导航:首页 > 小学学科 > 小学数学模型思想的含义

小学数学模型思想的含义

发布时间:2021-01-20 19:40:43

Ⅰ 如何在小学数学教学中渗透模型思想

模型思想在数学思想方法中有非常重要的地位。正是因为数学在各个领域的广泛应用,不但促进了科学和人类的进步,也使人们对数学有了新的认识:数学不仅仅是数学家的乐园,它特不应是抽象和枯燥的代名词,它是全人类的朋友,也是广大中小学生的朋友。教师在教学中结合数学的应用和解决问题的数学,要贯彻《数学课程标准》的理念,要注重渗透模型思想。小学数学教学过程中的建模策略有以下几点:
首先, 精选问题,巧设情境,培养建模兴趣。
数学是源于生活、寓于生活并用于生活的一门学科,每个数学模型都有着现实的“生活原型”.。“生活原型”是数学模型的构建基础,也是解决现实问题的需要.。在教学过程中,根据数学问题,巧妙地设置现实情境,通过这个现实的“生活原型”来引导学生以数学建模的方式解决问题.例如在教学“平均数”概念时,可以提出一个情境:8个男生和7个女生各为一组,进行演讲比赛,哪一组演讲的水平更高呢?学生们提出并讨论了一些比较方法,比如按每一组的最高分进行比较,或者按每一组的总成绩计算,这些方法都有着明显的不足之处,最终都被否定了,此时,提出按“平均数”进行比较的方法正是恰到好处.构建关于“平均数”的模型就成为了学生们解决问题的现实需求,这样一来,不仅让学生们直观深刻地理解了平均数概念及平均数模型的原型、条件、适用环境等,而且培养了学生们利用数学模型去解决实际问题的兴趣.。
其次,把握过程,抽象事物本质,实现模型完整构建。
要将数学模型渗透于数学教学中,就必须准确把握从现实的“生活原型”到抽象的数学模型的过渡过程.。设置生动具体的现实情境问题,只是数学建模教学的开始,这一现实原型仅仅给学生提供了进行模型构建的基础素材,在接下来的教学过程中,还需要对从具体事物向抽象模型跃进的过程有着准确把握,并进行有效组织,否则就不能实现成功的建模.。
要达到良好的教学效果,老师应当引导学生从对具体事物的感知上升到对抽象问题的认识和理解。
数学是一门“模型”的学科,数学模型是数学知识的核心内容,其作用当然也是数学应用的核心价值.在小学数学教学过程中,活用“数学模型”,将其渗透到实际教学环节中去,可以帮助学生更好地理解数学概念模型,深刻领会所学知识,顺利地建构数学知识体系,进而使得学生应用数学方法解决现实问题的能力显著增强,推动学生数学思维素质的稳步提升。
数学模型的构建,是为了解决实际的问题.而构建数学模型这一活动,本身就是一种对数学知识和现实背景的再创造。所以,在学生学习数学知识的过程中,老师要引导学生根据自身的实际体验及自己的思维方式来经历并体验这种“再创造”的整个过程,培养学生的数学模型思维和应用数学模型方法解决现实问题的能力。
下面就一教学片段来说一说:
【教学片段】
出示情境图。
师:谁来说一说第一幅图,你看到了什么?
生:从图中我看到了有5个小朋友在浇花。
师:第二幅图呢?
生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。
师:你能把两幅图的意思连起来说吗?
生:有5个小朋友在浇花,走了2个,还剩下3个。
师:同学们观察得很仔细,也说得很好。你们能根据这两幅图的意思提一个数学问题吗?
生:有5个小朋友在浇花,走了2个,还剩几个?
生(齐):3个。
师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?
(教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。)
师:(结合情境图和圆片说明)5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式(学生齐接话:5-2=3)来表示。(在圆片下板书:5-2=3)
生齐读:5减2等于3。
师:谁来说一说这里的5表示什么?2、3又表示什么呢?
……
师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示什么呢?请同桌互相说一说。
生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。
生2:树上有5只小鸟,飞走2只,还剩3只。
……
除了教学充分展开外,更主要的是渗透了初步的数学建模思想,训练的是学生抽象、概括、举一反三的学习能力。且这种训练并不是简单、生硬地进行,而是和低年级学生数学学习的特点相贴切——由具体、形象的实例开始,借助于操作予以内化和强化,最后通过思维发散和联想加以扩展和推广,赋予“5-2=3”以更多的“模型”意义。

Ⅱ 请举出小学数学哪些内容的学习体现了模型思想

小学数学当中学习的图形的分类,认识三角形、矩形,圆柱体,圆锥体的这些教学内容体现了模型思想。

Ⅲ 如何在教学中培养小学生的数学建模思想

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。

Ⅳ 小学数学教学中培养学生模型思想的几点认识

一、首先是要来使学生加强对教科书源上所学的模型的理解。老师应善于引导学生去推导、验证这些基本的模型。学生认清模型的背景、实质,自然而然能够加强对它的理解。
二、应让学生知道:建立模型是解决问题的重要的、行之有效的手段。也是一个重要的数学思想。让学生有通过建立模型解决问题的意识。
三、要使学生有能力应用模型来解决实际问题。老师应该教学生建立模型解决实际问题的具体方法,通过讲解具体的例题等让学生熟悉建立模型解题的基本思路、方法,并进一步了解数学模型思想。

Ⅳ 数学建模思想在小学数学教学中如何渗透

在《数学课程标准》我们发现这样一句话——“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”,这实际上就是要求把学生学习数学知识的过程当做建立数学模型的过程,并在建模过程中培养学生的数学应用意识,引导学生自觉地用数学的方法去分析、解决生活中的问题。明确要求教师在教学中引导学生建立数学模型,不但要重视其结果,更要关注学生自主建立数学模型的过程,让学生在进行探究性学习的过程中科学地、合理地、有效地建立数学模型。
一、数学模型的概念
数学模型是对某种事物系统的特征或数量依存关系概括或近似表述的数学结构。数学中的各种概念、公式和理论都是由现实世界的原型抽象出来的,从这个意义上讲,所有的数学知识都是刻画现实世界的模型。狭义地理解,数学模型指那些反映了特定问题或特定具体事物系统的数学关系结构,是相应系统中各变量及其相互关系的数学表达。数学建模就是建立数学模型来解决问题的方法。《数学课程标准》安排了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四块学习领域,强调学生的数学活动,发展学生的数感、符号感、空间观念、以及应用意识与推理的能力。这些内容中最重要的部分,就是数学模型。在小学阶段,数学模型的表现形式为一系列的概念系统,算法系统,关系、定律、公理系统等。
二、小学数学教学渗透数学建模思想的可行性
数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”、“建模”的意义上,才是一种真正的数学学习。这种“深入”,就小学数学教学而言,更多地是指用数学建模的思想和精神来指导着数学教学,“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进入和发展。”
三、小学生如何形成自己的数学建模
数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。情景的创设要与社会生活实际、时代热点问题、自然、社会文化等与数学问题有关的各种因素相结合,让学生感到真实、新奇、有趣、可操作,满足学生好奇好动的心理要求。这样很容易激发学生的兴趣,并在学生的头脑中激活已有的生活经验,也容易使学生用积累的经验来感受其中隐含的数学问题,从而促使学生将生活问题抽象成数学问题,感知数学模型的存在。
四、参与探究,主动建构数学模型
数学家华罗庚通过多年的学习、研究经历总结出:对书本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应该设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师给学生提供多个圆柱、长方体、正方体和圆锥空盒(其中圆柱和圆锥有等底等高关系的、有不等底不等高关系的,圆锥与其他形体没有等底或等高关系)、沙子等学具,学生分小组动手实验。
在上述教学过程中,教师提供丰富的实验材料,学生需要从中挑选出解决问题必须的材料进行研究。学生的问题不是一步到位的,通过不断地猜测、验证、修订实验方案,再猜测、再验证这样的过程,逐步过渡到复杂的、更一般的情景,学生在主动探索尝试过程中,进行了再创造学习,以抽象概括方式自主总结出圆锥体积计算公式。这一环节的设计,不仅发展了学生的策略性知识,同时让学生经历猜测与验证、分析与归纳、抽象与概括的数学思维过程。学习过程中学生有时独立思考,有时小组合作学习,有时是独立探索和合作学习相结合,学生在新知探索中充分体验了数学模型的形成过程。
五、解决问题,拓展应用数学模型
用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学知识解决问题的能力,让学生体验实际应用带来的快乐。解决问题具体表现在两个方面:一是布置数学题作业,如基本题、变式题、拓展题等;二是生活题作业,让学生在实际生活中应用数学。通过应用真正让数学走入生活,让数学走近学生。用数学知识去解决实际问题的同时拓展数学问题,培养学生的数学意识,提高学生的数学认知水平,又可以促进学生的探索意识、发现问题意识、创新意识和实践意识的形成,使学生在实际应用过程中认识新问题,同化新知识,并构建自己的智力系统。
这一问题的设计既考虑与学生生活的真实情景相结合,又能引起学生的猜测、估计、操作、观察、思考等具体的学习活动,并能使学生在具体的学习活动中学会搜集资料、分析问题。在解决实际问题中,学生需要搜集大量的信息,并从信息中剔除无用信息,留下有用信息,构建起数学模型,并运用数学模型进行计算、解决问题。在这一过程中,学生易于形成实事求是的态度以及进行质疑和独立思考的习惯,激发学生的创新精神。因此,我们在教学过程中,应注重学生建模思想的形成与运用。
综上所述,小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。

Ⅵ 符号化与符号化思想有什么区别 有关小学数学的 符号化与符号化思想的定义分别是什么

符号化是解题研究、数学发明的工具,而符号化思想是思想,是意识上的东西。只有理解了符号化思想,才能用符号化的手段解决问题。

Ⅶ 如何在小学数学课堂中构建模型思想

一、首先是要使学生加强对教科书上所学的模型的理解。老师应善于引导学生去推导专、验证这些基本的模型。属学生认清模型的背景、实质,自然而然能够加强对它的理解。
二、应让学生知道:建立模型是解决问题的重要的、行之有效的手段。也是一个重要的数学思想。让学生有通过建立模型解决问题的意识。
三、要使学生有能力应用模型来解决实际问题。老师应该教学生建立模型解决实际问题的具体方法,通过讲解具体的例题等让学生熟悉建立模型解题的基本思路、方法,并进一步了解数学模型思想。

Ⅷ 小学数学关于自然数的认识中使用了哪些模型,并说清每种模型的价值。

现实世界中有很多问题,它的机理较简单,用静态,线性或逻辑的方法即可建立模型,使用初等的数学方法,即可求解,我们称之为初等数学模型。
1. 模型思想的概念。
数学模型是用数学语言概括地或近似地描述现实世界事物的特征、数量关系和空间形式的一种数学结构。从广义角度讲,数学的概念、定理、规律、法则、公式、性质、数量关系式、图表、程序等都是数学模型。数学的模型思想是一般化的思想方法,数学模型的主要表现形式是数学符号表达式和图表,因而它与符号化思想有很多相通之处,同样具有普遍的意义。
2. 模型思想的重要意义。
数学模型是运用数学的语言和工具,对现实世界的一些信息进行适当的简化,经过推理和运算,对相应的数据进行分析、预测、决策和控制,并且要经过实践的检验。如果检验的结果是正确的,便可以指导我们的实践。如上所述,数学模型在当今市场经济和信息化社会已经有比较广泛的应用;因而,模型思想在数学思想方法中有非常重要的地位,在数学教育领域也应该有它的一席之地。

3. 模型思想的具体应用。
数学的发现和发展过程,也是一个应用的过程。从这个角度而言,伴随着数学知识的产生和发展,数学模型实际上也随后产生和发展了。如自然数系统1,2,3,…是描述离散数量的数学模型。2000多年前的古人用公式计算土地面积,用方程解决实际问题等,实际上都是用各种数学知识建立数学模型来解决问题的。就小学数学的应用来说,大多数是古老的初等数学的简单应用,也许在数学家的眼里,这根本就不是真正的数学模型;不过,小学数学的应用虽然简单,但仍然是现实生活和进一步学习所不可或缺的。
下面主要介绍有关自然数的分析处理方法,可使读者达到举一反三,开拓思路,提高分析, 解决实际问题的能力。
鸽笼原理:
鸽笼原理又称为抽屉原理,把n个苹果放入x个抽屉里,则必有一个抽屉中至少有2个苹果。
“奇偶校验”方法:
所谓 “奇偶校验”,即是如果两个数都是奇数或偶数,则称这两个数具有相同的奇偶性;若一个数是奇数,另一个数是偶数,则称具有相反的奇偶性。在组合问题中,经常使用“奇偶校验”考虑配对问题。
自然数的因子个数与狱吏问题:
令d为自然数 n 的因子个数,则d有的为奇数,有的为偶数,见下表:
n
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
d(n)
1
2
2
3
2
4
2
4
3
4
2
6
2
4
4
5

我们发现这样一个规律,当且仅当n为完全平方数时,d为奇数;这是因为n的因子是成对出现的.只有n为完全平方数, 才会出现d的情形,d才为奇数。

阅读全文

与小学数学模型思想的含义相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99