㈠ 关于小学数学的教育的论文
在教学时试图通过“提问——思考——发现”的方式调动学生学习的积极性和创造性,营造学生高参与的课堂氛围。但从课堂实施效果来看,喜忧参半!
一、 快节奏的课堂教学是引导学生高参与的基础
我相信,一个人在一支慢吞吞的队伍里排队等候自己感兴趣的东西,他的心理感受只可能用“焦急、厌倦、沮丧”来形容。在我们的教学中,由于受“希望学生尽快掌握所学知识”的心理影响,教师往往更乐意将知识嚼得碎碎的喂给学生,期望学生都能体会到获得知识的欣喜,所以突破难点时总爱唠叨几句,练习中总愿意等最慢的一个学生也把题目做完,哪怕减缓上课节奏都在所不惜,美其名曰:以学生为本,却不知这正是消磨学生学习积极性的症结所在。美国“启发策略研究所”的研究表明:当老师在整堂课里快节奏地讲解授课内容时,学生们通常更能全身心地投入。
教学是门永远带有遗憾地艺术。我们的课堂中应该以快节奏方式来维持一定的学生参与度,当我们感到学生参与程度在下降、学习活力在减弱、注意力在转移时,应尽快向下推进课程,让学生们感到课在不断地推进,总觉得有事要做、有问题要思考。老师讲解、问题解释和学生练习、答写只要有约一半的学生明白、完成就尽快变化,哪怕对反应相对迟缓的学生来说,我们也不能减慢速度去适应他们,而是用希望的力量和同伴高涨地学习积极性激励他们赶上教学的节奏。
㈡ 小学数学教学方面的论文,求一篇3000字左右的小学数学论文
解题策略
——探索→猜测→检验→探索→猜测→检验→……
2002年推出的小学数学新课程标准与原大纲相比,有很多新的内容,其中“培养创新意识和实践能力”、鼓励“猜测”和“探索”,可以说是“新课标”中的灵魂”。“新课标” 虽然仅在“培养学生的计算能力”中提到“重视学生检验的习惯”,但我认为,作为数学检验习惯和数学检验能力的培养,理应贯穿数学教学内容的全部,理应贯穿数学教学的始终。而且如果把探索、猜测和检验有机结合起来,将构成一种非常重要的数学解题策略。这种解题策略可公式化为:探索→猜测→检验→探索→猜测→检验→……,这种解题策略是“培养创新意识和实践能力”的重要途径。
解题策略中的“猜测”当然不是毫无依据的瞎猜,而是在探索(至少是初步探索)基础上有一定根据的猜测。既然是猜测,就不一定正确,就有必要进行检验。通过检验,又必然出现两种可能:猜测正确和猜测有误。如果猜测正确(经得起检验),则问题获得解决;倘若猜测有误,就应分析探索猜错的原因,探索改善的途径,并进一步作出新的较为合理的猜测。对新的猜测当然又必须进行新的检验,如此循环往复,直至求出问题的正确答案。这就是“探索→猜测→检验→探索→猜测→检验→……”的解题策略。
试看下面的例子:
一个笼子里有鸡兔两物,数一数有28个头,有100个足,问鸡兔各几只?
这种“鸡兔同笼”的问题,一般都是用“假设法”求解的,但“假设法”的思路(逻辑思维)难以被一般的小学生理解,如果我们运用“探索→猜测→检验→探索→猜测→检验→……”这一解题策略。那么我们可以得到小学低年级学生也能理解和掌握的下列解答。
探索:因为100÷4=25,所以0<兔的只数<25。
猜测:取0~25的中间数13作为兔的只数,则鸡的只数为28-13=15(只)
检验1:总足数=4×13+2×15=82
探索:因为82<100,所以13<兔只数<25。
猜测2:取13~25的中间数19作为兔只数,则鸡的只数为28-19=9(只)
检验2:总足数=4×19+2×9=94。
探索:因为94<100,所以19<兔只数<25。
猜测3:取19~25的中间数22作为兔的只数,则鸡的只数为28-22=6(只)
检验3:总足数=4×22+2×6=100,正好符合题意。
所以笼中有兔22只,有鸡6只。
上述解答虽然看似麻烦费时,但富含探索意识。其中的不断合理猜测与检验,并对检验结果进行校正,从而逐步逼近,直至找到正确答案的过程,符合人类探索、发现、发明、创造的认识过程,体现了“失败乃成功之母”的认识特点,对学生具有极高的教育价值,真正能使学生的创新意识和探索能力得到有效培养。选取中间数的方法,蕴涵了“中值”、“优选”等重要的数学思想方法,这对学生进一步学习数学是大有裨益的。通过这种解题锻炼,直接使学生掌握了探索→猜测→检验→探索→猜测→检验→……这一在实践中(在数学中当然也不例外)解决问题的重要策略,这将有效地培养学生运用数学从事实践工作的能力。
如果对第一次猜测导致的误差执果溯因,进行分析并稍作逻辑推理,则可快捷获得正确答案。
事实上通过探索和第一次猜测(13只兔、15只鸡)并检验,得知足数82比实际少了100-82=18。导致这一误差的原因虽然是猜测的兔子只数少于实际兔子只数。在总头数28不变的情况下,每增加1只兔,这时相应地减少1只鸡(或者理解为把1只鸡换成1只兔),总足数便增加2,要增加18只足,就需要增加18÷2=9(只)兔,因此,兔的只数应为13+9=22(只),从而鸡的只数为28-22=6(只),经检验,结论正确。
后一解法较前一解法多一点逻辑思维的含量,显然也是一种优秀的解题方法(策略),如果说前一种解法适合小学低年级的学生,那么后一种解法完全适合小学高年级学生的认知特点和水平。
在小学数学教学中,根据学生的认知特点和知识水平并结合学生生活实际,精心设计一些探索性和开放性的问题,引导学生运用“探索→猜测→检验→探索→猜测→检验→……”这一解题策略求解,将有利于对学生创新意识,探索意识和实践能力的培养。
㈢ 比较新的小学数学教学论文
数学难吗?有人说不难,也有人说难.你认为呢?其实,数学并不难,难的是你不去用心学,把它看成一种负担.当然,也不是说只要不把数学当负担就好了,想学好数学还得掌握方法:一:在学这个方法前,先预习,把不懂的找出来,然后去问家长;二:上课时要认真听讲,做好笔记,老师讲了一遍后,觉得自己还没听懂,下了课主动去问老师;三:老师布置的作业,如果上课你认真听了,那就会很容易;对老师布置的作业,要认真完成,不能鬼画淘胡.这一部分,只要你前两步做好了,这个就不重要了,因为你会了;四:晚上睡觉前,脑子里就像放电影一样,把老师说的再想一下,并问自己:今天我学到了什么?并浅,学习的东西要经常复习,才不会过久了就忘了;五:学了课堂上的东西是不够的,要做到 见多识广.五个方法,预习复习最重要,主要作好这两点,相信过不了多久,你会发自内心的说:"原来,数学并不难!"/// 其知识和活动领域中不单是计算的工具,如若没有数学,连认识生产进行过程也是不可能的。数学在当代已变成了社会的生产力。现在就那些尚未应用数学研究方法而只作定性分析的领域,诸如自然现象、经济学、医疗卫生、组织生产、经营管理等等,都在急速地寻求数量上的规律并且广泛地应用严格的数学方法。今日知识的数学化不是说要把全部认识都归结为建立逻辑的和计算的图式上,也不是不许进行试验和直接观察。数学化的目的在于:从准确列举的前提中得出逻辑的结果,这些结果也包括直接观察可得到的;把通常沉积下许多次要影响的极复杂的过程变为可进行逻辑和数学分析的过程;除掉已确定的事实外,借助数学的分析确定新的规律;获得借助计算预报现象过程的可能性,与现象的实际过程不但取得质量上的一致,而且还取得数量上的一致。总之,知识的数学化不仅在于利用已经是现成的数学方法和结果,而且在于创立一个特有的数学方式,使其能准确又完全地描述我们周围的现实世界,并将获得的结果应用到实践活动中去。数学源于实践,并在实践中得到检验;知识与实践活动,都有赖于数学这一强有力的工具的帮助。当18世纪初人们对机械运动有着迫切而深刻的研究时,促使牛顿等人创立了宏伟的数学分析体系,并成了近200年来自然科学和工程科学取得惊人进步的基础。本世纪初,当研究热、磁和电现象的转换,致使建立波动光学已经成熟时,旧的数学工具已不能描述这种传递、转换关系,于是促成了新的数学语言--数学物理方程的建立。今天,人类已进入自然科学的迅猛发展和认真更新工程思维的新阶段,研究和实践活动的新领域:电光学、宇航工程、原子能的利用、电子计算机和信息技术工程、生物工程、系统工程等提出了大量急待解决的数学课题,旧的数学工具已显得无能为力,一些新兴的数学工具便应运而生。诸如当控制论和最优化思想进入数学后,使常规数学走向"异常数学"的研究,近20年来出现的非标准分析,突变理论和模糊数学都属于这个范畴。凡此等等,可以看出实践促进了数学的发展,数学又指导着实践活动的完善。伴随着知识和实践活动的数学化,必然引起思维的数学化,即使人们的思维准确,使意见和结论具有更严格的逻辑性。///《读书》 读书毛主席的读书故事毛主席怎样读书? 特殊爱好 几十年来,毛主席一直很忙,可他总是挤出时间,哪怕是分分秒秒,也要用来看书学习。他的中南海故居,简直是书天书地,卧室的书架上,办公桌、饭桌、茶几上,到处都是书,床上除一个人躺卧的位置外,也全都被书占领了。 为了读书,毛主席把一切可以利用的时间都用上了。在游泳下水之前活动身体的几分钟里,有时还要看上几句名人的诗词。游泳上来后,顾不上休息,就又捧起了书本。连上厕所的几分钟时间,他也从不白白地浪费掉。一部重刻宋代淳熙本《昭明文选》和其他一些书刊,就是利用这时间,今天看一点,明天看一点,断断续续看完的。 毛主席外出开会或视察工作,常常带一箱子书。途中列车震荡颠簸,他全然不顾,总是一手拿着放大镜,一手按着书页,阅读不辍。到了外地,同在北京一样,床上、办公桌上、茶几上、饭桌上都摆放着书,一有空闲就看起来。 毛主席晚年虽重病在身,仍不废阅读。他重读了解放前出版的从延安带到北京的一套精装《鲁迅全集》及其他许多书刊。 有一次,毛主席发烧到39度多,医生不准他看书。他难过地说,我一辈子爱读书,现在你们不让我看书,叫我躺在这里,整天就是吃饭、睡觉,你们知道我是多么地难受啊!工作人员不得已,只好把拿走的书又放在他身边,他这才高兴地笑了。 认真地学,反复地读 毛主席从来反对那种那种只图快、不讲效果的读书方法。他在《读韩昌黎诗文全集》时,除少数篇章外,都一篇篇仔细琢磨,认真钻研,从词汇、句读、章节到全文意义,哪一方面也不放过。通过反复诵读和吟咏,韩集的大部分诗文他都能流利地背诵。《西游记》、《红楼梦》、《水浒传》、《三国演义》等小说,他从小学的时候就看过,到了六十年代又重新看过。他看过的《红楼梦》的不同版本差不多有十种以上。一部《昭明文选》,他上学时读,五十年代读,六十年代读,到了七十年代还读过好几次。他批注的版本,现存的就有三种。 一些马列、哲学方面的书籍,他反复读的遍数就更多了。《联共党史》及李达的《社会学大纲》,他各读了十遍。《共产党宣言》、《资本论》、《列宁选集》等等,他都反复研读过。许多章节和段落还作了批注和勾画。 不动笔墨不看书 几十年来,毛主席每阅读一本书,一篇文章,都在重要的地方划上圈、杠、点等各种符号,在书眉和空白的地方写上许多批语。有的还把书、文中精当的地方摘录下来或随时写下读书笔记或心得体会。毛主席所藏的书中,许多是朱墨纷呈,批语、圈点、勾画满书,直线、曲线、双直线、三直线、双圈、三圈、三角、叉等符号比比皆是。 无所不读 毛主席的读书兴趣很广泛,哲学、政治、经济、历史、文学、军事等社会科学以至一些自然科学书籍无所不读。 在他阅读过的书籍中,历史方面的书籍是比较多。中外各种历史书籍,特别是中国历代史书,毛主席都非常爱读。从《二十四史》、《资治通鉴》、历朝纪事本末,直到各种野史、稗史、历史演义等他都广泛涉猎。他历来提倡“古为今用”,非常重视历史经验。他在他的著作、讲话中,常常引用中外史书上的历史典故来生动地阐明深刻的道理,他也常常借助历史的经验和教训来指导和对待今天的革命事业。 毛主席对中国文学方面的书籍也读得很多。他是一个真正博览群书的人.
小学数学教学论文(2)
小学数学教学论文--在小学数学教学中培养学生的思维能力
培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。
一 培养学生的逻辑思维能力是小学数学教学中一项重要任务
思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。
值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。
《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。
二 培养学生思维能力要贯穿在小学数学教学的全过程
现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。
怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。
(一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。
(二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。
(三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。
三 设计好练习题对于培养学生思维能力起着重要的促进作用
培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。
(一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。