导航:首页 > 小学学科 > 小学数学转化思想的案例

小学数学转化思想的案例

发布时间:2021-01-16 23:06:18

小学数学思想中的化归思想与转化思想怎么区分

化归思想和转化思想实质上是一样的。都是将一个问题由难化易,由繁化简,由复杂化简单的过程

❷ 列举小学数学中运用转化思想的例子(至少3点)

将实际问题转化成数学模型
将复杂问题转化为多个简单问题
将涉及未知知识的问题转化为已知问题

❸ 小学数学的转化思想例子除了曹冲称象还有其他故事吗

阿普顿是普林斯顿大学的高材生,毕业后被安排在爱迪生身边工作。他对依靠自学而没有文凭的爱迪生很不以为然,常常露出一种讥讽的神态。可是,一件小事却使他对爱迪生的态度有了根本的改变。一次,爱迪生要阿普顿算出梨形玻璃泡的容积,阿普顿点点头,想这么简单的事一会儿就行了。只见他拿来梨形玻璃泡。用尺上下量了几遍,再按照式样在纸上画好草图,列出了一道算式,算来算去,算得满头大汗仍没算出来。一连换了几十个公式,还是没结果,阿普顿急得满脸通红,狼狈不堪。爱迪生在实验室等了很久,不见结果,觉得奇怪,便走到阿普顿的工作间,看到几张白纸上密密麻麻的算式,便笑笑说:“您这样计算太浪费时间了”。只见爱迪生拿来一些水,将水倒进玻璃泡内,交给阿普顿说:“再找个量筒来就知道答案了。”阿普顿茅塞顿开,终于对爱迪生敬服,最后成为爱迪生事业上的好助手。

❹ 小学数学教学中的转化思想是指什么

小学数学教学复中的转化思想制是指把生疏问题转化为熟悉问题,把抽象问题转化为具体问题,把复杂问题转化为简单问题,把一般问题转化为特殊问题,把高次问题转化为低次问题,把未知条件转化为已知条件,把一个综合问题转化为几个基本问题,把顺向思维转化为逆向思维。在小学数学教学中,应当结合具体的教学内容,渗透数学转化思想,有意识地培养学生学会用“转化”思想解决问题,从而提高数学能力。

❺ 小学数学转化思想的书籍有哪些

《举一反三》、《小小数学家》、《中国小学生数学大全》、《小学生数学训练大全》、《小学学应用题大全》、《新课标:小学数学四库全书》、《帮助小学生学好数学的77个秘诀》、《小学数学应用题典型题1000例》、《小学数学游戏大全》、《小学应用题的解法》、《小学数学解决问题方法大全》、《幸福的小学生数学》、《小学数学奥林匹克初级教程》.

❻ 如何在小学数学教学中渗透转化思想

如何在小学数学教学中渗透转化思想
日本著名教育家米山国藏指出:“学生所学的数学知识,在进入社会后几乎没有什么机会应用,因而这种作为知识的数学,通常在走出校门后不到一两年就忘掉了。然而不管他们从事什么工作,唯有深深铭刻于头脑中的数学思想和方法等随时地发生作用,使他们受益终身。”小学是学生学习数学知识的启蒙时期,这一阶段注意给学生渗透基本的数学思想便显得尤为重要。
转化思想是解决数学问题的一个重要思想。任何一个新知识,总是原有知识发展和转化的结果。它可以将某些数学问题化难为易,另辟蹊径,通过转化途径探索出解决问题的新思路。在教学中我们教师应结合恰当的教学内容逐步渗透给学生转化的思想,使他们能用转化的思想去学习新知识、分析并解决问题。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。
一、 在教学新知识时渗透转化思想
例:在教学“异分母分数加减法”一课时,我是这样设计的。
1、在情境中产生关于异分母分数加减法的问题,引入异分母分数加减法的学习。
2、让学生独立思考,尝试计算异分母分数加法。
3、小组交流异分母分数加法的方法。整理并汇报。
方法1:将两个异分母分数都变成小数,再相加。
方法2:将两个异分母分数都通分变成同分母分数后,再相加。
4、归纳整理,渗透转化思想
思考以上两种方法,你有什么发现?(两种方法均是将异分母分数转化成已学过的知识,即将异分母分数转化成与其相等的小数或同分母分数之后,再相加。)……
5、回顾反思,强化思想
回顾本节课的学习,谈谈你的收获和体会。(在转化完成之后及时的反思,是对转化思想的进一步巩固与提升——进入思想的内核,再次深刻理解。)
在我们小学数学教材中,像这样,需教师巧妙地创设问题情境,让学生自主产生转化的需要来学习新知识的例子很多,需要我们教师深入分析教材,理解教材,进而挖掘出其蕴含的转化思想。
二、在数学公式推导过程中渗透转化思想
如平行四边形、三角形、梯形等图形的面积公式推导,它们均是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现转化思想的内容之一。教学这些内容,一般是将要学习的图形转化成已经学会的图形,在引导学生比较之后得出将要学习图形的面积计算方法。随着教学的步步深入,转化思想也渐渐浸入学生们的头脑中。
如平行四边形面积推导,当教师通过创设情境使学生产生迫切要求出平行四边形面积的需要时,可以将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积的时候,要让学生明确两个方面:
一是在转化的过程,把平行四边形剪一剪、拼一拼,最后得到的长方形和原来的平行四边形的面积是相等的(等积转化)。在这个前提之下,长方形的长就是平行四边形的底,宽就是高,所以平行四边形的面积就等于底乘高。
二是在转化完成之后应提醒学生反思“为什么要转化成长方形的”。因为长方形的面积我们先前已经会计算了,所以,将不会的生疏的知识转化成了已经会了的、可以解决的知识,从而解决了新问题。在此过程中转化的思想也就随之潜入学生的心中。其他图形的教学亦是如此。需要注意的是转化应该成为学生在解决问题过程中的内在的迫切需要,而不应该是教师提出的要求,因为这样,学生的操作、思考都将处于被动的状态,对转化的理解则可能浮于表面。
三、在数学练习题中挖掘转化思想
在三角形内角和教学后,书中有一练习题,“求出四边形和正六边形的内角和是多少?”这一问题的解决完全依赖于转化思想,即:把四边形和正六边形都转化成若干个三角形的和。即连接对角线把四边形转化成两个三角形,那么四边形内角和就等于两个180度,即360度。而正六边形通过连接对角线转化成了四个三角形,则内角和是四个180度,即720度。教师在处理习题时,不能仅仅教给学生解题术,更重要的是要让学生收获其数学思想,用知识里蕴含的“魂”去塑造学生的灵魂。这是让学生受益终生的。
总之,转化的思想应用于数学学习的各个领域,但不管在哪方面,它都是以已知的、简单的、具体的、基本的知识为基础,将未知的化为已知的,复杂的化为简单的,抽象的化为具体的,一般的化为特殊的,非基本的化为基本的,从而得出正确的解答。其实,转化本是化归数学思想方法的一种体现(把所要解决的问题,经过某种变化,使之归结为另一个问题,再通过另一个问题的求解,把解得结果作用于原有问题,从而使原有问题得解)。因此在转化的过程中,教师自身应该有一个宽阔的转化意识,夯实转化过程中的每一个细节,在单元结束后的“整理与练习”中,再次提升转化思想,并在后续的学习中有意识地关注转化思想,进行必要的沟通与整合。

❼ 谈谈在小学数学教学中如何运用转化思想

小学数学修订后的课标在原来“双基”的基础上,提出了“四基”,即基础知识、基本技能、基本思想和基本活动经验。 小学数学思想方法许多,基本的数学思想方法有:转化思想方法、分类思想方法、集合思想方法、统计思想方法、假设思想方法、对应思想方法、比较思想方法、符号化思想方法、类比思想方法、数形结合思想方法、极限思想方法、代换思想方法、可逆思想方法以、化归思想方法、变中抓不变思想方法、数学模型思想方法、整体思想方法等,结合本周教学比武中的课例谈谈数学教学中渗透转化思想方法:
1.化新为旧。根据学生已有的新旧知识的联系,将新知识转化为已有的知识来解决。
如:赖传淇老师执教的《通分》一课中,出示2/5○1/4,进行比较大小。异分母分数大小的比较对学生来说是新的知识,学生不会比较,老师启发学生将新的知识转化成已学过的知识进行解决这个问题。学生进行小组讨论,然后进行汇报,生1:根据分数的基本性质,把这个两个分数化成分母相同的分数,2/5=8/20,1/4=5/20,因为8/20>5/20,所以2/5>1/4;生2:把2/5和1/4这两个分数都化成已学过的小数,2/5=0.4,1/4=0.25,因为0.4>0.25,所以2/5>1/4;生3:根据分数的基本性质,把2/5和1/4这两个分数的分子化成相同,2/5○1/4=2/8,因为2/5>2/8,所以2/5>1/4;生4:将2/5和1/4用线段来表示,画一条长20厘米的线段,平均分成5份,取其中的2份,这两份长8厘米,也就是这条线段总长的2/5,再画一条长20厘米的线段,平均分成4份,取其中的1份,这一份长5厘米,也就是这条线段总长的1/4,因为8厘米>5厘米,所以2/5>1/4。学生运用了化新为旧的转化思想解决了新知。
又如:郭秋妹老师执教的《两位数乘两位数》一课中,学生列出算式24×12后,问学生可以用什么方法计算?学生回答可以用估算、口算、笔算。师问如何口算24×12,学生一时愣住了,郭老师进行引导,可以将它转化成已学过的。学生开始尝试做,不一会儿学生纷纷举手回答。生1:24×3×4=288,把12拆成3×4,就变成已学过的两位数乘一位数的了24×3=72,72×4=288;生2:24×2×6=288;生3:12×4×6=288;生4:12×3×8=288;生5:把24看成20和4的和,20×12=240,4×12=48,240+48=288;生6:把12看成10和2的和,24×10=240,24×2=48,240+48=288;生7:把12看成9和3的和,24×9=216,24×3=72,216+72=288……学生运用了化新为旧的转化思想解决了新知,发散了思维。
2.化难为易。如:蒋友成老师执教的《数学思考》一课中,出示一题20个点最多可以轻连几条线段?学生一时也无从下手,老师进行引导,将问题化难为易,化大为小,化多为少,将20点转化为1,2,3,4,5点,分别能画几条线段?让学生动手操作、小组讨论。然后学生汇报:点数1,条数0(条);点数2,条数1(条);点数3,条数1+2=3(条);点数4,条数1+2+3=6(条);点数5,条数1+2+3+4=10(条)。让学生观察、分析条数与点数的关系,学生通过观、分析、小组讨论发现:条数的计算方法是从1加2加到点数减1的和。学生发现这个规律后,再来解答20个点最多可以轻连几条线段就轻而易举了,学生就很快的说出算式1+2+3+4+……+19=190(条)。师生进行小结:遇到难的题目,可以将它转化为容易的,简单的来解决,接着找出规律,然后运用规律解决较难的题目,这就是运用了化难为易的转化思想方法。
3.化数为形。如:在计算1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512中,通过引导学生化数为形,画一个正方形, 1/2涂上色,空白的也是1/2,涂色部分可以用1减去空白的;接着在空白的1/2上再涂色一半,涂色部分就是1/2+1/4,涂色部分可以用1减去空白的, 涂色部分就是1-1/4,接着在空白的1/4上再涂色一半,涂色部分就是1/2+1/4+1/8,涂色部分可以用1减去空白的, 涂色部分就是1-1/8。从刚才的过程可以发现规律,涂色部分可以用1减去空白的,因此,1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512=1-1/512=511/512。通过化数为形,可以把这个算式转化成1-1/512=511/512。
4.为曲为直。如:圆的面积公式的推导,就要用到化曲为直的思想方法,通过将圆分割成若干等份,拼成近似的长方形,由圆的半径与面积的关系转化为长方形的长宽与面积的关系,由长方形的面积公式,推导出圆的面积的公式。这里,就是将长方形的面积公式转化为圆的面积公式。在学习圆柱的体积计算时,学生也能很快悟到立体图形之间的联系,感悟到圆柱体积的计算公式。
陶行知先生曾说过:“我以为好的先生不是教书,不是教学生,乃是教学生学。”任何功课最终的目的就是要达到不需要教,需要有会学习的能力、会学习的方法,而数学思想的形成及运用就会产生好的方法,就会提高学习的能力,就会为不教奠定基础。因此,小学数学教师要拓展视野,在教学中渗透数学思想,为学生的终身发展奠基。

阅读全文

与小学数学转化思想的案例相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99