导航:首页 > 小学学科 > 小学数学函数思想

小学数学函数思想

发布时间:2021-01-18 06:17:59

① 如何在小学低年级计算教学中渗透数学思想和数学方法

如何在小学低年级计算教学中渗透数学思想和数学方法
《数学课程标准》中曾明确指出:“数学思想方法是对数学规律的理性认识。学卞通过数学学习、形成一定的数学思想方法是数学课程的一个重要目的,应在教学中加以渗透。”掌握科学的数学思想方法对提升学生的思维品质.对数学学科的后续学习,对其他学科的学习,乃至学生的终身发展都具有十分重要的意义。数学思想方法的形成是一个循序渐进的过程,所以需要我们教师长期训练,及早培养,特别要在低年级的教学中相机渗透,

一、函数思想方法在低年级教学中的渗透

恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处就在于它用运动、变化的观点去反映客观事物数量间的相互联系和内在规律。比如一年级下册第10页中的第3题,我们就可以适时向学生相机渗透“变与不变”的思想。

例谈数学思想方法在低年级教学中的渗透

虽然教材中没有提及函数这个概念,一年级的学生也不能理解这个概念,教师也不需要告诉学生什么是函数,但教师要在教学中将函数思想渗透在其中:在学生得出结果后,教师要及时引导学生观察:你有什么发现?让学生发现减号前面的数11不变,当减号后面的数发生变化时,最后的结果也会发生变化。也就是讣学生隐约发现运算的结果是随着减数的变化而变化的。

二、数形结合思想在低年级教学中的渗透

数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所表示的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。

如,教学《两位数乘一位数的乘法》(国标苏教版第4册69页)一课,

例谈数学思想方法在低年级教学中的渗透

依据主题图学生不仅能独:仅口算,而且算法多样,

(1)20x3=20+20+20=60

(2)2个十乘3得6个十,就是60

(3)因为2x3=6,所以20x3=60

例谈数学思想方法在低年级教学中的渗透

在教学14x2的笔算时,根据上面的主题图学生也能独立探究算法:先算2个十是20,再箅2个4得8,最后把它们合并起来——共是28。然而,如何帮助学生把算理与算法结合起来,将算理内化成算法,把思考的步骤与过程用竖式的形式呈现?用竖式计算14x2的结果是——个抽象过程,离开直观的图形支撑,直接要求学生独立建立竖式模型,对于低年级学生来说是行一定难度的。所以此时教师仍然町以借助亢观图形帮助学生经过从有观到抽象的过程, 如,根据计算的先后顺序分步展示课什:2x4计算的是图中的哪个部分?1x2呢?(点击箭头图),这样把图式结合起来,通过竖式与图形的对应关系,帮助学生发现算理与算法之间的关系,让学生在明确算理的基础上掌握算法。

② 举例说明数的结合思想、函数思想与变换思想在小学数学教材中的渗透

人教版6年级就有渗透::(其他版本本人不太清楚)数形结合思想:例如数轴就是数形结合函数思想回:正比例答和反比例一章变换思想:举个例子来说,圆柱体的表面积求法,就是先将其转换为平面几何,用简单的公式来求的,化繁为简 也就是几何中的变换思想

③ 小学数学那些知识点渗透了函数思想渗透了什么函数思想

其实小学数学四大思想都有,,函数与方程、转化与化归、分类讨论、数形结合

④ 小学数学函数思想具体体现在哪些方面

方程式吧!因为中学教学方程与函数一直放在一起~有很大的联系

⑤ 小学数学教学中,哪些知识点渗透函数思想

函数的核心即是:把握并刻画变化中的不变,其中变化的是“过程”,不变的是“规律”,是相关联的量的“关系”。学生愿意去发现规律并能够将规律表现出来的意识与能力,就是函数思想在教学中的渗透。
在小学低年级,主要发现给定的事物(事物、图形、简单数列)中隐含的简单规律,并以数学方式表示其情境,体验彼此相关的数量。描述事物的定性变化,如“我长高了”;或描述事物的定量变化“我在一年中长了4厘米”;或观察模式,并合理推测发展趋势,如找规律“1、1、2、1、1、2……”“◎□○◎□○……”。这样在早期数的学习阶段通过观察事物的变化,探索模式是学生对函数关系的初步体验。
2001年出版的《全日制义务教育数学课程标准》把探索规律做为渗透函数思想的一个重要内容。因此,在第二学段的知识目标中,要求学生能在具体情境中感悟“规律”,并逐步学会用字母或含有字母的式子表示规律。在这次数学教学比武中,肖老师的《用字母表示数》中猜猜老师的年龄,设计很恰当。从直观入手:生10岁,师比生大19岁,那么师29岁;回忆过去,生上一年级时6岁,师多大;展望未来,生18岁考上大学时,师多大。然后用语言来描述:什么变了,什么没变。通过几组数的计算和自由探索规律,发现随着时间的推移,师生的年龄都在变,可师比生大19岁这个关系不会变。最后把语言描述的关系式即探索出来的规律抽象为代数式,即当生a岁时,师是a+19岁,如果师t岁时,生是t-19岁。这样,从直观(图形、表象)——语言——代数式,三者有机结合,是数学学习的重要途径。肖老在渗透函数思想时,很好地把握了两条基本原则:①创设“变化”的过程,才能感受到函数思想;②激发学生“探究”的本性,于“变”中把握“不变”,满足人的好奇本性。这样探求给定的事物中隐含的规律或变化趋势,使我们不仅能知道过去,还能预测未来,并掌握未来。
在小学阶段,除了用字母表示数,还有许多地方也蕴涵着丰富的函数思想,反映着有规律的事物,只是表达形式不一样:
1、数数,一个一个地数,两个两个的数……,“正”着数,“倒”着数。无论怎么数,都可以让学生体验、发现并描述出在数数过程中的“规律”。
2、计算中的规律:20以内加法表、九九乘法表中也蕴涵丰富的规律,同样,在“和不变”、“差不变”、“积不变”、“商不变”等条件下,两个数之间的关系,实际上,一个数就是另一个数的函数。
3、百数图中的规律:除了横、竖、斜的排列规律,还可以探究每一行中或每一列中相邻两个数的关系,甚至两行两列相邻4个数之间的关系,这些关系可以先用语言表述,然尝试用字母表示。
4、几何图形的变化规律:像一些基本几何图形都可以经过三角形变形而得到,并且面积也有密切的关系。
5、基本数量关系:周长、面、体积公式;总价、单价与数量;工作总量、工作效率与工作时间;路程、速度与时间及正比例、反比例等。
6、统计图:尤其是折线统计图,运行图本身就是函数的图像。
可以说函数无处不在,而小学阶段渗透函数思想,可以使学生了解一切事物处于不断变化的过程中,而且在变化过程中互相联系、互相制约,从而需要了解事物的变化趋势及其运动的规律。这对于培养学生的辨证唯物主义观点,培养他们分析和解决问题的能力,都有极其重要的意义。在小学数学教学中有意识地渗透函数思想,也可以为学生后续学习中学习数学,奠定良好的知识基础与学习经验的准备。

⑥ 怎样渗透小学数学思想

“函数”在汉代许慎《说文解字》中解释为“容也”,还解释为“匣、封套”。“函数”一词在我国最先出现在1859年,是由清代数学家李善兰创用的,并给出定义“凡此变数中函彼变数,则此为彼之函数”。在小学阶段没有出现“函数”这一概念,但在整个小学阶段的数学中无不渗透着函数的思想,可以说,凡是有变化的地方就蕴藏着变化的规律,都蕴涵着函数思想。
函数的核心即是:把握并刻画变化中的不变,其中变化的是“过程”,不变的是“规律”,是相关联的量的“关系”。学生愿意去发现规律并能够将规律表现出来的意识与能力,就是函数思想在教学中的渗透。
在小学低年级,主要发现给定的事物(事物、图形、简单数列)中隐含的简单规律,并以数学方式表示其情境,体验彼此相关的数量。描述事物的定性变化,如“我长高了”;或描述事物的定量变化“我在一年中长了4厘米”;或观察模式,并合理推测发展趋势,如找规律“1、1、2、1、1、2……”“◎□○◎□○……”。这样在早期数的学习阶段通过观察事物的变化,探索模式是学生对函数关系的初步体验。
2001年出版的《全日制义务教育数学课程标准》把探索规律做为渗透函数思想的一个重要内容。因此,在第二学段的知识目标中,要求学生能在具体情境中感悟“规律”,并逐步学会用字母或含有字母的式子表示规律。在这次数学教学比武中,肖老师的《用字母表示数》中猜猜老师的年龄,设计很恰当。从直观入手:生10岁,师比生大19岁,那么师29岁;回忆过去,生上一年级时6岁,师多大;展望未来,生18岁考上大学时,师多大。然后用语言来描述:什么变了,什么没变。通过几组数的计算和自由探索规律,发现随着时间的推移,师生的年龄都在变,可师比生大19岁这个关系不会变。最后把语言描述的关系式即探索出来的规律抽象为代数式,即当生a岁时,师是a+19岁,如果师t岁时,生是t-19岁。这样,从直观(图形、表象)——语言——代数式,三者有机结合,是数学学习的重要途径。肖老在渗透函数思想时,很好地把握了两条基本原则:①创设“变化”的过程,才能感受到函数思想;②激发学生“探究”的本性,于“变”中把握“不变”,满足人的好奇本性。这样探求给定的事物中隐含的规律或变化趋势,使我们不仅能知道过去,还能预测未来,并掌握未来。
在小学阶段,除了用字母表示数,还有许多地方也蕴涵着丰富的函数思想,反映着有规律的事物,只是表达形式不一样:
1、数数,一个一个地数,两个两个的数……,“正”着数,“倒”着数。无论怎么数,都可以让学生体验、发现并描述出在数数过程中的“规律”。
2、计算中的规律:20以内加法表、九九乘法表中也蕴涵丰富的规律,同样,在“和不变”、“差不变”、“积不变”、“商不变”等条件下,两个数之间的关系,实际上,一个数就是另一个数的函数。
3、百数图中的规律:除了横、竖、斜的排列规律,还可以探究每一行中或每一列中相邻两个数的关系,甚至两行两列相邻4个数之间的关系,这些关系可以先用语言表述,然尝试用字母表示。
4、几何图形的变化规律:像一些基本几何图形都可以经过三角形变形而得到,并且面积也有密切的关系。
5、基本数量关系:周长、面、体积公式;总价、单价与数量;工作总量、工作效率与工作时间;路程、速度与时间及正比例、反比例等。
6、统计图:尤其是折线统计图,运行图本身就是函数的图像。
可以说函数无处不在,而小学阶段渗透函数思想,可以使学生了解一切事物处于不断变化的过程中,而且在变化过程中互相联系、互相制约,从而需要了解事物的变化趋势及其运动的规律。这对于培养学生的辨证唯物主义观点,培养他们分析和解决问题的能力,都有极其重要的意义。在小学数学教学中有意识地渗透函数思想,也可以为学生后续学习中学习数学,奠定良好的知识基础与学习经验的准备。

⑦ 小学数学建模论文

数学建模论文范文--利用数学建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式

应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等

3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力

摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题
数学模型
数学抽象
简化原则
演算推理
现实原型问题的解
数学模型的解
反映性原则
返回解释
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。
例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。
时间(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990
人中数(百万) 39 50 63 76 92 106 123 132 145
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
四、培养学生的其他能力,完善数学建模思想。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:
(1)理解实际问题的能力;
(2)洞察能力,即关于抓住系统要点的能力;
(3)抽象分析问题的能力;
(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;
(5)运用数学知识的能力;
(6)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
例2:解方程组

x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根
t3-t2+1/3t-1/27=0 (4)
函数模型:
由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)
平面解析模型
方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。
总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式

应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等

3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

⑧ 小学数学教学中,哪些知识渗透了函数思想,试举例

函数思想就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运版用函数的知识权,使问题得到解决。这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路。具体而言,函数思想体现在:(1)认识到这个世界是普遍联系的,各个量之间总是相互依存的,即“普遍联系”的思想。(2)于“变化”中寻求“规律”(关系式),即“模式化”思想。(3)于“规律”中追求“有序”、“结构化”、“对称”等思想。(4)感悟“变化”有快有慢,有时变化的速度是固定的,有时是变化的。(5)根据“规律”判断发展趋势,预测未来,并把握未来。

⑨ 小学数学函数思想具体体现在哪些方面

第一师范的吗

阅读全文

与小学数学函数思想相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99