㈠ 小学五年级数学奥数题(都要写出过程!)
(1+0.23+0.34)*(0.23+0.34+0.65)-(1+0.23+0.34+0.65)*(0.23+0.34)
=(1+A)*B-(1+B)A=B+A*B-A-B*A=B-A
设长=a 宽=b 高=h
有:2ab+2ah+2bh=66.16
ab=19
2(a+b)=17.6
自己解咯
㈡ 50道小学五年级奥数题(有答案,行程问题)
行程问题
1、客货两车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度前进,到达对方站后立即返回,两车再次相遇时客车比货车多行了21.6千米。甲乙两站相距多少千米?
答案:122.4千米。
2、甲乙两地相距48千米,其中一部分是上坡路,其余是下坡路。某人骑自行车从甲地到达乙地后沿原路返回,去时用了4小时12分,返回用了3小时48分。已知自行车上坡是每小时行10千米,求自行车下坡每小时行多少千米?
答案:下坡每小时行15千米。
3、南北两镇之间全是山路,某人上山每小时走2千米,下山时每小时走5千米,从南镇到北镇要走38小时,从北镇到南镇要走32小时,两镇之间的路程是多少千米?从南镇到北镇的上山路和下山路各是多少千米?
答案:下山路为40千米,上山路为60千米 。
4、甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离
甲乙的路程是一样的,时间甲少5小时,设甲用t小时
可以得到
1. 12t=8(t+5)
t=10
所以距离=120千米
5、小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?
280*8-220*8=480
这时候如果小明是第一次追上的话就是这样多
这时候小明多跑一圈...
6、某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?
摩托车的速度是xkm/h,自行车速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托车共需12+9/3=15小时
7、有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?
设从第一列车追及第二列车到两列车离开需要x秒,列方程得:
102+120+17 x =20 x
x =74.
8、某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.
设列车的速度是每秒x米,列方程得
10 x =90+2×10
x =11
9、现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.
快车长:18×12-10×12=96(米)
慢车长:18×9-10×9=72(米)
10、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?
(1)火车的速度是:(440-310)÷(40-30)=13(米/秒)
(2)车身长是:13×30-310=80(米)
11、小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?
(1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)
(2)车身长是:20×15=300(米)
12、一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米?
设火车车身长x米.根据题意,得
(530+X )÷40=(380+X )÷30
X=70
(530+X )÷40=600÷40=15(米/秒)
13、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?
从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+160)÷(15+20)=8(秒).
14、某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.
列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.
90÷10+2=9+2=11(米)
15、快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?
1034÷(20-18)=91(秒)
16、快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车?
182÷(20-18)=91(秒)
17、一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.
288÷8-120÷60=36-2=34(米/秒)
18、一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?
(600+200)÷10=80(秒)
19、小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?
两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。
20、甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?
如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。
21、客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?
当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)
22、甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?
开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。
23、甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?
慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。
24、甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?
快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
25、轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?
轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。
26、小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由
(70×4)÷(90-70)=14(分)
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
(52+70)×18=2196(米)。
27、小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?
每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)
28、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。
因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
29、 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?
甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。
30、 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?
快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11
31、甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?
甲乙速度差为10/5=2
速度比为(4+2):4=6:4
所以甲每秒跑6米,乙每秒跑4米。
32、一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔?
狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。
33、甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问:
(1)火车速度是甲的速度的几倍?
(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?
(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的 是行人速度的11倍;
(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。
34、长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?
800千米
35、客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
10秒.
———————————————答 案——————————————————————
一、填空题
120米
102米
17x米
20x米
尾
尾
头
头
1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.画线段图如下:
设从第一列车追及第二列车到两列车离开需要x秒,列方程得:
102+120+17 x =20 x
x =74.
2. 画段图如下:
头
90米
尾
10x
设列车的速度是每秒x米,列方程得
10 x =90+2×10
x =11.
则快车长:18×12-10×12=96(米)
则慢车长:18×9-10×9=72(米)
4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒)
(2)车身长是:13×30-310=80(米)
5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)
(2)车身长是:20×15=300(米)
6. 设火车车身长x米,车身长y米.根据题意,得
①②
解得
7. 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米.根据题意,列方程组,得
①②
①-②,得:
火车离开乙后两人相遇时间为:
(秒) (分).
8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)¸(15+20)=8(秒).
9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.
90÷10+2=9+2=11(米)
答:列车的速度是每秒种11米.
10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度 与甲、乙二人速度 的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:
故 ; (1)
(i i)火车开过乙身边用7秒钟,这个过程为相遇问题:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火车头遇到甲处与火车遇到乙处之间的距离是:
.
③求火车头遇到乙时甲、乙二人之间的距离.
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:
④求甲、乙二人过几分钟相遇?
(秒) (分钟)
答:再过 分钟甲乙二人相遇.
二、解答题
11. 1034÷(20-18)=91(秒)
12. 182÷(20-18)=91(秒)
13. 288÷8-120÷60=36-2=34(米/秒)
答:列车的速度是每秒34米.
14. (600+200)÷10=80(秒)
答:从车头进入隧道到车尾离开隧道共需80秒.
平均数问题
1. 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?
2. 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?
3. 已知八个连续奇数的和是144,求这八个连续奇数。
4. 甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元?
5. 食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?
等差数列
1、下面是按规律排列的一串数,问其中的第1995项是多少?
解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984
2、在从1开始的自然数中,第100个不能被3除尽的数是多少?
解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?
解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上数的和为35×(29+30+31+32+33)=5425
5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。
6、下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992?
解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。
7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?
解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。
8、有19个算式:
那么第19个等式左、右两边的结果是多少?
解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。
9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对?
解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。
11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?
解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。
13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?
解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫
㈢ 小学五年级奥数题,及答案
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
五年级试题三答案
1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人
2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)
3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34
4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227
5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90
㈣ 要30道5年级数学奥数题,带答案。
1.一块长米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?
分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。
1米20厘米=120厘米
120÷30=4
90÷30=3
4×3=12(块)
答:最多可以剪12块。
2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?
分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。
圆柱的表面积:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2
=6.28×6.28+6.28
=6.28×7.28
=45.7184(平方分米)
圆柱的体积:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。
3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米?
分析:这题的解题关键是要知道火车行驶的时间。
24-8+9=25(小时)[或者:12-8+12+9=25(小时)]
98×25=(100-2)×25
=2500-50
=2450(千米)
答:甲乙两站间的铁路长2450千米。
4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角是72度。求扇形的面积。
分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面积是6平方厘米。
第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。
分析:此题与上题的思路一样。
3.14×3×3×20%=5.652(平方厘米)
答:这个扇形的面积是5.652平方厘米。
5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵?
分析:六年级原计划栽树的棵数是解题的关键。
1、六年级原计划栽树多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原计划五年级栽树多少棵?
90÷5×3=54(棵)
综合算式:
108÷(1+20%)÷5×3
=90÷5×3
=54(棵)
答:原计划五年级栽树54棵。
6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?
分析:求两队的工效是解题的关键。
1、两队的工效和是多少?
2/3÷6=1/9
2、乙队的工效是多少?
1/9×[5÷(3+5)]
=1/9×5/8
=5/72
3、还要几天才能修完?
(1-2/3)÷5/72
=1/3×72/5
=24/5(天)
答:还要24/5天才能修完。
7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?
解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。
232400÷5×(12-5)
=46480×7
=325360(吨)
325360÷232400=1、4=140%
解法二:把232400吨看作单位“1”,
1、今年平均每月生产量是去年的几分之几?
1÷5=1/5
2、今年比去年增产几分之几?
1/5×(12-5)=7/5
3、今年比去年增产百分之几?
7/5=1.4=140%
综合算式:1÷5×(12-5)=1.4=140%
答:这个厂今年比去年增产140%。
8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?
解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。
[x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。
9.
一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块。在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)
分析:房间的面积是一定的,每块砖的面积和块数成反比例。
解:设需要x块。
0.15×0.15x
=6×4.8
x
=6×4.8÷0.15÷0.15
x
=1280
答:需要1280块。
解:设需要y块。
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432块。
10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?
分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。
解:设这艘轮船逆风行驶了x小时。
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:这艘轮船最多驶出80千米就应往回驶。
11.
一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米?
分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。由此可知(96+16)占全程的(1-1/7-1/7)。
根据上面的分析得:
(96+16)÷(1-1/7-1/7)
=112÷5/7
=112×7/5
=156、8(千米)
答:甲乙两地的公路长156、8千米。
或者用方程解:
解:设甲乙两地的公路长x千米。
(1-1/7-1/7)x=96+16
5/7x=112
x=156、8
答:甲乙两地的公路长156、8千米。
题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?
12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)
分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。
解:设需要x天。
1500:(30×50)=6000:(80×x)
1500×(80×x)=6000×(30×50)
x=6000×30×50÷80÷1500
x=6000÷80
x=75
答:需要75天。
13.红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?
14.
一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.
15.
甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?
16.
服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?
17.
每套童装用布2.5米,每套成人服装用布4米,现在要做童装5套,成人服装3套,共有布30米,还可以剩下多少米布?如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?
18.超市开展矿泉水“买5送1”的活动。一个旅游团有48人,想每人发一瓶矿泉水,需要购买多少瓶水就够了?
(买5送1
的意思是要6瓶矿泉水只需要买5瓶,48里有8个6,所以只需要8个5就可以了,答案是40瓶。)
19.
一个小数部分是两位的小数,用四舍五入法把它精确到0.1,它的近似值是5.0,那么这个两位小数是什么?
(解析:所求的两位小数是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04
20.
一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40cm的正方形.求这只铁箱的容积是多少升?
《
40÷4=10
10×10×40÷1000=4》
回答者:
cyg2436
-
高级经理
七级
1-12
15:16
小学5年级奥数题选
填空题
1.计算:0.02+0.04+0.06+0.08+……+19.94+19.96+19.98=________。
2.1×1+2×2+3×3+……1997×1997+1998×1998的个位数字是________。
3.一个两位数,在它的两个数字中间添一个0,就比原来的数多630,这样的两位数共有_______个。
4.现有壹元的人民币4张,贰元的人民币2张,拾元的人民币3张,如果从中至少取1张,至多取9张,那么,共可以配成_______种不同的钱数。
5.一组四位数,每一个数的数字均不为0,并且互不相同,但每个数所有的数字和都为12,将所有这样的四位数从小到大依次排列,第25个数是_______。
6.大猴给小猴分桃子,如果每只小猴分8个桃子,还剩10桃子;如果每只小猴分9个桃子,那么有一只小猴就分不足9个,但仍可以分到桃子,小
8.有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸。其中《南通广播电视报》34份,《扬子晚报》30份,《报刊文摘》22份。那么,订《扬子晚报》和《报刊文摘》的共有_______家。
9.强强、芳芳两人在相距120米的直路上来回跑步,强强每秒跑2米,芳芳每秒跑3米。如果两人同时从两端点出发,那么15分钟内他们共相遇_______次。
10.某车间加工一批零件,计划每天加工48个,实际每天比计划多加工12个,结果提前5天完成任务。这批零件共有_______个。
(小数报427期改编)
11.李、孙、王三人今年年龄之和为113岁,王38岁时,孙的年龄是李的2倍,李17岁时,王的年龄是孙的2倍,孙今年_______岁。
(小数报492期,98—9—18)
(小数报475期)
13.有16把锁和20把钥匙,其中20把钥题中的16把是和16把锁一一配对的,但现在锁和钥匙弄乱了。那么,至少需要试_______次才能确保锁和钥匙都配对起来。
(小数报457期,改编)
(小数报475期98—4—10改编)
15.甲、乙、丙、丁四名学生参加南通市小学生数学竞赛。赛前,三位老师进行预测:
一位老师说:丙第一名,甲第二名;
另一位老师说:乙第一名,丁第四名;
还有一位老师:丁第二名,丙第三名。
http://rita.blog.luohue.net/blog/View.aspx?essayID=27351&BlogID=6572
看看满意吗?
㈤ 小学生5年级奥数题
一、填空题:
1、A、B、C三个小朋友互相传球,先从A开始发球(作为第一次传球),这样经过了5次传球后,球又恰好回到A手中,那么不同的传球方式共有( )种。
2、有红、蓝、黄、黑四种颜色同一规格的运动鞋各5双,杂乱地堆放在一个大布袋中。如果闭着眼睛取鞋,至少从袋中取出( )只鞋。才能保证有2双同色的运动鞋。
3、请在下面算式的方框中填入“×”号或“÷”号,使等式成立:
9口8口7口6口5口4口3口2口1=2/35
总共有( )种不同的填法。
4、小赵、小张、小王三位同学对小麦斯书包里的书数目作了一个估计。小赵说:“书包里至少有10本,至多15本。”小张说:“书包里不到10本书。”小王说:“书包里至少1本,至多15本。”小麦斯却说:“你们三人的估计只有一人说对了。”这样,小麦斯书包里有( )本书。
5、如图1,在10个空白的正方形中选1个(把其余9个都剪掉),与写有“祝学习进步”字样的5个正方形折成一个正方体纸盒,共有( )种不同的选法。
6、两个四位数的差是2005,那么这两个四位数的和最大是( ),最小是( )。
7、某班全体学生进行一次篮球投篮练习,每人都要投球10个,每投进一球得1分。得分的情况如右表.又知该班学生中,至少得3分的人的平均得分为6分,得分不到8分的人的平均得分为3分,那么该班学生有( )人。
8、一天,4对丹青妙手去郊外写生,他们总共画了44幅画。其中4位女画家A、B、C、D分别画了2、3、4、5幅画;4位男画家画的幅数是:甲画的幅数与他妻子相同;乙、丙、丁的幅数分别是其妻子的2倍、3倍、4倍。那么A、B、C、D的丈夫分别是( )、( )、( )、( )。
二、填空题
1、某市的主要交通干道如图2所示。图中每个蓝点表示道路交*口,蓝点之间的连线表示道路,连线旁边标注的数表示每分钟最多可通过的车辆数(比如60就表示每分钟最多可以通过60辆汽车)。现在从A地出发到B地,每分钟最多可以通过几辆汽车?
2、A、B两地相距2400千米,甲从A地、乙从B地同时出发,在A、B间往返长跑,甲每分钟跑300米,乙`每分钟跑240米,在35分钟后停止运动。甲、乙两人在第几次相遇时距A地最近?最近距离是多少米?
三、操作题
1、如右图,在一个2004×16的长方形棋盘左上角的方格中有一个棋子(用★表示)。
小兵和小燕按如下规则下棋:
1.小兵先走,以后两人轮流移动棋子;
2.棋子纵向或横向(斜向不可)走几个方格都可以,但至少要走1个方格;
3、每个方格允许棋子通过或停留一次;
4.轮到哪一方没方格可走时,哪一方就算失败。
两人都在为取胜尽力,其中必有一胜。请问:谁有必胜的把握?简述取胜的策略。
2、35块3×2×1的长方体木块,拼成一个大长方体,表面积最大是多少平方厘米?最小是多少平方厘米?
四、问答题
1、园林小路,曲径幽通。如图4(很抱歉,我实在是画不出那图,不过我记得这题目就是第五届华杯赛决赛口试题)小路是由白色正方形石板和青、红两色的三角形石板铺成,问内圈三角形石板的总面积大还是外圈石板的总面积大?请说明理由。
2、一张边长为20厘米的正方形纸片,从顶点起5厘米处,沿45度角下剪(如图5),中间形成一个小正方形。小正方形的面积是多少平方厘米?
3、在平面上有5个点,其中每两点之间的距离各不相同,请用直线段把最邻近的两点连接起来,在这些连线中构成的三角形有几个?为什么?
㈥ 五年级上册数学奥数题及答案 急
我给你搜了一些,因为不知道你QQ,这个有字数限制的,我先直接发一部分给你,你你先看下。答案发不下了小学五年级经典奥数题
题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
13.五名裁判员给一名体操运动员评分,去掉一个最高分和一个最低分后平均得分是9.38分。若去掉一个最高分平均得分为9.26分;若去掉一个最低分平均得分为9.46分。这名体操运动员的最高分和最低分分别是多少分?
14.小狗给动物王国编一本童话故事书。
小狗编的这本书一共有多少页?
15.学校合唱团全部是来自甲、乙、丙三个班的同学,其中来自甲、乙两班的同学共有60人。合唱团中不是甲班的同学有100人,不是乙班的同学有90人。问:
(1)合唱团中来自甲、乙两班的同学各有多少人?
(2)合唱团的同学一共有多少人?
16.下面是一些“神秘等式”。式中的“+”、“-”、“×”、“÷”等运算符号的意义都与普通的用法相同,但0、1、2、3、……、9等数字所代表的意义则与普通的不同。
① 1×5=1 ② 7×2=96 ③ 99-5=3
④ 83÷4=4 ⑤ 5×5…×5=6 ⑥ 9+(7×8)=97
(1)请你破解出这些“神秘等式”中的秘密,找出其中每个数字所代表的普通意义。
(2)普通意义的2006用“神秘等式”中数字所代表的意义来表示,怎样表示?
(3)如果采用“神秘等式”中数字所代表的意义,那么,60+06等于多少?
㈦ 小学五年级奥数题100道,急急急!!!!!
1,8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3
2,两个自然数的乘积是72,72除以这两个自然数的差,所得的尚等于其中一个自然数,这个商是( )。
3,一个数被7除,余数是3,该数的3倍被7除,余数是( )。
4,一个数除以39,商和余数相同,这个数最大是( )。
5,2、3、5、7 组成算式:( )=24
6,4、5、7、8 组成算式:( )=24
7,2004的约数中,大于100而小于200的数是( )。
8,已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
9, 3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
10,甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
11,李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
12,甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)
13,学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
14,有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
15,甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
16,学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
17,一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
18,.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
19,.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
20,某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
21,妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
22,学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?
23,某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
24,某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
25,某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
26,.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?
29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
31.在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?
32.水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
33.学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
34.学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
35.学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?
36.父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
37.有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
38.光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
39.甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?
40.一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?
41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
43.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
44.妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?
45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?
46.盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?
47.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?
49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?
50.一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?
51.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
52.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?
53.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
54.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
55.小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
56.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
57.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
一道题一道题打很累啊,求采纳!!!
㈧ 小学五年级奥数题30道要答案算式
五年级数学思维训练题
1、用3个大瓶和5个小瓶可装墨水5.6千克,用一个大瓶和3个小瓶可装墨水2.4千克。那么用1个大瓶和2个小瓶可装墨水( )千克。
加在一起,4大8小装5.6+2.4=8,所以,1大2小装8/4=2千克
2、a,b,c,d四位同学参加奥数测试,a得74分,b得86分,c得96分,四人的平均成绩正好是整数。d可能得几分?
74/4余2, 86/4余2, 96/4是整数, 2+2=4, 能被4整除。所以,d分数应该是4的倍数,4n (n=0,1,2。。。25)
3、□×5÷3×9+11=1991中,□里应填入的数字是( )。
(1991-11) ÷9×3÷5=1980÷15=132
4、有红色小旗2面,蓝色小旗1面,这些旗大小和形状都相同,把这些小旗挂在旗杆上做出各种信号,每面旗以一定的间隔排列。利用这些旗能表示出多少种不同的信号。
只有蓝色:3
只有一面红色:3
只有两面红色:3
1红1蓝:3*2=6
2红1蓝:3
3*6=18
5、一筐苹果,如果平分给4小朋友多出3个苹果;如果平分给5个小朋友又多出4个苹果;如果平分给6小朋友则又少1个苹果。这筐苹果最少有( )个。
相当于4n-1, 5m-1, 6x-1
找4,5,6的最小公倍数,再-1就是了
4,5,6最小公倍数60,所以苹果最少有60-1=59个
6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。货车速度每小时60千米,客车速度每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发几小时后两车相遇?
货车到达乙地时,走了360/60=6小时,再过0.5小时,客车共走6.5*40=260千米,距离乙地360-260=100千米,再过100/(40+60)=1小时两车相遇,此时距从甲地出发6+0.5+1=7.5小时。
7、一个数除以3余2,除以4余3,除以5余4,这个数最小是( )
同第5题,求3,4,5最小公倍数再-1。 3,4,5最小公倍数是60, 60-1=59
8、绿化工人在一段公路的两侧每隔4米栽一棵树,一共栽了74棵。现在要改成每隔6米栽一棵树,不用移栽的树有多少棵?
每侧74/2=37棵
每侧(37-1)*4=144米
4和6最小公倍数是12,所以0,12,24。。。。144米的不用移栽,共13棵,需要移栽的是37-13=24棵
两侧一共需要移栽24*2=48棵
9、滨海县实验小学五(4)班学生去野炊。用餐时,每2人一个饭碗,每3人一个菜碗,每4人一个汤碗,一共用了65个碗。这个班有多少个学生?
2,3,4最小公倍数是12,每12人用6饭碗、4菜碗、3汤碗,共13个碗。
65/13=5组,所以学生数5*12=60人
10、某县内电话话费计费是这样的:0~3分钟0.2元,超过3分钟,超过部分按每分钟0.1元计(不足1分钟按1分钟计),小军打了县内电话计时7分35秒,算一算这个电话的话费。
0.2+(8-3)*0.1=0.7元
㈨ 小学五年级数学奥数题的答案
1.( 6 )÷12=1:( 2 )=3/( 6 )=0.5=( 50 )%
2.把0.13万改写成以“一”为单位的数是(1300 ),读作( 一千三百 )。
3.在括号里填上合适的单位名称。
(1)一个鸡蛋重50( 克 );(2)一枝粉笔的长度接近1( 分米 );
(3)我国的陆地面积约是960万( 平方千米 )。
4.食堂有煤5吨,平均每天烧1/5吨,可以烧( 10 )天。
5.2008年奥运会将在中国北京举行,这一年有( 366 )天。
6.如果2a=b/3,那么a:b=( 1 ):( 6 )
7.有一个机器零件长5毫米,画在设计图纸上长2厘米,这副图的比例尺是( 1:4 )。
8.我国伟大的数学家( 祖冲之 )是世界上第一个把圆周率的值计算精确到7位小数的人。
9.小东、小明和小军三人同在一张球桌上练习打乒乓球,他们轮流上场打了一小时,平均每人打球( 20 )分钟。
10.一张长为11厘米,宽为8厘米的长方形红纸,要剪成直角边分别是4厘米和2厘米的三角形小红旗,一共可以剪( 20 )面。
11.用铁皮做一个底面直径为6分米,高为8分米的圆柱形无盖水桶,至少要用(178.98 )平方分米的铁皮,这个水桶最多能装水( 226.08 )升。
三、计算。(40分)
1.脱式计算。(每小题4分,共16分)
①91-91÷13 ②6÷0.5×4 ③1-0.125÷1/8 ④(5/8+1/2)÷25%
=91—7 =6*1/2*4 =1-1/8÷1/8 =(5/8+1/2)÷1/4
=84 =12 =1-1 =5/8 *4+1/2 *4
=0 =5/2+ 2
=4又1/2
2.用简便方法计算。(写出主要过程)(每小题2分,共8分)
①4.2-1.8+0.8 ②2-3/4-1/4 ③ 118÷25 ④ 4.2× 97+12.6
=4.2+0.8-1.8 =2-(3/4+1/4) =118*0.04 =4.2× 97+4.2*3
=5-1.8 =2-1 =4.72 =4.2×(97+3)
=3.2 =1 =420
3.求未知数х的值。(每小题1分,共4分)
① χ+2/3=2 ②111χ=3 ③ χ/5-13=0 ④ 1.2:χ=4/3
x=2-2/3 x=3/111 x/5=13 4x=1.2*3
x=1又1/3 x=65 x=0.9
4.列式计算。(每小题6分,共12分)
① 125与它的1/5的差是多少?
125-125*1/5
=125*(1-1/5)
=125*4/5
=100
②一个数的1/4比2.8多1.2,
求这个数
解:设这个数为x
1/4x-2.8=1.2
1/4x=4
x=16
附加题(15分)
一个圆柱形容器的容积为V立方米开始用一根小水管向容器内注水水面高度达到容器高度一半后改用一根口径为小水管2倍的大水管注水向容器中注满水的全过程共用时间t分求两根水管各自注水的速度。
答:因为大水管的口径为小水管的2倍,所用的时间是小水管1/4。那么大水管所用的时间是1/5t,小水管所用的时间是4/5t。
大水管:1/2V/(1/5t)=2.5v/t
小水管:1/2V/(4/5t)=5/8v/t
㈩ 小学五年级数学奥数题(百分数)
最多:60%,即三种都订了的人是重复的,三种都订的人重复得最多才能使三回种都订的人最多。
最少答:1-(20%+25%+40%)=15%,即没订的人不重复,不订的人都不重复才会使三种都订的人最少。
而按传统的算法是:1-[80%+75%+60%-(80%+75%-1)-(75%+60%-1)-(80%+60%-1)]=15%