学会与他人合作.交流。*初步形成评价与反思的意识。*积极参与数学活动,对数学有好奇心和求知欲。*体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心。*体会数学的特点,了解数学的价值。*养成勇于质疑的习惯,形成实事求是的态度。
《课标》修改稿---总体目标(3)总体目标的四个方面,不是互相独立和割裂的,而是一个密切联系.相互交融的有机整体。课程组织和教学活动中,应同时兼顾四个方面的目标。这些目标的实现,使学生受到良好数学教育的标志,它对学生的全面.持续.和谐发展,有着重要的意义。数学思考.问题解决.情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。
《课标》修改稿---学段目标
第一学段(1-3年级)
知识技能
1.经历从日常生活中抽象出数的过程,理解常见的量;了解四则运算的意义,掌握必要的运算技能。了解估算。
2.经历从实际物体中抽象出简单几何体和平面图形的过程,了解一些简单几何体和常见的平面图形;感受平移.旋转.轴对称,认识物体的相对位置。掌握初步的测量.识图和画图的技能。
3.经历数据的收集和整理的过程,了解简单的数据处理方法。
数学思考
1.能够理解身边有关数字的信息,会用数(合适的量纲)描述现实生活中的简单现象。发展数感。
2.再讨论简单物体性质的过程中,发展空间观念。
3.在教师的指导下,能对简单的调查数据归类。
4.会思考问题,能表达自己的想法;在讨论问题过程中,能够初步辨别结论的共同点和不同点。
问题解决
1.能在教师的指导下,从日常生活中发现和提出简单的数学问题。
2.获得分析问题和解决问题的一些基本方法,知道同一问题可以有不同的解决方法。
3.体验与他人合作交流.解决问题的过程。
4.初步学会整理解决问题的过程和结果。
情感态度
1.对身边与数学有关的事务(现象)有好奇心,能够参与数学活动。
2.在他人帮助下,体验克服数学活动中的困难的过程。
3.了解数学可以描述生活中的一些现象,感受数学与生活有密切联系。
4.在解决问题的过程中,养成询问“为什么”的习惯。
第二学段(4-6年级)
知识技能
1.体验从具体情境中抽象出数的过程;理解分数.百分数的意义,了解负数,掌握必要的运算技能;理解估算的意义;掌握用方程表示简单的数量关系.解简单方程的方法。
2.探索一些图形的形状.大小和位置关系,了解一些几何体和平面图形的基本特征;体验图形的简单运动,了解确定物体位置的方法,掌握测量.识图和画图的基本方法。
3.历数据的收集.理和分析的过程,握一些简单的数据处理技能;经整掌体验事件发生的等可能性,掌握简单的计算等可能性的方法。
数学思考
1.能够对生活中的数字信息作出合理的解释,会用数(合适的量纲).字母和图表描述生活中的简单问题;初步形成数感,发展符号意识。
2.在探索简单图形的性质.运动现象的过程中,初步形成空间观念。
3.能根据解决问题的需要,收集与表示数据,归纳出有用的信息
4.能进行有条理的思考,能清楚地表达思考的过程与结果;在与他人交流过程中,能够进行简单的辩论。
问题解决
1.能从社会生活中发现并提出简单的数学问题。
2.能探索分析问题.解决问题的有效方法,了解解决问题方法的多样性。
3.能借助于数字计算器解决简单的计算问题。
4.初步学会与他人合作解决问题,尝试解释自己的思考过程。
5.能初步判断结果的合理性,经历回顾与分析解决问题过程的活动。
情感态度
1.愿意了解社会生活中与数学相关的信息,主动参与数学学习活动。
2.在他人的鼓励和引导下,尝试克服数学活动中遇到的困难,相信自己能够学好数学。
3.在运用数学解决问题的过程中,体验数学的价值。
4.初步养成乐于思考.实事求是.勇于质疑等良好品质。
第三学段(7-9年级)
知识技能
1.体验从具体情境中抽象出数学符号的过程;理解有理数.实数.代数式.方程.不等式.函数。掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,掌握用代数.方程.不等式进行表述的方式。
2.探索并理解图形的基本性质.位置关系和平移.旋转.轴对称等。掌握三角形.四边形的基本性质(包括判定),掌握基本的证明方法。
3.体验数据收集.处理.分析和推断过程,理解抽样方法;体验用样本估计总体的过程,理解频率。理解计算简单事件概率的方法。数学思考
1.能从具体情境中抽象出数量关系,并且能用代数式.方程.不等式.函数等表述,体会模型的思想。
2.在研究图形运动现象.确定物体位置的过程中,进一步发展空间观念,初步建立几何直观。
3.初步建立数据观念,理解通过数据进行统计推断的合理性。
4.步形成通过实例探索数学结论的思维方式。多种形式的数学活动中,初在发展合情推理与演绎推理的能力。
问题解决
1.尝试在具体的情境中,从数学的角度发现问题和提出问题。
2.试从不同角度寻求分析问题和解决问题的方法,解不同方法的差异。尝了
3.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。
4.在表述自己的想法时,能针对他人所提的问题进行反思。
情感态度
1.愿意谈论某些数学话题,能够在数学学习活动中发挥一定的作用。
2.体验独立克服困难.解决数学过程的过程,有克服困难的勇气,具备学好数学的信心。
3.在运用数学表达现实.解决问题的过程中,认识数学抽象.严谨和应用广泛的特点,体会数学的价值。
4.勇于发表自己的观点,质疑他人的观点,养成良好的学习习惯。
⑥ 小学数学新课标解读 第二学段 怎样解读 数的认识
课程标准是国家课程的基本纲领性文件,是国家对基础教育课程的基本规范和质量要求。本次课程改革将我国沿用已久的教学大纲改为课程标准,反映了课程改革所倡导的基本理念。基础教育各门课程标准的研制是基础教育课程改革的核心工作。经过近300名专家的共同努力,18种课程标准实验稿正式颁布,标志着我国基础教育课程改革进入新的阶段。
⑦ 小学数学新课标中新的教学理念是什么
小学数学新课程的基本理念
1、数学课程生活化
数学教学要从学生的生活经验和已有的知识出发,以学生从体验的和容易理解的现实问题为素材,并注意与学生已经了解和学生过的教学知识相联系,让学生在熟悉的事物和具体情境中,通过自主活动理解教学知识,建构数学知识结构。
2、让学生亲历数学知识的形成
学习数学唯一正确的方法是实行“再创造”,探究性学习强调学生通过自己参与类似于科学研究的学习活动,获得亲身体验,就是“再创造”。必须让学生看到数学知识形成和发展过程,亲身体验如何“做数学”。
3、转变学生的学习方式
《课程标准》指出:“学生的数学学习和活动应当是一个生动的,主动和具有个性的过程”。“动手实践,自主探索,与合作交流是学生学习数学的重要方式”。这是此次课改的核心理念。
4、教师要转变教学的方式
《课程标准》指出:“教师是数学学习的组织者,引导者与合作者”。在教学中,教师应精心组织课堂教学,有效地引导学生参与数学活动,真诚地与学生合作,共同创造一种新的课堂文化。
5、评价的根本是要促进学生的发展
新课程评价是关注学生的全面发展。评价的主要目的是为了全面了解学生的数学学习历程,激励学生的教学和改进教师的教学,应建立评价目标多元化,评价方法多样化的评价体系。评价要关注学生的学习结果,更要关注他们在教学活动中所表现出来的情感与态度帮助学生认识自我,建立信心。
(7)小学数学新课标认识扩展阅读:
教学理念是对认识的集中体现,同时也是人们对教学活动的看法和持有的基本的态度和观念,是人们从事教学活动的信念。教学理念有理论层面、操作层面和学科层面之分。明确表达的教学理念对教学活动有着极其重要的指导意义。
关注学生的进步和发展。首先,要求教师有“对象”意识。教学不是唱独角戏,离开“学”,就无所谓“教”,因此,教师必须确立学生的主体地位,树立“一切为了学生的发展”的思想。其次,要求教师有“全人”的概念。
学生发展是全面的发展,而不是某一方面或某一学科的发展。教师千万不能过高地估计自己所教学科的价值,而且也不能仅把学科价值定位在本学科上,而应定位在对一个完整的人的发展上。
2.关注教学效益,要求教师要有时间与效益的观念。教师在教学时既不能跟着感觉走,又不能简单地把“效益”理解为“花最少的时间教最多的内容”。教学效益不取决于教师教多少内容,而是取决于对单位时间内学生的学习结果与学习过程综合考虑的结果。
3.关注可测性和量化。如教学目标尽可能明确与具体,以便检测教师的工作效益。但是并不能简单地说量化就是好的、科学的。应该科学地对待定量与定性、过程与结果的结合,全面地反映学生的学业成就与教师的工作表现。因此,有效教学既要反对拒绝量化,又要反对过于量化。
4.需要教师具备一种反思的意识。每一个教师要不断地反思自己的日常教学行为:“我的教学有效吗?”“什么样的教学才是有效的?”“有没有比我更有效的教学?”
5.有效教学也是一套策略。要求教师掌握有关的策略性知识,以便于自己面对具体的情景做出决策,并不要求教师掌握每一项技能。
现代社会是一个日益多样化的时代,随着社会结构的高度分化,社会生活的日益复杂和多变,以及人们价值取向的多元化,教育也呈现出多样化发展的态势。
这首先表现在教育需求多样化,为适应经济社会发展的要求,人才的规格、标准必然要求多样化;其次表现在办学主体多样化,教育目标多样化,管理体制多样化;再次还表现在灵活多样的教育形式、教育手段,衡量教育及人才质量的标准多样化等等。
这些都为教育教学过程的设计与管理提出了更高的要求与挑战,它要求根据不同层次、不同类型、不同管理体制的教育机构与部门进行柔性设计与管理,它更推崇符合教育教学实践的弹性教学与弹性管理模式,主张为教育事业的发展提供更加宽松的社会政策法规体系与舆论氛围,以促进教育事业的繁荣与发展。