导航:首页 > 小学学科 > 小学数学符号化思想

小学数学符号化思想

发布时间:2021-01-23 06:50:25

① 符号化与符号化思想有什么区别 有关小学数学的 符号化与符号化思想的定义分别是什么

符号化是解题研究、数学发明的工具,而符号化思想是思想,是意识上的东西。只有理解了符号化思想,才能用符号化的手段解决问题。

② 数学常用的数学思想方法有哪些

数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。

1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.

6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。

7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,

(2)小学数学符号化思想扩展阅读:

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。

③ 小学数学符号有什么趣味性

数学符号化思想主要有下面的几层含义:1.人们有意识地、普遍地运用符号去概括、表述、研究数学;2.研究符号能够生存的条件,即反复选择用怎样的符号才能简洁、准确地反映数学概念的本质,有利于数学的发现和发展,且方便于打字、印刷等等;3.数学符号已经过人工筛选与改造,形成一种约定的、规范的、形式化的系统。
符号化思想的渗透在小学数学教科书中是根据不同的教学阶段的具体情况进行的。渗透主要是从如下几方面作了有计划、有步骤的安排。即:
1.变元的思想。
变元思想是根据小学生的年龄特点和知识水平,采取不同的形式进行渗透,旨在让学生逐步了解变元的思想。例如,九年义务教育五年制小学教科书数学第一册第10页就有“□”出现在算式中。第二册教科书中,就出现借用方格子“□”或括号“()”等代替变元符号“x”,让小学生在其中填上合适的数。例如,
6-□>4 8<14-□
12>7+□ 8+□<11
8<14-□ 10+□<13
诚然,这样的题目我们教师只要求小学生在“方格中”填进一个合适的数,但我们必须明白,如果把“□”换成“x”,那么,上述的算式是不等式,变元x有确定的取值范围。我们应当明白编教科书的意图,符号“□”在这里只起着“位置占有者”的作用。目的是引导学生去思考问题,解决一些有趣的问题,借此,发展学生的思维能力。
2.用字母表示数的思想。
小学数学教科书中的“简易方程”这一部分内容向学生提出用字母表示数。它的实质是一种抽象化。其目的是为了更深刻地探索、揭示数学规律,达到更准确、更简洁地表达数学规律,在较大范围内肯定数学规律的正确性。比如,加法的交换律用a+b=b+a,圆面积用S=πr2表示等。
3.列方程解应用题的思想。
用方程解法来解答应用题,解法本身蕴含着符号化思想,它主要体现在如下几个方面:(1)代数假设,用字母代替未知数,与已知数平等地参与运算;(2)代数翻译。把题中自然语言表述的已知条件,译成用符号化语言表述的方程。(3)解代数方程。把字母看成已知数,并进行四则运算,进而达到求解的目的。

④ 小学数学教学如何渗透符号化思想

数学是人类的一种文化, 它的内容、思想、方法和语言是现代文明的重要组成部分,数学为其他学科提供了语言、思想和方法, 是一切重大技术发展的基础,教师应激发学生的学习积极性, 向学生提供充分从事数学活动的机会, 帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法, 获得广泛的数学活动经验。
一、符号化思想的发展
数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过: “什么是数学? 数学就是符加逻辑。 ”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。 ”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。
西方较早地在数学研究中引进了符号,十六世纪数学家韦达对数学符号作了很多改进,并且第一个有意识地系统地用字母表示数,带来了代数学研究的重大拓展,奠定了符号代数的基础,后来大数学家笛卡儿对韦达使用的字母又作了改进。用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。
二、符号化思想在小学数学教材中的体现
1、在教学中引入数学符号。
现行小学数学教材中也十分注意符号化思想的渗透。例如引入了一些字母:a 、 b 、 c …;数的运算符号: + , - , ×,÷等;关系符号 : =, ≈ , >, <, ≠等,以及体现运算等级的结合符号( ) 、 [ ] 、 { }等;这些符号的引入也不是说是杂乱无章、漫无目的的,它们是根据小学生的年龄、思维特点按照一定顺序、符合一定的逻辑、有步骤的引入的。符号化思想的渗透在小学数学教材中是根据不同的教学阶段的具体情况进行的。主要是从如下几方面有计划、有步骤的渗透的。例如, 初入学儿童在学习 1--5 的认识时, 教材并没有直接呈现 1 到 5 这些数字, 而是通过实物、图片, 在具体情境中数出 1头象, 2头犀牛, 3只长颈鹿、4朵云……, 然后呈现数字, 这样使学生能够很清楚地知道这些数所表示的意义, 而不是凭空产生的。这对于初入学的儿童的学习是非常有利的, 它能让学生充分认识到数学符号所表示的意义, 为学生以后学习数学奠定了基础。这就是新课标下的小学数学教材在处理符号在教材中渗透的一个亮点。
2.变元的思想
变元思想是根据小学生的年龄特点和知识水平,采取不同的形式进行渗透的,旨在让学生逐步了解变元的思想。例如,例如教材从一年级就开始用“口”或“( )”代替变量X,让学生在其中填数。例如:l+2=口,6+( )=8,再如:学校有7个球,又买来4个。现在有多少个?再如让学生在口中填上合适的数。例如:
9-□>4 8<16-□
12>3+□ 8+□<25
6<14-□ 10+□<32
诚然,这样的题目我们老师只要求小学生在“方格中”填进一个合适的数,但我们必须明白,如果把“□”换成“x”,那么,上述的算式是不等式,变元x有确定的取值范围。我们应当明白编教科书的意图,符号“□”在这里只起着“位置占有者”的作用。目的是引导学生去思考问题,解决一些有趣的问题,借此,发展学生的思维能力。
3、用符号代表数
小学四年级, 在“简易方程”这一部分内容向学生提出用字母表示数,引入了用字母表示数的思想。它的实质是一种抽象化,其目的是为了更深刻地探索、揭示数学规律,达到更准确、更简洁地表达数学规律,在较大范围内肯定数学规律的正确性。这部分内容关键是要让学生理解用字母表示数的思想。在数学语言中,像数字以及表示数字的字母,都是用数学语言刻画各种现实问题的基础。用具体的数和运算符号所组成的式子只能表示个别具体的数量之间的关系,而用字母表示,既简单明了,又能概括出数量关系的一般规律,在较大范围内肯定了数学规律的正确性。使学生明白用字母表示数的好处,然后帮助学生实现观点的转变,理解字母的抽象化、一般化的特点,为以后列方程解应用题打下扎实的基础符号思想在小学数学内容中随处可见,教师要有意识地进行渗透。在数学中各种数量之间的关系,量的变化以及量与量之间进行推导和演算,都可以用小小的字母表示数,以符号的浓缩形式来表达大量的信息,如乘法分配律(a+b)×c=a×c+b×c,这里的a、b、c不仅可以表示1、2、3……等这些整数,也可以表示小数或者分数,另外在乘法交换律和结合律时也运用了字母表达式。显然,它比用具体的数表示更加概括、明确, 比用日常语言表示更加简明、易记。再如长方形的面积计算公式s=a×b,不管是什么样的长方形,都可用它计算出来。
4、列方程解应用题
用方程来解应用题, 解法本身蕴含着符号化思想, 它主要体现在如下几个方面:( 1) 代数假设, 用字母代替未知数, 与已知数平等地参与运算;( 2) 代数翻译, 把题中的自然语言表述的已知条件, 译成用符号化语言表述的方程。( 3) 解代数方程。把字母看成已知数, 并进行四则运算, 进而达到求解的目的。例如,应用题“ 四一班有60人, 是四年级总人数的 20%, 求四年级共有多少人? ”解决这道题时,首先就应该进行代数假设, 用字母 x 代替四年级总人数, 这就是用字母代替未知数, 与已知数平等的参与运算; 其次, 把题中的自然语言表达的已知条件, 译成用符号化语言表述的方程 x×20%=60。最后, 把字母看成已知数进行四则运算, 达到求解的目的。整个分析, 解题过程, 都涉及到了用字母代表数, 变元思想等等, 可以说是符号化思想在数学中的集中体现, 对学生理解数学符号化思想及其意义都有重要价值。上例所分析的这些都是符号思想的具体体现,通过以上各阶段的逐步过渡, 学生将逐步领会用字母表示数的优越性, 符号化思想也逐渐地初步形成。把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用,正如华罗庚所说的“数学的特点是抽象,正因为如此,用符号表示就更具有广泛的应用性与优越性”。这种用符号来体现的数学语言是世界性语言,是一个人数学素养的综合反映。
三、符号化思想在小学数学教学中的渗透
符号化思想作为数学基本的、广泛应用的思想,我们无时无刻不在与它们打交道,在教学中要如何渗透符号化思想呢?
1、让学生正确理解与使用数学符号。在实际教学中, 学生使用这些数学符号时, 往往会出现一些错误。例如: 求解15 比 9 多几?小学生由于对加法的意义不理解, 往往看“ 多”就用“ +”, 看 “少”就用“ - ”。就列式为“ 15+9”。又如文字题“ 一个数的 5 倍少 3 是 53, 求这个数是多少? ”学生往往看见倍就用 “×”, 看 少就用“ - ”, 误列式为“( 53- 3) ×5”。像这样的例子, 教师在教学中注意让学生正确理解符号的内涵,理解使用符号所表示的概念。
2、把培养符号意识落实到课堂教学目标中,教师在每堂课的教学设计中,要明确符 号的具体应用,纳入教学目标中。创设合适的情境,引导学生在探索中归纳和理解符号化的模型。
3、在渗透符号思想的过程中要多启发、多引导, 引起学生自主建构。例如: 50. □<52.6, 学生在方框里填上一个数很容易,但教师要明白, 若将方框里填上 x 就变成一元一次不等式。因此, 教师应引导学生继续思考: 方框内最多可以填几个数?这种思考能使学生初步了解变元思想。
符号思想的培养是一个长期的过程,符号思想的培养应贯穿于数学学习的整个过程中,学生要理解和掌握数学符号的内涵和思想,并通过一定的训练,才能利用符号进行比较熟练地运算、推理和解决问题。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象符号化的过程,小学生在数学学习中,从接受到运用会遇到较多的困难,需要教师在平时地教学中,从介绍字母使用的历史入手,循循善诱,加强培养和训练。
四、教学中渗透符号化思想的意义
符号化思想在小学数学内容中随处可见,数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。渗透数学思想方法旨在使学生的数学思维经历从形象思维到抽象思维再到逻辑思维的发展过程,实现其质的变化,要让学生沿着“抽象”和“应用”两个方面进行渗透,将已学的思想方法转化为自己头脑中牢固的认知结构,并能在不断的归属同化中得以发展,提高学生运用数学思想方法解决实际问题的能力。所以,教学中教师要鼓励学生运用易学的数学思想方法去发现、分析和解决生活中的实际问题引导学生加以抽象、概括,建立数学模型,探求解决问题的一般方法,培养学生自学的应用意识。数学思想方法是在启发学生思维过程中逐渐积累和形成的思想方法对认知活动起着监控调节作用,对培养能力起着决定性的作用向学生渗透一些基本的数学思想方法,提高学生的认知水平,是培养学生分析问题和解决问题能力的重要途径同时要注意渗透的长期性,这种渗透往往要经历一个循环往复螺旋上升的过程。
总之,把一些抽象的数学思想方法逐渐“融进”具体的数学知识内容之中,有意识的将数学方法,数学思想在学生的学习思考中潜移默化的领会,使学生对这些思想有一些初步的感知或直觉。我们小学数学教师只有重视对数学思想方法的学习研究和有效地运用,探讨其教学规律,才能适应课程教学改革需要。

⑤ 小学数学常用的教学方法有哪几种

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

⑥ 浅论小学数学教学如何渗透符号化思想

新课程标准中指出:“课程内容的学习, 强调学生的数学活动, 发展学生的数感, 符号感, 空间观念, 统计观念……”,还指出“符号感主要表现在: 能从具体情境中抽象出数量关系和变化规律并用符号来表示;理解符号所表达的数量关系和变化规律; 会进行符号间的转换, 能选择适当的程序和方法来解决用符号所表达的问题。”从上面的表述中我们不难看出新课标非常重视符号感的培养。因此, 教师在日常教学中要注意渗透符号化思想。那么如何在教学中渗透符号化思想呢?笔者认为可以从以下几个方面入手:
一、逐步渗透 认识符号
在我们生活中有很多的符号,比如标志“ P”表示可以停车,铁路、公路、航空都有它们各自的标志, 地图上也有各种标识,还有孩子们喜欢的KFC 这些都是生活中的符号,它们都表示特定的含义,而在数学中也是充满了符号,小学教材中大致出现如下几类符号:( 1) 个体符号: 表示数的符号, 如 1、2、3、4…, 0; a、b、c…, π、x 以及表示小数、分数、百分数的符号。( 2) 数的运算符号: +, - , ×( ?) ,÷( /, ∶) 。( 3) 关系符号: =, ≈, >, <, ≠等。( 4) 结合符号:( )〔〕等以及表示角度的计量单位符号和表示竖式运算的分隔符号等等,当然它们也都有特定的含义,现行教材从一年级开始就安排了各种数学符号的教学,并且贯穿整个六年12个分册里。面对如此多的符号我们必须尊重学生的原有经验,让学生经历从具体的情景中抽象出数量关系和变化规律的符号化过程,使学生认识符号,逐步理解符号的意义。
1.借助具体情景理解。
低年级儿童的思维以具体的形象思维为主,教师要学会创设情景,使他们对所学材料感兴趣,唤起已有的经验,经历把知识符号化的过程。例如, 儿童在学习 1到5 的认识时, 教材并没有直接呈现 1 到 5 这些数而是通过实物、画片, 在具体情境中数出 1位老师, 2盆花, 3个女孩,4个气球……, 然后呈现对应的圆片和数字, 这样使学生能够很清楚地知道这些数所表示的意义,它能让学生充分认识到数学符号所表示的意义, 为学生以后学习数学奠定了基础。再例如新教材第二册统计教学,教师创设“统计哪种小动物最受班级小朋友欢迎”的实际情境,有的学生用1、2、3来表示;有的学生用画○、△、□、4这样的数字来表示,有的学生用打“√”的方法来表示。学生通过挖掘自己的生活经验,使用自己的个性化符号解决了统计问题,感受到了符号的价值。
2、利用变元思想转化
从一年级就可以开始用“□”或“( )”代替变量 x ,让学生在其中填数。 2 + 2 = □ ,3+( )=8 , 5= □+□+□+□+□;再如:学校有10个球,又买来5个。现在有多少个?要学生填出□ ○ □ = □ (个),虽然这样的题目只要求学生在“ 空格”中填一个数, 但教师应明白, 若将符号□换成 x, 则上述题目就是一元一次方程。这就是变元思想。可以说变元思想是列方程解应用题的基础。学生一旦理解掌握了变元思想, 那么对以后学习列方程解应用题将有很大的帮助。
3、挖掘符号本身含义
在第一次教学加法时,为帮助学生理解“加号”含义,教师可以首先呈现出场景图,问求一共有几个人?教师可以要求学生把两幅图的意思连起来说一说。(把3个人和2个人合起来)学生通过自己语言的表达感受到了加法就是把两个数合起来。教师顺势列出算式把两个数用“+”连接,板书3+2=5。教师可以继续要求学生说说加号的意思,让学生通过日常语言与数学语言间的互相转化,理解了符号所代表的含义,为正确使用符号打好扎实的基础。教师不能只把数学符号当作“一种规定的记号”简单地教给学生,应当把符号化思维渗透于教学的始终,以培养学生抽象思维的能力,逐步培养学生的符号感。
二、灵活多变运用符号
1、体会用字母表示数的优越
从第二学段开始接触用字母表示数, 这是学习数学符号的重要一步。从研究一个具体特定的数到用字母表示一般的数, 是实现认识上的一个飞跃。四年级的运算定律与简便运算, 就充分利用了字母表示乘法交换律和结合律,乘法分配率。显然,它比用具体的数表示更加概括、明确, 比用日常语言表示更加简明、易记。三年级下册中长方形面积公式运用语言叙述: 长方形的面积 = 长×宽, 而到了五年级时, 计算平行四边形的面积公式改为s=ah。通过以上各阶段的逐步过渡, 学生将逐步领会用字母表示数的优越性, 符号化思想也逐渐地初步形成。
2、感悟列方程解题的便捷。
用方程来解应用题, 解法本身蕴含着符号化思想, 它主要体现在如下几个方面:( 1) 代数假设, 用字母代替未知数, 与已知数平等地参与运算;( 2) 代数翻译, 把题中的自然语言表述的已知条件, 译成用符号化语言表述的方程。( 3) 解代数方程。把字母看成已知数, 并进行四则运算, 进而达到求解的目的。可以说是符号化思想在数学中的集中体现, 对学生理解数学符号化思想及其意义都有重要价值。如“猎豹是世界上跑得最快的动物,能达到每小时110KM,比大象的2倍还多30KM。大象最快能达到每小时多少千米?”第一步假设大象的速度,第二步根据条件列出方程,第三部解方程。通过解决问题,学生熟悉并熟练了符号的使用,也感受到了用符号解决问题的简便性,从而也培养了学生的符号感。
由于符号化得思想方法分散在教材中各个不同部分,而同一问题又可以用不同的数学思想方法来解决,因此教师的概括、分析是十分重要的。此外,教师还要有意识地培养学生自我提炼、揣摩概括符号化思想方法的能力,这样才能把数学思想方法的教学落在实处。

阅读全文

与小学数学符号化思想相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99